Lecture 2 (I). From low to higher dimensions B. Khoromskij, Rome 2011(L2)

Outline of Lecture 2 (I).
1. Wide range applications in R<.
2. d = 2: Main properties of the rank-R matrices.

3. Approximation by low rank matrices: Truncated SVD,
reduced SVD, and adaptive cross approximation (ACA).

4. H-matrices in dimension < 3: advantages and limitations.
5. FFT, FFT,4, and circulant convolution.
6. A paradigm of super-computing:

increase in computer power does not relax the curse of
dimensionality.

Problem classes in R? B. Khoromskij, Rome 2011(L2)

» Elliptic (parameter-dependent) eq.: Find u € Hj (), s.t.,
Hu := —div(Agradu) + Vu=F in Q¢cR%
» EVP: Find a pair (\,u) € R x H} (Q), s.t., {(u,u) =1, and

Hu = u in Q€ RY,
u=>0 on 0f2.

» Parabolic equations: Find u: R? x (0,00) — R, s.t.

ou
u(z,0) € H*(RY) : v +Hu=0, H=Az+V(xy,....,xq).
Specific features:
> High spacial dimension: Q = (=b,b)¢ € R? (d = 2,3, ...,100, ...).
> Multiparametric eq.: A(y,z), u(y,z), y € RM (M =1,2,...,100, ..., 00).

> Nonlinear, nonlocal (integral) operator V = V(z,u), singular potentials.




General mathematical tasks B. Khoromskij, Rome 2011(L2)

e Fast Poisson solver, preconditioning = (—A + 1)~ 1

e Convolution transform in R with Green's function for
d-Laplacian (d > 3),

\A&VH\%& %&F &m%g.

O(dnlogn)-algorithms, numerics in electronic structure
calculations.

e Parabolic egs (heat transfer, molecular dynamics, ...)

9u + Au=f = exp(—tA), Cayley Transform 4.

e Multilinear algebra (MLA), complexity theory (e.g.,
Strassen’s algorithm by tensor decomposition).

e Matrix product states (TT, TC, QTT) + DMRG-type
iteration for slightly entangled sytems (electronic
structure, molecular dynamics, quantum computing).

Many-particle models B. Khoromskij, Rome 2011(L2)

e Hartree-Fock equation

avi + [ Ei o) — w\% P dy = Ab(y),

3 [z —yll 3 Jlz =yl

N /2
p(z,y) = >, ¢i(x)pi(y) electron density matrix,
i=1

e~ #lIzll - density function for hydrogen atom,

a; - Newton potential,
V. - external potential with singularities at centers of atoms.

Tensor approximation scheme and numerics Lect. 4.
e Kohn-Sham equation (simplyfied Hartree-Fock eq.)
-V + [Py av@] v = v = {Zp@)
2 R3[|z — Y| ™
e Poisson-Boltzmann eq. (the electrostatic potential of proteins)

V- [e(2)V - ¢(x)] — e(x)h(x)?sinh[p(zx)] + 4np(x) /KT =0, z € R3.

c—hlzll

If e(x) = €0, h(z) = h, p(x) = d(x), then ¢(z) = .

lll
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Parametric Elliptic Problems: Stochastic PDEs B. Khoromskij, Rome 2011(L2) 5

Find ups € L3(T') x H}(D), s.t.

Aup(y,z) = f(z) in D, Vyel,
upr(y,z) =0 on 9D, VyeT,
A:=—div(ap(y,z)grad), feL?(D), DeRY d=1,2,3,
ap(y,x) is smooth inz €D, y= (y1,....,yn) € :=[-1,1]M, M < 0.

Additive case (via the truncated Karhunen-Loéve expansion)
M
ar(y,2) = ao(@) + > am(@)ym, am € L¥(D), M — co.
m=1
Log-additive case

M
arr(y,@) = explao(a) + 3 am(@)ym) > 0.
m=1

» Computing the truncated Karhunen-Loéve expansion.

» Analysis of best N-term approximations.

» Tensor representation of stochastic-Galerkin and collocation matrices.
» Tensor truncated preconditioned iteration.

Matrix SVD B. Khoromskij, Rome 2011(L2) 6

Lem. 2.1. (matrix SVD). Every real (complex) 7 x o-matrix
M can be representd as the product

M=U-S-VI:=Sx,UxyV=S8Sx, UV x,UP,

in which
1. vW = wMul’. v is a unitary 7 x r-matrix,

2. U@ = [UuPUP .. U] is a unitary o x o-matrix,
3. S is an 7 x o-matrix (core tensor) with the properties of
(1) pseudodiagonality : S = diag{o1, 02, ..., Omin(r,0) }»
(i) ordering : 01 > 02 > ... 2 Omin(r,0) > 0.

The o; are singular values of M, and the vectors Q@.E and S@
are, resp., an ith left and «th right singular vectors.




Low rank matrices B. Khoromskij, Rome 2011(L2)

The class of rank < k matrices in R™“ will be called by
Ri-matrices, i.e. rank(M) <k for M € Ry.

Each M € R, can be represented in the form

M=A-BT, AeR™*k  BeR¥F (1)

Lem. 2.2. Attractive features of Ri-matrices:
1. The set Ry is closed (nontrivial result in linear algebra).
2. Only k(r + o) numbers are required to store an Ri-matrix.

3. The matrix-vector multiplication x +— y := Mz, z € R°
can be done in two steps:

y' := BTz ¢ R¥, and y := Ay € R".

The corresponding cost is 2k(o + 7).

Low rank matrices B. Khoromskij, Rome 2011(L2)

4. The sum of two Ri-matrices Ry = A;BI, Ry = A;BY is an
Rop-matrix,

Ri+ Ry = [A1]A2][B1|Bo]",  [A1]A2] e RT?*, [Bi|By] € R7¥2F.

5. The multiplication of R € 'R, by an arbitrary matrix M of
the proper size gives again an Ri-matrix:

RM = A(MTB)T, MR = (MA)BT.

6. The best approximation of an arbitrary matrix M € R™*°
by an Ri-matrix M, say in the Frobenius norm, that is

JAIF = > a},
(i,j)ETX0O

can be calculated by the truncated SVD (discrete version of
the Schmidt decomposition).
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Truncated SVD B. Khoromskij, Rome 2011(L2)

Alg. 2.1. (Truncated SVD). For given k€N, let M =UXVT
be the SVD of M, i.e., ¥ = diag{o1,...0k,...,0n}, n =min(r,0),
o1>09>...20,>0,and U = ﬁqpv..;q}:q\?_.f.:uQL,

V = :\T:;a\?a\wlzv:;a\i. Set Y. := &&QQ%QT..JQ?O“..JO?

M, =US, VI =08, VT ~ M,

| My — M||F

The complexity of the truncated SVD: O(ro?) with 7 > o.
Too expensive for large 7 and o.

Is it possible to compute almost the best rank-k£ matrix
approximation getting rid of full matrix SVD 7 — Yes.

If M € Ry, then its best approximation M, € Ry, kK < m, can be computed
by the following QR-SVD scheme.

Reduced truncated SVvD B. Khoromskij, Rome 2011(L2)

Alg. 2.2. (Reduced truncated SVD). Given M = ABT € R,

(i) Calculate the QR-decompositions A = QR4 and B = QgRp, with the
unitary matrices Q4 € R™*™, and Qg € RX™, and upper triangular
matrices R4, Rg € RMX™,

(ii) Calculate a SVD, RARE = UXVT (with the cost O(m?)).

(iii) Define My, = AyBY with Ay := QaU,S, € R™%* and

By := QpVi € R7¥k where Uy := [Uy,...,Ux], Vi :=[Vi,..., V] (in both
cases, first kK columns) and the truncated matrix X, of X are defined by
truncated SVD of RyRL =UxVT.

Alg. 2.2 can be implemented in O(m?(r + o) +m?) operations.

Exer. 2.1 Compute the rank-r, r = 2M + 1, sinc quadrature ([7], L. 1)
approximation of the Hilbert matrix A = {a;;}, (4,5 =1,...,n)

@&HH\AI..&H \o mli&:&R Musﬂmis.i:ﬁ

for n =103, 10%, and M = 64. Apply to the result the best low rank
approximation via reduced truncated SVD by Alg. 2.2.
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Adaptive cross approximation (ACA) B. Khoromskij, Rome 2011(L2)

In FEM/BEM applications, nearly best (suboptimal) rank-k approximation
over partial data can be computed by the heuristic method called adaptive
cross approximation (ACA),

cf. [3], [6], E. Tyrtyshnikov et al.

Many matrix decomposition algorithms can be represented as a sequence
of rank-one Wedderburn updates.

J. H. M. Wedderburn, Lectures on matrices, colloquim publications, vol. XVII, AMS, NY, 1934.

For a given m x n matrix A and vectors x, y of appropriate sizes, s.t.
xT Ay # 0, matrix

AyzT A
2T Ay’
has rank(B) =rank(A) — 1. For the rank-r matrix Ag = A after r updates (if
do not fail) of form

B=A

Ap_1ypzh A4

Ap = A1 —
ol Ap_1yk

) with HHMJ\&\AIH@W # 0,

the matrix A, becomes zero leading to rank-r decomposition of A.

Adaptive cross approximation (ACA) B. Khoromskij, Rome 2011(L2)

Sketch of the ACA:

» Starting from Ry = A € R™*", find a nonzero pivot in Ry, say (ix,jk),
and subtract a scaled outer product of the ixth row and the jipth column:
1
Amwvs@?
where we use the notation (Ry);,,1:n and (Ri)1:m

the jipth column of R, respectively.

Riq1:= R — ugvl,  With  ug = (Ri)1:m,j.s vk = (BE)ig,1:ms

jp for the ixth row and

» ji is chosen as the maximum element in modulus of the i,th row, i.e.,

|(Rk—1)igsp | = jpax [(Rik—1)is51-

The choice of 73, will be similar.

» The matrix S, = MumnH Sﬂem will be used as the rank-r approximation of
A =S5, 4+ Ry, since rank(Sy) <.

» Apply the reduced truncated SVD to S, for the rank optimization.

Rem. 2.1. SPD case: ACA = Pivoted Cholesky decompositions !
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H-matrix format: brief survey B. Khoromskij, Rome 2011(L2)

H- and H?-matrix technique is a direct descendant of panel
clustering, fast multipole and mosaic-skeleton approximations.

In addition, it allows data-sparse matrix-matrix operations.

My k(Trx1,P), the class of data-sparse hierarchical

H-matriceés - wnackbusch, Khoromskij, Bebendorf, Borm, Grasedyck, Sauter ('99 - '05).

The construction of H-matrices defined on the product index
set I x I, is based on the following ingredients:

e An H-tree T'(I) of the index set I (hierarchical cluster
tree).

e The admissible partitioning P of I x I based on a block
cluster tree T'(I x I).

e Low rank approximation of all large enough blocks in P.

Examples of hierarchical partitioning B. Khoromskij, Rome 2011(L2)

Hierarchical Partitionings P, /5(I x I) and Py (I x I)

Figure 1. Standard- (left) and Weak-admissible H-partitionings for d = 1.
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Fast Fourier Transform B. Khoromskij, Rome 2011(L2)

Let Sy be the space of sequences {f[n]}o<n<n Of period N.

N—-1
Sy is an Euclidean space, (f,g9) = > fIn|g*[n].
n=0

Def. 2.2. The discrete Fourier transform (DFT) of f is

ZL .
EEUHQE\LH :MHUO 2396 Alw@%ﬁw:v uQ/EAUOS_o_mx3c_L:U__nm&o:mv.

The FT matrix Fy = :\ﬁ:ww:up is given by

—2imkn

v — S\IS»& W = mws.ﬂ.\z.
N

.\.?3 = mummvm

The DFT(N) can be calculated by Fast Fourier Transform (FFT) in
Nrpr(N) = CprNlog, N operations, Cr =~ 4.
The FFT traces back (1805) to Gauss (1777 - 1855).

First computer program coolly/Tukey (1965).

Discrete convolution B. Khoromskij, Zuerich(L5)

Let g be the discrete convolution of two signals f, h supported
only by the indices 0 <n < M —1,

gl = (Fx W) = S flklhln — k]

k=—oc0
The naive implementation requires M (M + 1) operations.

It can be represented as a matrix-by-vector product (MVP)
with the Toeplitz matrix

T = {h[n — k]}o<nrers €ERM*M g =TF.

Extending f and h with over M samples by

AM]=0, h2M —i=h[i], i=1,.,M—1,

fln]=0, n=M,...2M —1,

we reduce the problem to the MVP with a circulant matrix
C € R2M*2M gnecified by the first row h € R2M
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Huge problems: tensor methods bit super-computers B. Khoromskij, Rome 2011(L2)

> The algebraic operations on high-dimensional data require
heavy computing.

> Linear cost O(N), N =n¢, is satisfactory only for small d.

> Traditional "asymptotically optimal” methods suffer from
the ‘“curse of dimensionality”

> Complexity of matrix operations in full arithmetics: QQ/EV.
It is too large already for d =3, i.e., N =n3 = N3 =n°.

> A paradigm of up-to-date numerical simulations:

The higher computer capacities do not relax the curse of
dimensionality.

> Remedy: The identification and efficient use of low rank
tensor structured representations with linear scaling in d.

Literature to Lecture 2(I) B. Khoromskij, Rome 2011(L2)

1. G.H. Golub and C.F. Van Loan: Matrix computations. 3rd ed., The Johns Hopkins University Press,

Baltimore, 1996.

2. W. Hackbusch: Hierarchiche Matrizen - Algorithmen und Analysis. Springer 2009.

3. M. Bebendorf: Hierarchical Matrices. Springer, 2008.

4. W. Hackbusch and B.N. Khoromskij: A Sparse H-matrix Arithmetic. Part II. Application to

Multi-Dimensional Problems. Copmputing 64 (2000), 21-47.

5. B.N. Khoromskij: Data-Sparse Approximation of Integral Operators. Lecture notes 17, MPI MIS,

Leipzig 2003, 1-61.

6. E. Tyrtyshnikov: Incomplete cross approximation in the mosaic-skeleton method. Computing 64

(2000), 367-380.

http://personal-homepages.mis.mpg.de/bokh
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Lecture 2 (II). Basic rank structured tensor formats B. Khoromskij, Rome 2011(L2)

Outline of Lecture 2(II).

1. Tensor product of finite dimensional Hilbert spaces
(multidimensional vectors).

2. Matrix unfolding and contracted product of tensors.
3. Tensor rank and canonical representation.

4. Rank decomposition can be useful in linear algebra:
O(n'°e27)- Strassen algorithm of matrix multiplication.

5. Orthogonal Tucker and mixed Tucker-canonical models.
6. Linear and multilinear operations on “formatted tensors’”.

7. Toward best (nonlinear) approx. in basic tensor formats.

Tensor product of finite dimensional Hilbert spaces B. khoromskij, Rome 2011(L2)

Let H= H; ®...® Hy be a tensor prod. Hilbert space (TPHS).

Hy is a real Euclidean space of vectors,

H =R"“, n,eN, ny:=dmH, (=1,...4d.

The scalar product of rank-1 elements W,V € H is given by

d
(W, V) = ASE ®...® SEV“ Ve @A&v — :Aégu egvmt (2)
=1

d d
S\A&Hv ...“s.&v - zggvms&v“ ngﬁmg\v =n |_| l_l nd < zzm.
=1 =1

Choose a basis ﬁ mv 1 <k< :& of Hy, then the set
QMV ®@MV ®... ®%%J (1 <ky<mp, 1<¢<d)is the basis in H.

Denote the d-fold tensor prod. H=H ®...® H by H®! (= %Ev.
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Tensor product of finite dimensional Hilbert spaces B. khoromskij, Rome 2011(L2)

Rem. 2.1. d-th order tensor A € H of size n = (nq,...,nq) iS a
function of d discrete arguments (multi-dimensional
array/vector over Z:=11 x ... x Ig, Iy ={1,...,n¢}), i.e.,

AL x..xI;—R, with dim(H) = |n|=ny-- ng.
Notations for the coordinate representation of A,
A= g, 4,] = [Ai1, ..., iq)] € RE.
The Euclidean scalar product of tensors A, B € H becomes

(A, B) := MU Qiy..ig Yiy g

A&Hu..;&&va
inducing the Euclidean (Frobenious) norm ||Al|r :=+/(4,A).
The dimension directions ¢ =1, ...,d are called the modes.

Tensor is a union of /-mode fibers, A(i1,...,ip—1,: ,5041, .-, 0d)-

Vectorization of a tensor B. Khoromskij Rome 2011(L2)

For a matrix A € R™*" we use the vector representation
(vectorization or concatenation) A — vec(A) € R™", where
vec(A) is an nm x 1 vector obtained by ‘“stacking” A's columns
(the FORTRAN-style ordering)

vec(A) :=[a11, -y Gn1, a12, :;@:31

In this way, vec(A) is a rearranged version of A.

Def. 2.1. In general, if A € RIv*--*la j5 g tensor, then the
vectorization of A is recursively defined by

vec([A(i1, ...y iq—1,1)])

vec([A(i1, ..y iq—1,2)])
vec(A) = . € RI?Px1,

vec([A(41,--,94—1,14)])

The tensor element A(iy,...,i3) maps to vector entry (j,1),
d k-1
where j =14+ > (i — 1) [] ne.
k=1 {=1
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Matrix unfolding of a tensor B. Khoromskij Rome 2011(L2)

Unfolding of a tensor into a matrix (matricization) is a way to
map high order tensor into two-fold arrays by rearranging
(reshaping) it for some ¢ € {1,...,d}, RT s RI*I-0 and then
vectorizing the tensors in R¥**l-o for each i, € I,. The single
hole index set is defined by bL& =1 X o xX Ly X Tppq X ..o X 1.

Def. 2.2. The unfolding mat(A4) of a tensor A € RI1*:--x1a
w.r.t. the index ¢ (along mode /) is defined by a matrix
mat(A) := Ay of dimension n, x fg, SO that the tensor element
A(iq, ...,iq) maps to matrix element v(ig, j), i¢ € I;, where

\QAS = ?@Lv with e {l,...,n0}, ng =nq1 - -ng_1np41 Ny,
d k—1
i=1+ > (k—=DJk, Je= [J[ nm
k=1,k#L m=1,m=#~L

Exer. 2.2. (mat(A) by recursion over vec(A)). Derive the representation

SQWA\C = _\cmng\w@f v to—1,1, 0041, ..Js,&vT cees @mﬁg\wﬁf e b1, M0, L0 1, ..Js.&v_vgﬂ

Example of matrix unfolding of a tensor B. Khoromskij Rome 2011(L2)

Rem. 2.2. Kolmogorow's decomposition is a particular way
for unforlding of the multivariate function into
“one-dimensional” representation (univariate function).

Ex. 2.1. Define a tensor A € R3%2%3 py

@111 = Q112 = Q211 = —ag12 = 1,

(313 = Q121 = G122 = A22] = —0G222 = 2,

a213 = 4311
(223 = Q321 = G323 = 4, a113 = a312 = @123 = azz2 = 0.

The matrix unfolding x:: is given by

1 10 2 20
\:CH 1-12 2—-24
2 02 4 04
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Visualization of matrix unfolding of a tensor B. Khoromskij Rome 2011(L2)

3@

Figure 2: Visualization of the matrix unfolding for d = 3.

/-rank of a tensor. Contracted product of tensors

B. Khoromskij, Rome 2011(L2)

Def. 2.3. The ¢-rank of A ({ =1,...,d), denoted by
Ry = ranky(A), is the dimension of the vector space spanned
by the /-mode vectors (fibers).

The /-mode fibers of A are the column vectors of the matrix
unfolding A, (by definition).

Prop. 2.1. We have
ranke(A) = rank(Ay).

The major difference with the matrix case, however, is the
fact that the different /-ranks of a higher-order tensor are not
necessarily the same.

An important tensor-tensor operation is the contracted
product of two tensors, in particilar, a tensor-matrix
contracted product along mode /.

25
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Contracted product of tensors B. Khoromskij Rome 2011(L2)

Def. 2.4. Given V € Rli*--xIa gnd a matrix M € R7¢x1¢,
define the mode-¢ tensor-matrix contracted product by

_ Iy X...XTp_1XJg X1 X
U=V xy M e R xlexoxlegxla

ne

Q&.T..Js&\uQ.T&&\Hi.;s.& - M @s.f..;s.@\uk?s&\f..g&&:@b&km“ Je € vN&
1p=1

This is the generalization of the matrix-matrix multiplication:

T
Mn,my X2 Mpm) = Mn,m) M,y = Mn,p).-

'3
n n
3 3
JN .
X —> ;
M

Figure 3: Contracted product of a third-order tensor with a matrix.

n

1

Rank-1 tensors and canonical format B. Khoromskij, Rome 2011(L2)

Rem. 2.3. A dth-order tensor A has rank 1, rank(A) =1, if it
is the contracted product of d vectors ¢t ... t(d () c Rl

A=tW xyt@ x t @ g o=t D

14 ?

for iy € Iy A&“HU:;&V.
Ex. 2.2. Let A=a1 ®az, B =050 Q by, @?g e R" A&va

(A, B) = {a1,b1)(az,b2),  ||Allr = V/{a1,a1)(az, az).

Def. 2.5. (Canonical (CP) format). Choose a subset of
those elements which require only R terms,

R
Cr=qweH: SHMUSM:@VSME@:.@SM& S\MS € Hy
k=1

Elem. w € Cr, w ¢ Cr—1, are called to have the tensor rank R.
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Pro and contra for canonical format B. Khoromskij, Rome 2011(L2)

Tensors w € Cr can be represented by the description of Rd
elements va € Hy, i.e. with linear cost in d, dRn.

Advantages: Tremendous reduction of storage cost,
removing d from the exponential, n¢ — d Rn;
Analytic methods of low-rank approx. for Green’'s kernels.

Limitations: Cr is a nonclosed set. Approximation process in
Cr is not robust. Exact rank-R represent. is N-P hard.

Visualization of the canonical model for d = 3.

3 (©) ()

<“_, <N <_.
UH\ Um\ U_‘\
@) @ @)
= <H + <N + + Vr
A
@ () ()
<H <N Vy
Strassen algorithm via rank decomposition B. Khoromskij, Rome 2011(L2)

Finding the tensor rank can be a useful concept even in the
classical linear algebra.

Historical remarks on the Strassen algorithm of fast
matrix-matrix multiplication of complexity Q?Emmd.

O(n?%¢) algorithm to multiply two n x n matrices gives O(n?*¢)
method for solving system of n linear eqs. [strassen 1969].

Best known result: Qﬁﬁw.wﬂmv [Copperesmith-Winograd 1987].

Lloyd N. Trefethen bets Peter Alfred (25 June 1985) that a
method will have been found to solve Ax =b in O(n?"¢)
operations for any € > 0 (numerical stabiliy is not an isue).

Details at personal homepage by Prof. L.N. Trefethen (Uni.
Oxford).
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Strassen algorithm via rank decomposition B. Khoromskij, Rome 2011(L2)

In the block form

QH Qw \: \»w WH mw
C3Cy Az Ag B3 By

with
4

4
Cr = > vijrAiBj, k=1,...4,
i=1j=1

where for the 3-rd order coefficients tensor of size 4 x 4 x 4 we have
(slicewise)

1000 0100 0000 0000

0010 0001 0000 0000
3&1”6 <2 <3 <

0000 0000 1000 0100

0000 0000 0010 0001

Here «; means that the related matrix corresponds to slice number ¢ < 4.

Strassen algorithm via rank decomposition B. Khoromskij, Rome 2011(L2)

Suppose that we have rank-R expansion

R
Yijk = M Ut Vjt Wit -
t=1

Then

R 4 4 R 4 4
Cr = MU@S& M MSH}S“@@. = M@S& Mﬁi}. MU vt Bj
t=1 t=1 =1 7j=1

i=1j=1

% %
_u_ﬁmnoBoctﬁmM#HMU::P.DWHMucﬁmu.mzaﬁmacnmﬁ:m_z_:m_ﬁmmxﬁom

i=1 j=1
matrix-matrix products of size n/2 x n/2.

We have R < 8 (why ?7), but there are representations (infinitely many) of
rank 7 (Strassen’s result).

Open problem: Is it possible to construct rank decompositions with
R < 77 If yes, then the Strassen result can be improved.

Exer. 2.3. Try to compute the canonical rank-7 decomposition of v by

the Tensor Toolbox.
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Orthogonal separabe representation B. Khoromskij, Rome 2011(L2)

As in the Galerkin method, the replacement of H, by
subspaces V, C H;, (1 </ < d) leads to the tensor subspace

V=VieWh...®V; CH

Setting ry :=dim V, and choosing a orthonormal basis
ﬁ \ms 1<k < Sw of V,, we can represent each v € V by

U= M@W@Mv & @\mwmv R...® ﬂmv“ with by € %bx.:x&ﬁ
k

and with the multi-index k = (k1,...,kq), 1 < k¢ <71y, where
K& = AHQ ..Ja@w_ AH M 12 m &v

Let r = (r1,...,74) € N? be a d-tuple of dimensions.

Exer. 2.4. Max. canonical rank in V, R = Aﬂmﬂ r¢)/ max, o,

Orthogonal rank-r representation (Tucker format) B. Khoromskij, Rome 2011(L2)

Def 2.6. (Tucker format) Given r, define

Te={veVCH VV,st. dmV,=r, ¢=1,..d}.

A representation of w € 7, is called a Tucker format of rank r
(cf. . @1 ).

Denote by U® = [\, ..., ¢)] € Rm*™ the ¢-mode side matrix.

Def. 2.7. We say that U®) ¢S,,, where S,, is the Stiefel
manifold of the orthogonal ny, x r, matrices.

The Tucker representation is not unique (rotation of U®).
Let us set for ease of presentation, n=ny, ({ =1,....,d).

Storage of w € T,: Emﬂi@ reals and the sampling of MUMNHHQ
vectors ﬁms € R”, O(r? + drn), r = maxr, (curse of dimension).
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Orthogonal rank-r representation (Tucker format) B. Khoromskij, Rome 2011(L2)

Comment to Def. 2.6. Using the (orthogonal) side-matrices
£ nxr
U = ¢ .p0] e RM¥"e,

we represent the Tucker decomposition of V € T, as a
tensor-by-matrix contracted products,

V=08x,UDx, U . x, U

where B € R/1*-*Ja js the core tensor of “small” size
™ X . XTq.

Rem. 2.4. In the case d = 2, the above representation is a
multilinear equivalent of a matrix factorisation, i.e., we have

A=Bx, UV x, U@ =y . g.g@" geRrrxr,

Tucker orthogonality meets the canonical sparsity B. Khoromskij, Rome 2011(L2)

Visualization of the Tucker model for d = 3:

How to relax drowbacks of both T, , and Cgr ?

Main idea: The two-level tensor format that inherits the Tucker
orthogonality in primal space (robust decomposition) and the Cg

structure in the dual (coefficients) space (linear scaling in d,n, R, 7).
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Def. 2.8. Mixed Tucker-canonical model (T¢y,), (i21).
Given the rank parameters r, R (normally, r < R), define a

subclass T¢,,, C Trn Of tensors with g8 € Cr, C R/1%*Ja,

R
V= {2, B @ ou ) s Vo VO v,

Storage: S(V)=dRr+ R+ drn (linear scaling in d,n, R,r).

3)
3

v

I3

3) 3)
Iy \fA ) \ u®
r ——= b +.+b
— 1 T R
o o8 o
r, 3
,m

v @
_w I
1)
I h v®

"

Level I: Tucker decomposition (left). Level II: canonical decomposition of 8 (right).

Exer. 2.5. Compute the mixed decomposition of functional
tensor for fi ., is it much faster than CP? (cf. Lect. 1).

Nonlinear approximation in tensor format B. Khoromskij, Rome 2011(L2)

Exer. 2.6. Compute the canonical, Tucker and ¢-mode e-rank of the
Hilbert tensor A = ﬁ@@.#wf A5k = H\As +35+ .NAV A@.?@.u\a =1, VB\V with n = HOM_
corresponding to approximation error ¢ = 10~2,10~4,10~°. Do you observe

the exponential convergence in r.? (Hint: See Exer. 2.1)

Probl. 1. Efficient and accurate MLA in fixed tensor classes
S getting rid of the curse of dimensionality.

Probl. 2. Best rank-structured approximation of a high-order
tensor f € Vy, in the fixed set S C {7;,Cr, T ¢y, }-

Probl. 3. For fixed accuracy ¢ > 0, efficient approximation of
a high-order tensor f € V, in § with adaptive rank parameter.

Since both 7, and Cgr are not linear spaces, we arrive at a
nontrivial nonlinear approximation problem on estimation:

Given X €V, (more generally, X € Sy C V,), find

To(X) := argmin | X — Al|, where S C{7:,Cr, Tcn,} (3)
AeS
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Recall that the decomposition

. d N d ) . mwaleTo&AIOG.V
F@) = sin(Ya) = sty ] @)

kefl,...d)\{j} sin(ay — o)

holds for any a; € R, s.t. sin(ax — ;) # 0 for all j # k.

(4) shows the lack of uniqueness (ambiguity) of the “best”
rank-d tensor representation. The convergence of ALS
schemes in Cr might be non-robust (multiple local minima).

Exer. 2.7. Prove that the tensor related to f(x) has the
maximal Tucker rank 2. Check it by Tensor Toolbox.

Principal discussion: How to solve (3) efficiently?

Main aproaches: MLA on formatted tensors + high-order
extension(s) of trunc. SVD + nonlinear iteration + multigrid.
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