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Lecture 1. Separable approximation in higher dimensions.

Lecture 2. From low to higher dimensions. Basic tensor
formats: explicit representation and nonlinear approximation.

Lecture 3. Computations in the tensor train (TT) and
quantized-TT low-parametric formats.

Lecture 4. Solving equations in tensor formats (BVPs,
EVPs, transient problems). Numerical illustrations for some
high-dim. applications.

Lecture notes: see Literature.

MATLAB Tensor Toolbox:

— http://csmr.ca.sandia.gov/~tgkolda/Tensor Toolbox/
— http://spring.inm.ras.ru/osel

(Group by E. Tyrtyshnikov: I. Oseledets/D. Savostianov/S. Dolgov/V. Kazeev)




Lect. 1. Separable approxim. in higher dimensions B. Khoromskij, Rome 2011(L1) 3

Outlook of Lecture 1.
e Motivations: Moden applications in higher dimensions.

e From low to higher dimensions: what can be adopted from
the traditional numerical methods?

e Rank structured separable representations of multi-variate
functions in R¢. Basic dimension splitting formats.

e Indispensable rank-structured tensor/matrix multilinear
algebra (MLA).

e Kolmogorow's paradigm and ‘curse of dimensionality” .
e d = 2: Celebrated Schmidt's decomposition (cf. SVD).
e Greedy Algorithms: simple but slowly convergent.

e Other model reduction approaches.

Separability concept in computational quant. chemitry B. khoromskij, Rome 2011(L1) 4

1929, Dirac:

The fundamental laws necessary for the mathematical treatment of large
part of physics and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of these laws leads

to equations that are too complex to be solved.

1998, W. Kohn, A. Pople:

Nobel Prize in Chemistry for development of DFT, based on
use of problem adapted (separable) GTO basis sets.

Nowadays: Spreading of tensor methods in multi-dimensional
numerical modeling:

o MLA with linear complexity scaling in dimension d,
o Effective nonlinear approximation of functions/operators in R,

o Initial applications in quantum chemistry, sPDEs, stochastic models.




Multi-dimensional equations in wide range applications B. Khoromskij, Rome 2011(L1)

1.

Basic physical models include (nonlocal) multivariate transforms.

Examples of high dimensional problems.

Multi-dimensional integral operators in R? (Green's functions,
convolution, Fourier and Laplace transforms).

Elliptic/parabolic/hyperbolic solution operators, preconditioning.

Schrddinger eq. for many-particle systems. Density matrix
calculation in R3 x R3 (DFT, Hartree-Fock/Kohn-Sham egs.),
quantum molecular dynamics, DMRG and quantum computing.

Stochastic/parametric PDEs, Kolmogorow forward/Fokker-Planck
and master eqgs.

Financial math. (Kolmogorow backward, Black-Scholes eqs).

Collision integrals in the deterministic Boltzmann eq. in R3
(dilute gas).

Multi-dimensional data in chemometrics, psychometrics, higher-order
statistics, data mining,

Examples of the operator calculus B. Khoromskij, Rome 2011(L1)

. . ®d
Tensor structured vectors and matrices in R = R"

d

RV 2R"®..9R", AcR™*"' 2Rmng  gR™X"
Linear elliptic systems and spectral problems (A = A(y))

Au=f, Au=> = B~rAL

Volume/interface preconditioning = A™%, a=1,+1/2.

Parabolic equations

%#ﬁ»ﬁ“\ = exp(—tA), (A+ 1)~ A%._.\RCL.
Control theory: Matrix Lyapunov equation on R"*",
AX+XB=G = X-=[ e 'Ge'Bdt, sign(4).

Convolution, FFT, QTT in R*™.
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Challenge of Higher Dimensions B. Khoromskij, Rome 2011(L1)

1. Motivating applications:

Molecular systems: quantum molecular dynamics, DMRG in quant. chem.
FEM/BEM in R?: stochastic PDEs, atmospheric model., financial math.

Data mining: quantum computing, machine learning, image processing.
2. " Curse of Qm—\-\-m:mmosm:.—HK: . (R. Bellman, Princeton UP, NJ, 1961).

O(n%)-methods using N, =n x n X ... x n grids (linear in volume size).
N——
d

3. O(dn)-Methods via separation of variables:

Tensor-formatted representation of d-variate functions, operators, and

solving equations on rank-structured tensor manifolds in R%, d > 3.
4. log-volume super-compressed tensor representation:

Quantized-TT (QTT) approximation of n-d tensors, n® — O(dlogn).

Large problems in low dimensions B. Khoromskij, Rome 2011(L1)

In low dimensions (d = 1,2,3) the goal is O(N,.)-methods.

Main principles: making use of hierarchical structures,
low-rank pattern, recursive algorithms and parallelization.

Based on recursions via hierarchical structures:

Classical Fourier (7es-1830) methods, FFT in O(Nye log Nyo) OP.
FFT-based circulant convolution, Toeplitz, Hankel matrices.

Multiresolution representation via wavelets, O(N,)-FWT.
Multigrid methods: O(N,e) - elliptic problem solvers.

Fast multipole, panel clustering, H-matrix: 0?&5& log Nyot)-
Well suited for integral (nonlocal) operators in FEM/BEM.

Parallelization:

Domain decomposition: O(N,./p) - parallel algorithms.
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Traditional numerical tools of reduced complexity B. Khoromskij, Rome 2011(L1) 9

e High order methods: hp-FEM/BEM, spectral methods,
bcFEM, Richardson extrapolation.

e Adaptive mesh refinement: a priori/a posteriori strateg.

e Dimension reduction: boundary/interface equations,
Schur complement/domain decomposition methods.

e Combination of tensor-product basis with anisotropic
adaptivity: hyperbolic cross approximation by
FEM /wavelet (sparse grids).

e Model reduction: multi-scale, homogenization, neural
networks, proper orthogonal decomposition (POD), etc.

e (Q)Monte-Carlo methods (e.g., for stochastic PDESs).

Separabe representation of functions in TPHS B. Khoromskij, Rome 2011(L1) 10

Let H, (/=1,...,d) be a real, separable Hilbert space of

functions. wm. Reed, B. Simon, Functional analysis, AP, 1972.

Def. 1.1. A tensor-product of Hilbert spaces H, (TPHS),
H=H ®..® Hy, is defined as the closure of a set of finite
sums, >, ®MNHH§M$_ of dual multilinear forms (linear
functionals) on Hy x ... x Hy. A single form is defined by

d

d
®8§ (M, ... v ) = SASASEASVE.
=1

(=1
The scalar product of rank-1 (separable) elements (tensors)
in H is defined by

d
ASAS R...® ggv“@ﬁv R...® @Evv = :ASASu@ASY
=1

and it is extended by linearity.

(-,-) is called the induced scalar product.




Basic properties of TPHS. First examples. B. Khoromskij, Rome 2011(L1)

Lem. 1.1 (-,-) is well defined and it is positive definite.
Lem. 1.2 If @mﬁ is an orthonormal basis in Hy, then {®x} =

4
ﬁmwvmnH &MVT k = (ky,...,kq) € N¢, is the orthonormal basis in H.
Exer. 1.1. Prove Lem. 1.1 - 1.2.

The tensor product of univariate functions xSG@Y xg € Ip = [ag,by], is a
d-variate function (called as separable or rank-1) defined as follows

d d

fi= ®\§“ where  f(z1,...,za) = [] FO (o).

/=1 =1

Exer. 1.2. Prove L(I) x ... x I) = @J_, L*(Iy).

Ex. 1.2. Denote by H®4 the d-fold tensor product of spaces H. If
H = L?(R), then an element ¢ € F(H) := &5 ,H®?, of the so-called Fock
space over H, F(H), is a sequence of functions

P = {o, Y1(x1), Y2(r1,22), ¥3(x1,22,23),...},

Basic properties of TPHS. First examples. B. Khoromskij, Rome 2011(L1)

such that
o0
lvol? + MU \g [V (21, .. 2q)|Pdey ... drg < oco.
d=1"'R

The finite expansion in F(H) as above is known as ANOVA representation.

In the physical literature, the subspaces of F(H) consisting of
symmetric/antisymmetric functions w.r.t. permutation of two arguments

are called the boson and fermion Fock spaces, respectively.

Def. 1.2 d-th order tensor is a function of d discrete
arguments, f:I; x ... x Iy — R, (multi-dimensional array over
I x ... x I;). The respective TPHS H is equipped with
Euclidean scalar product and Frobenius norm (more details in Lect. 2).

Ex. 1.3. H=Rxla = @7 R with I, = {1,...,n,} is the
space of real valued tensors of order d.
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Tensor formats: Canonical representation in TPHS B. Khoromskij, Rome 2011(L1)

Def. 1.3. (Canonical format). Call by Cr a subset of
elements in H, requiring at most R terms (rank-R functions),

R
Ch=<weH: SHMUSMWC@SMB@.:@éM&V S\MS € Hy
k=1

w € Cr can be represented by the description of Rd elements
va € H,. Storage on n?-grid: dRn (linear in d).
Advantage: Tremendous reduction of representation cost,
removing d from the exponential, n¢ — d Rn.

Limitations: Applies to special class of functions given
analytically, nonrobust algebraic decomposition.

Probl. 1. Best rank-R approximation of a multi-variate
function f = f(z1,...,24) € H in the set Cp.

Orthogonal separabe representation B. Khoromskij, Rome 2011(L1)
Given a tuple of dimensions, r = (r1,...,74) € N¢, choose
)
SH&S\;A MSW C Hy, rp:=dimV; < o (1 </{<d) with
k=1

orthogonal basis and build the tensor subspace,
V=VilVh®...®V,; CH. Each v €V can be represented by

=t 0o @... 00", bR (1)
k=1

Def 1.4. (Tucker format) Given r, define
T ={veVCcH: VVs.t dimV,=r, with bx € R}.

Representing w € T,: Emﬂi@ reals and the sampling of Mumnig
functions @Ms.
Robust but storage on né-grid: r% + rdn < n?, r = maxry.
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Orthogonal separabe representation B. Khoromskij, Rome 2011(L1)

Visualization of the canonical and Tucker models for d = 3.

3 (3) (3)
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Probl. 2. Best rank-r orthogonal approx. of f € H in 7;.

Examples on rank-R and Tucker formats B. Khoromskij, Rome 2011(L1)

Ex. 1.4. H = L?(I%). Rank-1 elements, f = fi(x1)...fa(zq), €.9.
f=exp(gi(z1) + ... + g9a(xq)) = EmHH exp(ge(zy)). For the function
f = sin AMT ﬁ.v_ rank(f) = 2 holds over the field C,

i Si g .&, |.ﬁ.~.
27 sin AMUQAHH mﬁ.mv — QNMUQHH &u' e SMUQHH Ru.

Rank-d function f(x) =x1 + 22+ ...+ x4, Can be approximated
by a rank-2 expansion with any prescribed accuracy,

d
\. ~ EQHHAHMmHNvlp + OAWVV ase — 0.

Ex. 1.5. The Tucker approximation in H = L?(I%) can be made
by the tensor product polynomial interp. of order r,

r d
f(@1, .., a) = MUNQ\.?“ .:L\?v : N&.NAHS.

L;, is a set of the Lagrange polynomials on [—1,1] at, say,
Chebyshev-Gauss-Lobatto grid, v;, = cos ﬁ%,:u Je=0,..,7p.
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Function product decomposition (Tensor train/chain) B. Khoromskij, Rome 2011(L1)

Given J = x¢_Jy, Jo={1,...,re}, and Jo = Ju.

Def. 1.5 The rank-r functional tensor train/chain
(FTT/FTC) format: product of functional tri-tensors over 7,

.\AHH“..JHQV = MU \HAQQQHH“QHV.\MAQHvHM“QMV..."\.&AleH“H&vQ&v

acJ
= NUHAH.HVNUMAHMV.:W&AH&?

If Jo={1}, we have the FTT decomp. Here Fj(x1) is a row

1 x ry-vector function depending on x1, Fy(z,) is @ matrix of
size ry_1 x ry with functional elements depending on x4, Fy(xq)
is a column vector of size r4_1 x 1, depending on z,.
Sampling on a n®-grid: O(dr®n)-storage.

f € H is represented by a product of matrices (matrix product
functions), each depending on a single mode variable.

Examples on functional TT decomposition B. Khoromskij, Rome 2011(L1)

Ex. 1.6. d-fold product of functional tensors over Ji,...,J; (d = 6).

"y—>
r rn "o —
6 N T
"6 l—7 3
r
5 A1
7 _ N
N d=6
r r
5[)ry 4

Special case r¢ = 1: FTT[r] = FTC[r].

Exer. 1.3. In some cases the function product decomp. allows an explicit
form, e.g. FTT-rank of f(z) =21 4+xz2+ ...+ x4 iS 2.

1 0 1 0 1
(2 1)
xo 1 rg—1 1 T4

f(x)
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Nonlinear approximation in tensor format B. Khoromskij, Rome 2011(L1)

Since Ty, Cr and FTT|[r| are not linear spaces, we obtain a
nontrivial nonlinear approximation problem on estimation

feH: of,S):=inf ||f — s, (2)

seS
where § = {T;,Cgr, FIT|r|}.
Why the problem (2) might be difficult for d > 37

Prop. 1.1 [Beyiin, Mohienkamp] T he trigonometric identity (d > 2)

d d sin(xg + ax — ;)
f(@)i=sin(y_w) = sin(z;) ][ )

ke{l,...d\{j} sin(ay — ;)

holds for any a; € R, s.t. sin(ax — ;) # 0 for all j # k.
For d > 3 it can be proven by induction (nontrivial exercise!).

Exer. 1.4. Prove that FTT-rank of f in (3) is 2. (Lem. 1.3)

FTT decomposition of function mEAMUwHH x;) B. Khoromskij, Rome 2011(L1)

Lem. 1.3 The function f(z) :=sin(}_9_, z;), z € R¢, admits the explicit
rank-2 FTT decomposition

) cosxe —sinzo CcoSTg—1 —Sinxzg_1 COS T
flz) = AmE x1 OOmaHv ‘.-

sin xo COS X2 sinxg_1 COSXTq_1 sin x4
Proof. Induction, similar to Exer. 1.3,
f(x) = sinzjcos(z2 + ... +x4) + coszysin(xz + ... + z4)

cos(xz2 + ... + xq)

= Amwsap OOmHHV mwbﬁam._..:l_.aav

) cosxz —sinxa cos(zz + ... + xq)
= AmHE 1 COS Huv . .
sin xo COS T2 sin(zg + ... + z4)

Cor. 1.1 For any d > 3, € > 0, we have for the Helmholtz kernels, [71,
rankprr.(f1,e(|z])) < C(llogel + k),  fix(|z|) = sin(x|z])/||=|,
2sin? (5 ||z

rankpre(fan(l2])) < Cranke (lzl)(logel +r),  fon () i= =2
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Nonlinear approximation in tensor formats B. Khoromskij, Rome 2011(L1)

Expansion (3) shows the lack of uniqueness (ambiguity) of
the best rank-d separable representation. The minimisation
process in (2) might be non-robust (multiple local minima).

Principal questions (no ultimate answers):
» Is the “curse of dimensionality” unremovable?
» How to solve (2) efficiently? (Extend truncated SVD)

» Can one expect the fast (exponential) convergence in
the rank parameters R, »r = maxr,?

» Can one solve the physical equations on nonlinear
tensor manifold S getting rid of ‘“curse of dimension” ?

Our approach: Tensor-structured numerical methods based
on the efficient multilinear algebra (MLA).

Kolmogorow’s paradigm B. Khoromskij, Rome 2011(L1)

Hilbert 13th problem: A solution of the algebraic equation of degree 7

cannot be written as superposition of continuous bivariate functions.

Solved via celebrated theorem by Kolmogorow on the
superposition of univariate functions.

Thm. 1. (A. Kolmogorow, 1957) Let [ =10,1]. For d > 2,
any function f € C[I% can be represented in the form

2d+1 d

.\»ART ..;H&v = M 9i M%&AR&V )
=1 /=1

where functions ¢;s : I — R do not depend on f and belong to
the class Lipl, while g; : R — R are continuous functions.

Thm. 1. is not constructive, but in our context it says that in the discrete
setting, any function f can be represented by O(2dN + (2d + 1)dN) reals, N

corresponds to the size of the interpolating table for g; [Griebel '08].
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d = 2: Schmidt expansion and SVD B. Khoromskij, Rome 2011(L1)

The approximation of functions f(x,y) by bilinear forms

ur(@)or(y) in o L*([0,1]%),

kﬁ
2
M=

k=1

is due to E. Schmidt, 1907 (celebrated theorem). The result
is a continuous analogue to SVD of matrices.

Let {ox(Jf)}, 01 > 02 > ... >0, be a nonincreasing sequence of
singular values of the IO,

Jr(g) == \o f(z,y)9(y)dy,

ou(Jy) == Me[(A)Y?], A= JpJs, J; adjoint to Jy

with orthonormal sequences {px(x)}, {Yr(y)},

AYp(y) = Mei(y);  Afor(z) = Appr(z), k=1,2,.

d = 2: Schmidt expansion and SVD B. Khoromskij, Rome 2011(L1)

The kernel function of A is given by
1
falew)i= [ £l f (o)
0
The Schmidt decomposition (SD) is given by

o0
Fla,y) = on(Jr)er(@)ve(y).
k=1
The best bilinear approximation property reads as,

R R
f@y) = oper@r)|| = inf F@y) = > un(@)ve(y)
k=1 R k=1

12 uy,vE€L2, k=1,..., 12

SD ensures that for d = 2 the best bilinear approximation can
be realised by the so-called Pure Greedy Algorithm (PGA).

For Nystrom'’s approximation the problem is reduced to SVD.
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Computing canonical decomposition: simple method B. khoromskij, Rome 2011(L1)

For S = Cgr, the canonical decomposition can be considered in
the framework of the best R-term approximation with regard
to a redundant dictionary of rank-1 functions.

Def. 1.6 A system D of functions from H is called a

dictionary if each g € D has norm one and its linear span is
dense in H.

Denote by Y i(D) the collection of s € H which can be written
in the form (cardinality bounded by R)

mHMommv ACD: #A <R e N with¢, € R.
geEA

For f € H, the best R-term approximation error is defined by

on(f.D) = _inf_|f ~s].

Pure Greedy Algorithm B. Khoromskij, Rome 2011(L1)

The Pure Greedy Algorithm (PGA) inductively computes an
estimate to the best R-term approximation.

Let g =g(f) € D (|lg|| =1), maximise |(f,g)| (best rank-1
nonlinear approximation !). Define

G(f)=(f9)9, R(f):=[f—-G()
The PGA reads as: Given f € H, introduce
Ro(f):==f and Go(f):=0.
Then, for all 1 <m < R, we inductively define
Gm(f) = Gm-1(f) + G(Rm-1(f)),

NSA\.V =f - QSC& - NANSIHCJV
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Pure Greedy Algorithm B. Khoromskij, Rome 2011(L1)

Applying PGA to functions characterised via the
approximation property (low order approximation)

O.mcmv \NUV < mleu R = HVM“ ceey
with some ¢ € (0,1/2], leads to the error bound (Temiyakov)
__‘\. - QNA«\.V MUV: m QAQv @vm|m~u m = ”_vau e

which is “too pessimistic’ for applications (cf. Monte-Carlo).

Our goal: The constructive R-term approximation on a class
of analytic functions (possibly with point singularities),
providing exponential convergence in R=1,2,...,

or(f,D) < Cexp(-R?), g=1lorg=1/2

Methods of choice: Quadrature/interpolation-based sinc
approximation by exponential sums with rank recompression.

Greedy completely orthogonal decomposition B. Khoromskij, Rome 2011(L1)

The decomposition in Cg,

R
f= MU@\A@? v = M:?i X ... ®§M&A§v € Cq,
k=1

is called completely orthogonal if

(0, 69) = 6 VE=1,...d, & O =[O — orthog.
Greedy completely orthogonal decomposition (GCOD) is
defined as PGA with the orthogonality constraint on &,

Lem. 1.4 (Tucker format with the diagonal core.) Let f € H allow a rank-R
completely orthogonal decomposition. Then the GCOD
algorithm correctly computes it. If a; > a2 > ... > ar > 0, then
the decomp. is unique.

Exer. 1.5 Prove Lem. 1.3. [Golub, Zhang 2001].

Limitations. Poor approximation properties of the COD !
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