Compito di Geometria Ingegneria Medica 21-1-2020 Trapani

A SOLUZIONI

Esercizio 1 Sia $\beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}$. Provare che β e' una base di \mathbf{R}^3 . Sia L: $\mathbf{R}^3 \to \mathbf{R}^3$ l'applicazione lineare tale che $L(\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}) = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, L(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix})) = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix}, L(\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}) = \begin{pmatrix} 3 \\ 0 \\ 9 \end{pmatrix}$. Determinare una base ortonormale del nucleo e una base ortonormale dell'immagine di L. Determinare la matrice associata ad L rispetto alla basi β in partenza e β in arrivo.

SOLUZIONE La matrice A che ha per colonne i vettori di β ha determinante non zero, quindi β e' una base. La matrice B associata ad L rispetto alle basi β in partenza e β in arrivo ha per colonne i vettori $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, e $\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$. Le soluzioni del sistema lineare BX=0 sono le coordinate RISPETTO ALLA BASE β dei vettori del nucleo di L. Quindi se i vettori della base β sono v_1,v_2,v_3 e se il vettore $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, e' soluzione del sistema BX=0, NON E' VERO che il vettore X appartiene al nucleo di L, e' vero invece che il vettore $u=x_1v_1+x_2v_2+x_3v_3$ apparitene al nucleo di L. Ora i vettori $L(v_1), L(v_2), L(v_3)$ generano l'immagine di L (come sottospazio vettoriale di \mathbb{R}^3) quindi una base dell' immagine di L e' ad esempio il vettore $L(v_1)=\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, Una base ortonormale di Imm(L) si ottiene dividendo il vettore $L(v_1)$ per la sua norma. Ora $dimImm(L)=1, dim\mathbb{R}^3=3$, e $dimImm(L)+dimKer(L)=dim\mathbb{R}^3$, quindi dimKerL=2. Se $\{X_1,Y_1\}$ con $X_1=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, Y_1=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, e' una base dello spazio delle soluzioni del sistema BX=0, allora $\{u_1,u_2\}$ con $u_1=x_1v_1+x_2v_2+x_3v_3, u_2=1$

 $y_1v_1 + y_2v_2 + y_3v_3$, e' una base del nucleo L. Ortonormalizzandola con Gram Schmidt si conclude l'esercizio.

Esercizio 2

Determinare equazioni cartesiane e parametriche del sottospazio affine Σ di \mathbf{R}^4 di dimensione 2 ortogonale, al vettore $\begin{pmatrix} 1\\1\\3\\3 \end{pmatrix}$, passante per il punto P di coordinate

$$\begin{pmatrix} 1\\3\\2\\1 \end{pmatrix}$$
, e contenuto nel sottospazio affine di equazione $x+y-z+w-3=0.$

SOLUZIONE Dato che il vettore $\begin{pmatrix} 1\\1\\3\\3 \end{pmatrix}$, e' ortogonale al sottospazio affine Σ i

vettori di Σ soddisfano l'equazione x+y+3z+3w+d=0, per un d opportuno, dato che il punto P appartiene a Σ dovra' essere d=-13. Inoltre il testo dell'esercizio dice che i vettori di Σ soddisfano anche l'equazione x+y-z+w-3=0. Ora il rango della matrice che ha per righe i vettori (1,1,3,3) e (1,1,-1,1) e' due, l'insieme delle soluzioni del sistema $\begin{cases} x+y+3z+3w+-13=0 \\ x+y+-z+w-3=0 \end{cases}$ ha quindi dimensione 4-2=2 e coincide percio' con Σ . Questo sistema da' equazioni cartesiane di Σ , equazioni parametriche si trovano risolvendo il sistema lineare dato dalle equazioni cartesiane.

Esercizio 3

Sia A una matrice ortogonale 2×2 tale che det(A) = -1 (riflessione) e tale che $A \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Calcolare $A \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ e $A \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

SOLUZIONE Se il vettore $\begin{pmatrix} a \\ b \end{pmatrix}$ e il vettore $\begin{pmatrix} c \\ d \end{pmatrix}$ sono i vettori colonna della matrice A dato che A e' una matrice ortogonale, il vettore $\begin{pmatrix} a \\ b \end{pmatrix}$ e il vettore $\begin{pmatrix} c \\ d \end{pmatrix}$ hanno entrambi norma 1 e sono tra loro ortogonali, quindi $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix}$ oppure $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} b \\ -a \end{pmatrix}$. Dato che il determinante di A e' -1 siamo nel secondo caso. La condizione $A\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ mi da' un sistema lineare di incognite a,b la cui unica soluzione fornisce la matrice A. E' possibile quindi calcolare $A\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ e $A\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Altra possibile soluzione. Dato che A e' una riflessione che fissa il vettore $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ e dato che il vettore $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ e' perpendicolare al vettore $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ deve essere $A \begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$. Ora scrivendo il vettore $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ come combinazione lineare dei vettori $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ e $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ e moltiplicando a sinistra per la matrice A si vede quanto viene $A \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.