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This paper presents a general and comprehensive description of Optimization Methods, and
Algorithms from a novel viewpoint. It is shown, in particular, that Direct Methods, Iterative
Methods, and Computer Science Algorithms belong to a well-defined general class of both Finite
and Infinite Procedures, characterized by suitable descent directions.

1. Introduction

The dichotomy between Computer Science and Numerical Analysis has been for many years
the main obstacle to the development of eclectic computational tools. With the latter term the
author indicates the capability of implementing algorithms properly adaptable to particular
environmental requirements and, therefore, optimized for this aim.

Since the formulation of a problem requires the preliminary definition of the variables,
and the functions involved in the model, the antithesis between finite and continuous applied
mathematics is even stronger from a computational point of view.

In Computer Science, problems are typically defined on discrete sets (graphs, integer
variables and so forth) and are characterized by procedures formalized in a finite number of
steps.

Direct Methods, which are classical tools of Numerical Analysis, can be considered,
in fact, algorithms according to the standard Computer Science definitions. However, the
presence of ill-conditioned matrices can seriously affect the practical implementation of
Direct Methods. On the other hand, Iterative Methods are based in the majority of cases
on the convergence of a sequence approximating the optimal solution of a problem defined
in a continuous range. Proper stopping rules on the truncation error reduce the latter



2 ISRN Applied Mathematics

computational scheme to a finite process, but, unfortunately, in many cases the theoretical
result is affected by a variety of numerical instability problems, thereby preventing a precise
forecast of the true number of iterations, requested to achieve the desired approximation.

Furthermore, Linear Programming, Convex Quadratic Programming, and the uncon-
strainedminimization of a symmetric positive definite bilinear form are continuous problems
that can be exactly solved with a finite number of steps. This proves that the distinction
between algorithms and infinite iterative procedures is not always characterized by the
discrete or the continuous range of the variables involved in the problem.

Most of Numerical Analysis methods are based upon the application of the Fixed Point
theorem, assuring the convergence of the iterative scheme by means of a contraction of the
distance between successive terms of the sequence approximating the optimal solution.

Gradient methods are usually considered in the literature as particular procedures in
the frame of optimization techniques, for classical unconstrained or constrained problems.

The main aim of the present paper is to show that Gradient or Gradient-type methods
represent the fundamental computational tool to solve a wide set of continuous optimization
problems, since they are based on a unitary principle, referred to both to finite and to infinite
procedures.

Moreover, some classical discrete optimization algorithms can be also viewed in the
framework of Gradient-type methods.

Hence, the gradient approach allows to deal with problems involving variables defined
both in a continuous range and in a discrete one, by utilizing finite or infinite procedures in a
quite general perspective.

It is essential to underline that ABS methods [1], which represent a remarkable class
of algorithms for solving linear and nonlinear equations, are founded on a quite different
approach. Roughly speaking, ABS-methods construct, in fact, a set of spanning matrices in
Rn, by performing an adaptive optimization, associated to the dimension of the subspace
and parameter dependent. In many ABS-methods the choice of the set of optimal parameters
is, in fact, crucial in order to identify by a unified approach the structural features of the
optimization algorithms. Parameter dependence is not present in Gradient-type methods.

It is important to emphasize that the typical finiteness of Computer Science algorithms
is characterized by classes of Gradient-type methods converging to an isolated point of a
suitable sequence, generated by the procedure.

Furthermore, the most recent algorithms for Local Optimization can be precisely
described by Gradient-type methods in a general framework. As a matter of fact, Interior
Points techniques [2, 3], Barrier Algorithms [4] represent awide set of Gradient-typemethods
for NonLinear Programming.

Moreover, a fundamental role in this new approach is played by the properties
of suitableStructured matrices, associated to the optimization procedures. Advanced Linear
Algebra Techniques are, in fact, essential to construct low-complexity algorithms.

We point out, in particular, the techniques based on Fast Transforms and the
corresponding approximations by algebras of matrices simultaneously diagonalized [5–10].

The utilization of Advanced Linear Algebra Techniques in NonLinear Programming
opens a new research field, leading in many cases to a significant improvement both of
the efficiency and in the practical application of Gradient-type methods for problems of
operational interest [11, 12].

In Deterministic Global Optimization structured matrices allow remarkable results in
the frame of the Tunneling techniques, by using the classical αBB approach [9].
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The novel results on Tensor computation [13] are a promising area of research to
improve the efficiency of global optimization algorithms for large-scale problems and
particularly for the effective construction of more general sets of Repeller matrices in the
Tunneling phases [14, 15]. This approach can have important consequences also in Nonlinear
Integer Optimization (see the pioneer work in [16]), taking into account the more recent
results concerning the discretization of the problem by the continuation methods (see, e.g.,
[17]).

Therefore, this survey has also the aim of finding in-depth general relationships
between Local Optimization techniques and Deterministic Global Optimization algorithms
in the frame of Advanced Linear Algebra Techniques.

2. The Gradient and the Gradient-Type Approach

Let

min
x∈A

f(x), A ⊆ Rn, (2.1)

be an unconstrained problem to be solved.
By assuming f(x) ∈ C1(A), the simplest heuristic procedure to deal with (2.1) is to

determine the stationary points of f(x) ∈ A, that is, x∗ ∈ A : ∇f(x∗) = 0 by the recursive
computational scheme:

x(k+1) = x(k) − λk∇f
(
x(k)
)
, k = 0, 1 . . . (2.2)

with

x(0) ∈ A being the initial point of the procedure,

−∇f(x(k)) the direction of maximum local decreasing,

λk the one-dimensional step-size, λk > 0,

for all k, λk is computed such that

x(k+1) ∈ A,

f
(
x(k+1)

)
≤ f
(
x(k)
)
,

(2.3)

and the sequence {x(k+1)} satisfies the condition

lim
k−→∞

∇f
(
x(k)
)
= 0. (2.4)

The iterative method (2.2) is a particular case of the following general Gradient-type method:

x(k+1) = x(k) − λks(k), k = 0, 1 . . . , (2.5)
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(a) Given {γk}, {σk}, k = 0, 1 . . .s.t.
inf {γk} > 0, inf {σk} > 0
Let x(0) ∈ Rn be a starting point
For a given vector s(k) ∈ D(γk, x(k)), set
x(k+1) = x(k) − λks(k), with λk ∈ (0, σk‖∇f(x(k))‖):
f(x(k+1)) ≈ minμ{f(x(k) − μs(k)), 0 < μ ≤ σk‖∇f(x(k))‖}

Algorithm 1

where

s(k) is a descent direction, that is,

s(k)
T∇f(x(k)) > 0 ⇔ cos( ̂−∇f(x(k)), s(k)) ≥ 0.

The following theorem generalizes a well-known result shown in [18].

Theorem 2.1 (see [7]). If s(k) is a descent direction in x(k) for a function f(x), then

s(k) = −A−1
k ∇f

(
x(k)
)

(2.6)

with Ak being a symmetric positive definite (spd) matrix.
Moreover, the following property holds:

cos
(

̂−∇f(x(k)), s(k)
)
≥ c > 0 ⇐⇒ cond(Ak) ≤M, ∀k. (2.7)

Remark 2.2. Particular cases of descent directions can be obtained, by setting

Ak = I (Steepest Descent method),

Ak = ∇2f(x(k)) (Newton-Raphson method),

Ak ≈ ∇2f(x(k)) (general quasi-Newton and classical BFGS methods),

Ak structured ≈ ∇2f(x(k)) (low-complexity BFGS-type methods)

(see [5, 6, 18, 19]).
It is useful to underline that the general theory of admissible directions for

unconstrained optimization [20] is also a special case of (2.5). By setting, in fact, for a given
γ > 0:

D
(
γ, x(k)

)
=
{
s(k) ∈ Rn :

∥∥∥s(k)
∥∥∥ = 1, ∇f

(
x(k)
)T

s(k) ≥ γ
∥∥∥∇f

(
x(k)
)∥∥∥
}
, (2.8)

one can obtain other Gradient-type methods described by (2.5).

The iterative scheme described by Algorithm 1 contains several ingredients of a
general Gradient-type method see [20].

The convergence of Algorithm 1 is guaranteed by the following result (see again [20]).
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Theorem 2.3. Let f(x) ∈ C1(A),A open ⊂ Rn. LetK = {x ∈ Rn : f(x) ≤ f(x(0))} ⊂ A⇒ x(0) ∈ K.
Then, for all {x(k)} evaluated by Algorithm 1:

(i) x(k) ∈ K, for all k;

(ii) if x(k+1) /= x(k), {x(k)} has at least an Extremal Point (EP) x∗;

(iii) every EP x∗ of {x(k)} is a stationary point, that is, ∇f(x∗) = 0.

Remark 2.4. Notice that Theorem 2.3 can be also applied in the case of classical Computer
Science algorithms. As a matter of fact, if condition (ii) is not verified, then, by definition,
∃k̃ : x(k̃+1) = x(k̃), implying ∇f(x(k̃)) = 0, that is, the convergence to a stationary point in a
finite number of steps k̃. Moreover, the convergence to an isolated point x̂ of the sequence
{x(k)} can be proven ab absurdo by showing that

if x̂ ∈ EP ⇒ ∀k > k0, f
(
x(k)
)
− f
(
x(k+1)

)
> c0, c0 > 0. (2.9)

We will see in par. 3-4 that the convergence in a finite number of steps of a given iterative
procedure can be verified in this way both for the unconstrained problems and for the
constrained ones.

3. Local Unconstrained Optimization

Let C and b be a spd matrix of order n and a n-dimensional vector, respectively.
It is well known that the problem

min
1
2
xTCx − bTx,

x ∈ Rn

(3.1)

can be exactly solved in at most n steps by the Conjugate Gradient (CG) method [21], which
represents a direct method to solve (3.1). The quadratic form associated to a spd matrix C is,
in fact, a convex function.

However, it can be also proved that the application of the procedure defined in (2.2),
that is, the Steepest Descent method, always requires an infinite number of iterations, apart
from the trivial case x(0) = x∗. The latter result shows that the existence of a finite procedure
to solve (3.1) does not depend only by the role played by convexity but it is also the consequence
of a sort of optimal matching between the problem and the corresponding algorithm, which is in
this case the (CG)method. On the other hand, the latter method can be also interpreted as an
iterative method in the family of the following fixed point procedures:

x(k+1) =

(
(rI − C)x(k) + b

)

r
(3.2)
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with r being a suitable scalar parameter. By setting, in fact,

H = I − C

r
,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
r

0
. . . . . .

0
1
r

0
. . .

0 0
1
r

. . .

0
. . . . . . 1

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.3)

one can obtain the classical iterative scheme

x(k+1) = Hx(k) +Db. (3.4)

Since ‖H‖s = 1 − 1/cond(C) , (3.4) is convergent if the original matrix C is well conditioned.
Moreover, if x̂ is the optimal solution of (3.1), the truncation error of the method is:

∥∥∥x(k) − x̂
∥∥∥
2
≤
(
1 − 1

cond(C)

)k∥∥∥x(0) − x̂
∥∥∥
2
. (3.5)

In the case of (CG)method, one can prove the inequality

∥∥∥x(k) − x̂
∥∥∥
2
≤ 2

(√
cond(C) − 1√
cond(C) + 1

)k∥∥∥x(0) − x̂
∥∥∥
2
. (3.6)

Equation (3.6) shows that, if the dimension n is huge and the matrix C is well conditioned,
from a computational point of view it is more convenient to implement the (CG)method as a
classical iterative procedure with a stopping rule based on the above inequality.

So, once again, the distinction between Numerical Analysis direct methods (or
Computer Science algorithms) and infinite procedures cannot be considered as the
fundamental classification rule in computational mathematics.

In the case of Steepest Descent method, the truncation error is

∥∥∥x(k) − x̂
∥∥∥
2
≤ 2
(
cond(C) − 1
cond(C) + 1

)k∥∥∥x(0) − x̂
∥∥∥
2
. (3.7)

The difference between (3.6) and (3.7) clearly indicates the major efficiency of (CG)method.
In [22] the finite version of (CG)-method was extended to a family of nonquadratic

functions, including the following important sets:
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F(x) =
xTCx
(
cTx
)2 , x ∈ X, (3.8)

G(x) = xTCx ∗
(
cTx
)k
, k integer, x ∈ X, (3.9)

where X = {x ∈ Rn : cTx > 0}.
According to the classical definition, the function F indicated in (3.8) is called conic. If

k = −2, then G(x) ≡ F(x).
Hence, G represent a class of nonquadratic functions for which the optimal solution can be

found with a finite number of steps if the matrix C is spd.
As a matter of fact, the following result holds:

Theorem 3.1 (see [22] Theorem 3.1, Lemmas 3.2 and 5.1). Let G(x) be defined as in (3.9). Then
the minimum problem

minG(x),

x ∈ X,
(3.10)

can be solved in at most n steps.

Let us now consider some generalizations of the convexity, which play an important
role in global optimization see [7].

Let s(k) be a descent direction in x(k) for a function f(x). The importance of the
following definitions will be shown in the next results of this paragraph.

Definition 3.2. A function f(x) ∈ C1(Rn) is called algorithmically convex if for all x(k), x(k+1)

evaluated by an algorithm of type (2.5), one has

(
s(k+1) − s(k)

)T(
x(k+1) − x(k)

)
≥ 0. (3.11)

Definition 3.3. A function f(x) ∈ C1(Rn) is called weakly convex if for all x(k), x(k+1) evaluated
by an algorithm (2.5), the following inequality holds:

∥∥∇f(x(k+1)) − ∇f(x(k))∥∥2
(∇f(x(k+1)) − ∇f(x(k)))T(x(k+1) − x(k)

) ≤M. (3.12)

Definition 3.4. Let s(k) = −A−1
k
∇f(x(k)), for all k be descent directions of an algorithm of type

(2.5) applied to problem (2.1). Then the method is called secant if the matrix Ak solves the
secant equation:

Ak

(
x(k) − x(k−1)

)
= ∇f

(
x(k)
)
− ∇f

(
x(k−1)

)
. (3.13)
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Definition 3.2 is clearly a generalization of convexity. As a matter of fact, if s(k) = ∇f(x(k))
then f(x) ∈ C1(A), A ⊆ Rn, is convex if and only if (3.11) is verified for all x(k), x(k+1) ∈ A
(see [23]).

Definition 3.3 is also a generalization of convexity. In [24], in fact, it is proved that if
f(x) ∈ C1(A), A ⊆ Rn, is convex, then (3.12) is satisfied for all x(k), x(k+1) ∈ A. So (3.12) is a
necessary, but not sufficient, condition for a function f to be convex.

Definition 3.4 is an n-dimensional generalization of the classical secant iterative
formula to compute the zeroes of the derivative of a function f(x) ∈ C1(R1), that is,

xk+1 =
f ′(xk)xk−1 − f ′(xk−1)xk

f ′(xk) − f ′(xk−1)
. (3.14)

Observe, in fact, that (3.14) can be rewritten as

xk+1 = xk −
f ′(xk)
ak

,

ak(xk − xk−1) = f ′(xk) − f ′(xk−1).

(3.15)

Hence, the expression of ak is the 1-dimensional version of (3.13).
In [7] it is proved the following result.

Theorem 3.5 (see also [18]). Let s(k) = −A−1
k ∇f(x(k)) be descent directions of a secant method, that

is, satisfying (3.13), applied to problem (2.1). Moreover, let conditions (2.7) and (3.12) be verified.
Then, ∃{∇f(x(ki))}, such that

lim
i−→∞

∇f
(
x(ki)
)
= 0. (3.16)

Remark 3.6. Theorem 3.5 shows that a global convergence for a quasi-Newton secant method
applied to problem (2.1) can be obtained if the function f(x) is weakly convex and the
matrices Ak approximating ∇2f(x(k)) are well conditioned.

Remark 3.7. By utilizing Armijo-Goldstein-Wolfe’s method [18] and setting s(k) = ∇f(x(k)),
the step λk in (2.5) is such that for all k

(∇f(x(k+1)) − ∇f(x(k)))T(x(k+1) − x(k)
)
> 0,

f
(
x(k+1)

)
< f
(
x(k)
)
.

(3.17)

Hence, by Definition 3.2, in this case the function f(x) is also algorithmically convex. For
general descent directions s(k), evaluated by a quasi-Newton secant method, inequality (3.11)
is not always satisfied.
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4. Local Constrained Optimization

Quadratic Programming (QP) is defined in the following way:

min xTCx + cTx,

Ax = b,

x ≥ 0

(4.1)

with C being a symmetric semidefinite positive (ssdp)matrix of order n andA a matrix with
m rows and n columns.

Remark 4.1. Let P = {x ∈ Rn : Ax = b, x ≥ 0}. The optimal solution of (4.1) can be located
in any point of P . Hence, (4.1) is a continuous problem which cannot be immediately reduced to a
finite problem as in the case F(x) = cTx, that is, Linear Programming (LP).

Let us consider, for instance, the following problems:

minx2
1 − 3x2,

2x1 − x2 ≥ 4,

−x1 − 2x2 ≥ −16,
−2x1 + 4x2 ≥ −8,
−7x1 + 8x2 ≥ −35,
x1 ≥ 0, x2 ≥ 0,

(4.2)

minx2
1 + 4x2

2 − 4x1 − 24x2 + 40,

−7x1 − 6x2 + 42 ≥ 0,

−5x1 + 3x2 + 10 ≥ 0,

x1 ≥ 0, x2 ≥ 0.

(4.3)

The optimal solution of (4.2) is the point (3, 2)which is in the boundary of P but is not
a vertex. On the other hand, problem (4.3) has the optimal solution in the inner point (2, 3).
However, QP can be solved in general in a finite number of steps by means of Frank-Wolfe’s
algorithm [25]. So, QP can be considered as a finite continuous constrained optimization problem.

The following question arises: does QP characterize the boundary, separating finite
continuous constrained optimization problems from infinite ones? In other words, there exist more
general nonlinear constrained optimization problems that can be solved in a finite number
of iterations? Since in the unconstrained case we have shown in the previous paragraph that
there exist nonquadratic problems that can be exactly solved in a finite number of iterations
by utilizing the (CG)-method, the answer is expected to be positive.
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Given a convex function f(x) ∈ C1(S), S convex ⊆ Rn, Convex Programming with
Linear Constraints (CPLC) is defined as

min f(x),

Ax = b,

x ≥ 0.

(4.4)

Problem (4.4) can be solved by the Reduced Gradient (RG) algorithm or by the Gradient
Projection (GP)method [23, 26, 27].

Assuming A with maximum rank and taking into account Remark 2.4, one can
introduce the following.

Definition 4.2. Let f̂(x) ∈ C1(S), S convex ⊆ Rn, be a convex function.
Let P̂ = {x ∈ Rn : Âx = b̂, x ≥ 0} be a nonempty polyhedron. The corresponding

CPLC problem (4.4) is a finite continuous constrained optimization problem, if and only if
there exists a convergent Gradient-type method (2.5) and a positive real number c0, such that
if (2.5)would require an infinite number of steps, then

x(k) ∈ P̂ , ∀k,

inf
k

{
f̂
(
x(k)
)
− f̂
(
x(k+1)

)}
≥ c0, ∀k > k0, c0 > 0.

(4.5)

Equation (4.5) clearly implies that ∃k∗ : f̂(x(k∗)) = minx∈P̂ f̂(x).

The importance of Definition 4.2 can be pointed out by the next result, showing the
relationship between (4.4) and a particular linear optimization problem.

Theorem 4.3. Let x(k) be an admissible solution of (4.4). Let s(k) be a descent direction in x(k) for the
function f(x). Then s(k) is an admissible descent direction for (4.4) if As(k) = 0.

Moreover, for any fixed x̂(k) the optimal solution s∗ of the problem

min∇f
(
x̂(k)
)T

s,

As = 0,

‖s‖ = 1

(4.6)

is given by

s∗ =

(
I −AT

(
AAT

)−1
A
)
∇f(x̂(k))

∥∥∥
(
I −AT

(
AAT

)−1
A
)
∇f(x̂(k))

∥∥∥
. (4.7)
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By setting c = f(x̂(k)) and x = s it was proven in [28] that (4.6) is equivalent to a general LP problem,
that is,

min cTx,

Ax = b,

x ≥ 0.
(4.8)

Furthermore, if T = {x ∈ Rn
+, Ax = 0, ‖x‖ = 1}, the following result holds (see [29]).

Theorem 4.4. Given a suitable integer L and the function.

g(x) =
n∑
j=1

ln
cTx
xj

= n ln cTx −
n∑
j=1

lnxj , (4.9)

then, (4.6) and hence (4.8) are equivalent to find a point x∗:

x∗ ∈ T,
g(x∗) < −2nL.

(4.10)

Moreover, it is possible to determine a real number c0 and a sequence {x(k)} ∈ T by a GP algorithm
with a suitable scaling procedure (see again [29]) such that

g
(
x(k+1)

)
< g
(
x(k)
)
− c0. (4.11)

By Theorem 4.4 and Definition 4.2 it follows that there exists a Gradient-type method
(2.5) solving LP in a finite number of steps. Hence LP is a finite continuous constrained
optimization problem. It is important to underline that the latter result is not a consequence of
the intrinsic finiteness of the set of the possible optimal solutions (the vertices of a polyhedron)
as in the classical simplex algorithm.

Given the convex functions, f(x), h1(x), h2(x) · · ·hm(x) ∈ C1(S), S convex ⊆ Rn, let
us now consider the general Convex Programming (CP) problem:

min f(x),

hi(x) ≤ 0, i = 1, 2 . . . m,

x ≥ 0.

(4.12)

The following property is well known [23, 26].
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Definition 4.5. Letting x̂ ≥ 0 and I = {i : hi(x̂) = 0}, then the constraints of (4.12) are qualified
if one of the following conditions is satisfied:

∃x∗ ≥ 0 : hi(x∗) < 0, i = 1, 2 . . . m, (4.13)

hi(x̂) is locally concave in x̂, ∀i ∈ I, ∀x̂. (4.14)

If hi(x) = ciTx, then (4.14) is trivially satisfied for all x̂, for all i ∈ I.

So, from Definition 4.5 we deduce that the constraints of CPLC problem (4.4) are
always qualified. Assuming in (4.4) A with maximum rank, we clearly obtain a condition
equivalent to (4.13).

Definition 4.6. A set C ⊆ Rn is called a convex cone if

x ∈ C =⇒ λx ∈ C, ∀λ > 0,
∀x(1), x(2) ∈ C, ∀0 ≤ λ1, λ2 ≤ 1, λ1x(1) + λ2x(2) ∈ C. (4.15)

The following theorem was proved in [30] in a general Hilbert space (see Theorem 2.3).

Theorem 4.7. Let S1, S2 ∈ Rn be closed convex cones, and let So1 denote the interior of S1. Assume
that So1 /= ∅.

Then the corresponding conic feasibility problem

find x ∈ So1 ∩ S2 (4.16)

can be solved in a finite number of steps.

The technique utilized to prove Theorem 4.7 is based upon the so-called Method of
Alternative Projections (MAP) (see [31]).

Theorem 4.7 was extended in [30] (see Proposition 2.1) by assuming S1 and S2 be
closed convex sets, thereby proving that a convex feasibility problem is equivalent to a conic
feasibility problem. However, the open question remains how to express explicit formulas
for the projection operators to convert the algorithm from S1 and S2 to the conified closed sets
con(S1) and con(S2) in the case of nonlinear and nonquadratic problems. The Linear Matrix
Inequality (LMI) feasibility problem was, in fact, efficiently solved in the literature (see [32]).

Remark 4.8. Theorem 4.7 can be applied to CPLC problem (4.4), by assuming

S1 = {x ∈ Rn : Ax = b, x ≥ 0},

S
(k)
2 =

{
x ∈ Rn : f(x) ≤ t(k), t(k) ∈ R

}
, k = 1, 2, . . . k0.

(4.17)

Hence, explicit formulas for the projection operators for suitable classes of nonlinear convex
feasibility problems in terms of the corresponding conified sets might allow to solve CPLC
problem (4.4) in the nonquadratic case with a finite number of steps. By utilizing Theorem 3.1,
we can prove, in fact, the following important theorem.
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Theorem 4.9 (see [33]). Consider the particular CPLC problem

min xTCx ∗
(
cTx
)−2

, C spd,

Ax = b,

−cTx ≤ 0,

x ≥ 0.

(4.18)

Assume that the optimal solution x∗ of problem (4.18) be such that −cTx∗ < 0. Then, (4.18) can
be converted into a convex feasibility problem by utilizing a proper modification of the Alternative
Projection method, and the latter algorithm converges to the optimal solution with a finite number of
steps.

Remark 4.10. Given the convex set of feasible solutions

S1 =
{
x ∈ Rn : Ax = b, −cTx ≤ 0, x ≥ 0

}
, (4.19)

the proof of Theorem 4.9 is essentially based upon the following computational ingredients:

(a) by Theorem 4.7, one can convert the closed convex set defined in (4.19) into a closed
convex cone;

(b) by Theorem 3.1, the extended version of (CG)-method and a suitable projection
algorithm can be applied to problem (4.18) thereby obtaining a convergence with a
finite number of steps.

5. Global Optimization

One can prove the following global convergence theorem [7].

Theorem 5.1. Consider Problem (2.1), where f(x) ∈ C2(Rn).
Let fmin be the value of the optimal solution. Assume that

∀εa ∈ R+, ∃εs ∈ R+ :
∥∥∥∇f

(
x(k)
)∥∥∥ > εs except for k :

f
(
x(k)
)
− fmin < εa.

(5.1)

If in an iterative scheme of BFGS-type,

x(k+1) = x(k) − λkB(k)−1∇f
(
x(k)
)
,

(
B(k) = ϕ

(
B̃(k−1), . . .

)
, ∀k
)
, (5.2)
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the following conditions are satisfied:

∥∥∇f(x(k+1)) − ∇f(x(k))∥∥2
(∇f(x(k+1)) − ∇f(x(k)))Tλkd(k)

=
‖yk‖2
yT
k
sk

≤M, (5.3)

cond
(
B(k)
)
≤N. (5.4)

Then

∀εa ∈ R+, ∃k∗∗ : ∀k > k∗∗ f
(
x(k)
)
− fmin < εa. (5.5)

Theorem 5.1 points out as follows three conditions for a global optimization BFGS-type method.

Condition (5.1) assumes an optimal matching between the BFGS-type algorithm and
the function F [34]. (5.3) is equivalent to (3.12), that is, f(x) is weakly convex (see [24]).

Condition (5.4) can be easily satisfied, by modifying the matrices B(k) by a restarting
procedure, because every descent direction is associated to an spd matrix (see Theorem 2.1).

Let us now consider the classical “box-constrained” problem:

min f(x), xL ≤ x ≤ xU. (5.6)

Let xL
c(m) ≤ xc(m) ≤ xU

c(m) denote the current box at iterationm.

Set

αxc(m) = max
{
0,−1

2
min
i
λi
{
∇2f
(
xc(m)

)}}
, (5.7)

Lc(m)
(
xc(m)

)
= f
(
xc(m)

)
+ αxc(m)

(
xLc(m) − xc(m)

)(
xUc(m) − xc(m)

)
. (5.8)

The following global convergence theorem holds (see [35, 36]).

Theorem 5.2. Consider Problem (5.6) and assume f(x) ∈ C2. These hypotheses imply

cond
(
∇2f(x)

)
≤ c, ∀m ∃α∗m = max

xc(m)
αxc(m) . (5.9)

Set

fLc(m) = inf
xc(m)

Lc(m)
(
xc(m)

)
, fUc(m) = f

⎛
⎜⎝

(
xLc(m) + xUc(m)

)

2

⎞
⎟⎠. (5.10)
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Then, it follows for all m:

fLc(m) ≤ fLc(m+1) ≤ min
xc(m+1)

f
(
xc(m+1)

) ≡ min
x
f(x), (5.11)

fUc(m) ≥ fUc(m+1) ≥ min
x
f(x) ≥ fLc(m). (5.12)

Moreover, for all εa > 0, ∃m∗ : for all m ≥ m∗:

fUc(m) − fLc(m) < εa,

∥∥∥xUc(m) − xLc(m)

∥∥∥
2
≤
√

4εa
c
, c constant

(5.13)

Theorem 5.2 can be immediately extended to Problem (2.1), by assuming a growth condition on the
function f(x).

In fact, we have the following.

Corollary 5.3. Given f(x) ∈ C2(Rn):

lim
‖x‖−→ ∞

f(x) = +∞. (5.14)

Equation (5.14) implies

∃K0 : min
x∈Rn

f(x) ≡ min
‖x‖≤K0

f(x),

∥∥∥∇2f(x)
∥∥∥ ≤ c1, ‖x‖ ≤ K0.

(5.15)

Assume

∥∥∥∇2f(x)−1
∥∥∥ ≤ c2 and hence cond

(
∇2f(x)

)
≤ c1c2. (5.16)

Then, the convergence results proved for (5.6) can be applied to (2.1).

We can fruitfully combine the results of Theorems 5.1 and 5.2, by proving the
following.

Theorem 5.4. Consider Problem (5.6) and assume f(x) ∈ C2(Rn).
If in a BFGS-type iterative scheme

x(k+1) = x(k) − μkB(k)−1∇f
(
x(k)
)
, (5.17)
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the following conditions are satisfied:

xL ≤ x(k) ≤ xU, ∀k, (5.18)

cond
(
B(k)
)
≤N, (5.19)

∥∥∇f(x(k+1)) − ∇f(x(k))∥∥2
(∇f(x(k+1)) − ∇f(x(k)))Tλkd(k)

=
‖yk‖2
yTksk

≤M. (5.20)

Then (5.17) is convergent to the optimal solution of (5.6).

Proof. By the assumptions it follows: cond(∇2F(x)) ≤ c.
Hence, by (5.7) we have for all m:

∃α∗m = max
xc(m)

αxc(m) . (5.21)

Set

L̃c(m)
(
xc(m)

)
= f
(
xc(m)

)
+ α∗m

(
xLc(m) − xc(m)

)(
xUc(m) − xc(m)

)
. (5.22)

Therefore, by (5.21) and (5.22) for all m:

Lc(m)
(
xc(m)

) ≥ L̃c(m)
(
xc(m)

)
, ∀xc(m).

L̃c(m)
(
xc(m)

)
convex ∀xc(m).

(5.23)

So,

fLc(m) = inf
xc(m)

Lc(m)
(
xc(m)

)
= min

xc(m)
L̃c(m)

(
xc(m)

)
, ∀m. (5.24)

Let x(k̃m)
c(m) be a local minimum in the box c(m).

If xL
c(m+1) ≤ x(k̃m)

c(m) ≤ xU
c(m+1) and f((x

L
c(m+1) + xU

c(m+1))/2) ≥ f(x
(k̃m)
c(m)), then define

fUc(m+1) = f
(
x(k̃m)c(m)

)
. (5.25)



ISRN Applied Mathematics 17

Else, set

x(0)c(m+1) =

(
xLc(m+1) + xUc(m+1)

)

2
,

fUc(m+1) = f
(
x(k̃m+1)
c(m+1)

) (5.26)

with x(k̃m+1)
c(m+1) being a local minimum evaluated by the starting point x(0)

c(m+1) and contained in
the box c(m + 1). Since the assumptions of Theorem 5.2 are satisfied, by the results of [7] (see

Theorem 2 and Corollary 2), it follows that (5.19), (5.20) imply that for all εb > 0, ∃{x(k̃mi )
c(mi)

}:

fUc(mi)
≥ fUc(mi+1)

,

∥∥∥∥∇f
(
x
(k̃mi )
c(mi)

)∥∥∥∥ < εb.
(5.27)

Applying Theorem 5.2, by inequalities (5.11) and (5.27) and by setting ε = max{εa, εb}, we

have that for all ε > 0, ∃{x(k̃mi )
c(mi)

},
∥∥∥∥∇f

(
x
(k̃mi )
c(mi)

)∥∥∥∥
2
< ε,

∥∥∥xUc(mi)
− xLc(mi)

∥∥∥
2
≤
√

4ε
c
,

f

(
x
(k̃mi )
c(mi)

)
− fmin ≤ fUc(mi)

− fLc(mi)
< ε.

(5.28)

This completes the proof.

Although the local minimization phases are performed effectively by the iterative
scheme (5.17), the convergence of the method to the global minimum is usually very slow
by the very nature of the αBB approach. In particular, the number of the upper bounds fU

c(mi)
and the corresponding boxes mi, requested to obtain a satisfactory approximation can be
unacceptable from a computational point of view. In order to overcome this problem, a fast
determination of “good” local minima is essential.

More precisely, by the utilization of terminal repellers and tunneling techniques [14],
one can build algorithms based on a sequence of cycles, where each cycle has two phases,
that is, a local optimization phase and a tunneling one. The main aim of these procedures
is to build a favourable sequence of local minima (maxima), thereby determining a set of
possible candidates for the global minimum (maximum) more efficiently.

By injecting in the method suitable “tunneling phases,” one can avoid the unfair
entrapment in a “bad” local minimum, that is, when the condition

fUc(m+1) = f
(
x(k̃m+1)
c(m+1)

)
= f
(
x(k̃m)c(m+1)

)
= fUc(m) � fmin (5.29)
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is verified for several iterations. For this purpose, the power of the repellers, utilized in the
tunneling phases, plays a crucial role. The classical andwell-known use of scalar repellers [14,
34] is often unsuitable, when the dimension n of the problem assumes values of operational
interest. A repeller structured matrix, based on the sum of a diagonal matrix and a low-rank
one [15], can be constructed to overcome the latter difficulty.

Let x(k̃) be an approximation of a local minimizer for f(x) ∈ C1.
A matrix A(k̃) is called a repeller matrix for x(k̃) if ∃x̂,

x̂ = x(k̃) −A(k̃) ∇f
(
x(k̃)
)
,

f(x̂) < f
(
x(k̃)
)
.

(5.30)

The repeller matrix A(k̃) for any given computed local minimizer x(k̃) can be approximated
in the following way (see [15]):

A(k̃) ≈ λ(k̃)I +
(
I

μ
+ R
)−1

, 2 ≤ rank(R) ≤ 4 (5.31)

with λ(k̃) being the maximal scalar repeller [34] that is,

λ(k̃) =
εa∥∥∥∇f(x(k̃))

∥∥∥
2
,
∥∥∥∇f(x(k̃)

∥∥∥� √
εa, εa desired precision, (5.32)

with R being of the following structure:

R = μ1ppT + μ2qqT + μ3prT + μ4rqT

p,q, r suitable vectors μ1, μ2, μ3, μ4 scalars.
(5.33)

In this way, the application of a BFGS-type method can be effectively extended to the
tunneling phases and hence to the whole global optimization scheme (see [9, 33]).

The structure in (5.33) can be generalized by using the recent Tensor-Train (TT)-cross
approximation theory [13].

It is well known, in fact, that a rank-p matrix can be recovered from a cross of p
linearly independent columns (or rows). Therefore, an arbitrarymatrix can be interpolated by
a pseudoskeleton approximation (see [15] and again [13]). In particular, since a repeller matrix
is not arbitrary and possesses some hidden structure, it is fundamental to discover a low-
parametric representation, which can be useful in the tunneling phases.

An operational cross approximationmethod, evaluating large close-to-rank-pmatrices
in O(np2) time complexity and by computing O(np) elements, was shown in [37].
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6. Discrete Optimization

A well-known family of Computer Science methods is represented by the so-called Greedy
algorithms. The simplest application of this type of procedures is in the standard Knapsack
Problem (KP), that is,

max cTx,

aTx ≤ b,
x ≥ 0, integer.

(6.1)

Greedy approach is essentially a generalization of the classical Dynamical Programming (DP)
methods, which are based on the Bellman Principle. By utilizing the DP computational
scheme and assuming y integer, problem (6.1) can be reduced to the recursive solution of
the following family of problems:

max c(k)
T
x(k),

a(k)
T
x(k) ≤ y,

x(k) ≥ 0, integer,

1 ≤ k ≤ n, 1 ≤ y ≤ b, integer,

(6.2)

where c(k), a(k), x(k) indicate the vectors associated to the first k components of c, a, x,
respectively.

Given k and y, let ψk(y) be the value of the objective function corresponding to the
optimal solution of problem (6.2).

The algorithm computes ψk(y) by the recursive formula

ψk
(
y
)
= max

{
ψk−1

(
y
)
, ψk

(
y − ak(k)

)
+ ck(k)

}
. (6.3)

By (6.3), the optimal value of (6.2) is determined by a generalized discrete Steepest Descent
algorithm, since ck(k) is the k.th component of the gradient of the objective function and
represents, in fact, the increase associated to the choice of the k.th object.

Therefore, formula (6.3) is based on a discrete Steepest Descent approach, and the
value ψk(y − ak(k)) + ck(k) assures that the corresponding solution is admissible.

Integer Nonlinear Programming with Linear Constraints problems (INPLCs) can be
transformed into continuous GO problems over the unit hypercube [17]. In order to reduce
the difficulties caused by the introduction of undesirable local minimizers, a special class of
continuation methods, called smoothing methods, can be introduced [38]. These methods
deform the original objective function into a function whose smoothness is controlled by a
parameter. Of course, the success of the latter approach depends on the existence of a suitable
smoothing function.

Hence, the Gradient-type methods for Global Optimization of Section 4 can be also
applied to INPLC.



20 ISRN Applied Mathematics

7. Conclusions

In this paper we have tried to demonstrate that Gradient or Gradient-type methods lead
both to a general approach to optimization problems and to the construction of efficient
algorithms.

In particular, we have shown that the class of problems for which the optimal solution
can be obtained in a finite number of steps is larger than canonical unconstrained Convex
Quadratic problems or Convex Quadratic Programming. Moreover, we have pointed out that
the classical distinction between Direct Methods and Iterative Methods cannot be considered
as a fundamental classification of techniques in Numerical Analysis. Many optimization
problems can be, in fact, solved in a finite number of steps by suitable hybrid efficient
algorithms (see [33]).

Furthermore, if the matrices involved in the computation are well conditioned, the
superiority of Iterative Methods with respect to Direct ones, which is a typical feature of
(CG) algorithm, can be proved an a more general context (see again [33]).

Several heuristic and ad hoc algorithms in operational environments can be considered,
in fact, as particular cases of a general Gradient-type approach to the problem. In some
cases, surprisingly enough, the convergence of Iterative Methods can be guaranteed only
by utilizing a special Line-Search Minimization algorithm (see f.i. Fletcher-Reeves method in
conjunction with Armijo-Goldstein-Wolfe’s procedure, [18], Theorem 5.8).

It is also important to underline that many combinatorial problems, representing a
remarkable benchmark set in Computer Science, can be translated in terms of Gradient-type
methods in a general framework.

Once again, we stress that the Fixed Point theorem, which is considered a milestone in
Numerical Analysis and guarantees the convergence of most of classical Iterative Methods,
represents the background for only a subset of Gradient-type methods.
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