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Let F and G be two holomorphic maps of the unit polydisc

∆n def
= {z = (z1, . . . , zn) ∈ C| n : |zi| < 1 for i = 1, . . . , n}

which are continuous on the closure ∆
n

of ∆n. According to A. L. Shields [17]

(for n = 1), D. J. Eustice [4] (for n = 2) and L. F. Heath and T. J. Suffridge

[8] (for any finite n ≥ 1), if F and G commute under composition, they have

a common fixed point in ∆
n
. See T. Kuczumow [11] and I. Shafrir [16] for the

infinite dimensional case.

Several questions arise concerning the cardinality and the location in ∆
n

of the set of all common fixed points. Some of these questions are investigated

in this article, under the additional hypothesis that F and G map into itself

the Šilov boundary of ∆
n
, which is the n-dimensional torus

Tn def
= {x = (x1, . . . , xn) ∈ C| n : |xi| = 1 for i = 1, . . . , n},

and their restrictions to Tn are both expanding.

Some of the results of this paper are summarized by the following theorem,

in which F and G denote also the restrictions of these maps to Tn:

Theorem. Let F and G be two holomorphic maps of ∆n which are continuous

on ∆
n
, map Tn in itself and are expanding on Tn. If these maps commute on

Tn then they commute on ∆
n

and have a unique fixed point in ∆n.

If moreover the numbers n(F ) and n(G), respectively of the fixed points of

F and G on Tn, are relatively prime, then F and G have a unique common

fixed point also on Tn.

The proof of this theorem is a consequence of some results of independent

interest concerning the behaviour of F and G on Tn, which extend to any
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dimension a theorem established by A. S. A. Johnson and D. J. Rudolph [10]

in the one-dimensional case. The main technique will be that of replacing, via

conjugation by a suitable homeomorphism, the two maps F and G of Tn by

two hyperbolic linear endomorphisms A and B of the universal covering space

IRn. The existence of a common fixed point of F and G will then be shown

to be equivalent to the solvability of a diophantine matrix equation. In the

second part, as a consequence of the existence of a smooth invariant measure

on Tn for F , we show that this map have one and only one fixed point inside

∆n hence it is the unique internal common fixed point. Some of the results

established in this part extend to the n-dimensional case some facts obtained

by J. H. Neuwirth [13] and myself [20].

I wish to thank Professor Edoardo Vesentini for his useful suggestions and

continuous encouragement.

§1. Let M be a closed smooth manifold, i.e., a compact connected smooth

manifold without boundary. In differentiable dynamics two of the more studied

classes of maps are: the Anosov diffeomorphisms and the expanding maps.

A C1 diffeomorphism F : M → M is called an Anosov diffeomorphism if

for some (and hence any) Riemannian metric on M there are constants c > 0,

λ > 1 such that at any point x ∈ M there is a splitting of the tangent space

TxM = Es⊕Eu which is preserved by the differential DxF and for all integers

k ≥ 1

||DxF
k(v)|| ≤ cλk||v|| ∀v ∈ Es and ||DxF

−k(v)|| ≤ cλk||v|| ∀v ∈ Eu.

A C1 map F : M→M is expanding if for some (and hence any) Rieman-

nian metric on M there are constants c > 0, λ > 1 such that at any point

x ∈M and for all integers k ≥ 1

||DxF
k(v)|| ≥ cλk||v|| ∀v ∈ TxM.

Let A(X) be the set of Anosov diffeomorphisms of X and call E(X) the

set of the expanding maps on X. For the main properties of these maps we
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refer to the papers of Franks ([5],[6]), Manning ([12]) and Shub ([18], [19]) and

the recent book of Aoki and Hiraide ([2]).

Not all smooth closed manifolds are acted upon by Anosov diffeomorphisms

or expanding maps: one class of manifolds which have been investigated with

reference to this problem, see [14] and [3], are the compact flat manifolds (Rie-

mannian manifold with sectional curvature identically zero) and in particular

the n-dimensional torus Tn. Note that A(Tn) = ∅ iff n = 1, whereas E(Tn) is

always not empty.From now on we will assume that M = Tn.

We recall some properties of the affine maps of Tn that we will need in

the following. Let π : IRn → Tn ' IRn/ZZn be the natural projection. Then if

ω ∈ IRn, we define the toral rotation Rω : Tn → Tn:

Rω(π(y)) = π(y + ω) ∀y ∈ IRn.

If S ∈ ZZn×n , we define the toral endomorphism ΦS : Tn → Tn:

ΦS(π(y)) = π(Sy) ∀y ∈ IRn.

The composition of a rotation with an endomorphism, Rω ◦ΦS, will be called

an affine toral map. The main properties of these endomorphisms are:

1) ΦS is a homomorphism of the group (Tn, ·). It is surjective iff det(S) 6= 0

and in this case it is a self covering map with a constant number of sheets equals

to | det(S)|. ΦS is an automorphism iff det(S) = ±1.

2) FixTn(ΦS)
def
= {x ∈ Tn : ΦS(x) = x} is a subgroup of (Tn, ·). If S does

not have 1 as an eigenvalue, then the number of fixed points n(ΦS) is finite

and equals to | det(S − I)| (see [7]).

3) ΦS ∈ A(Tn) iff ΦS is an automorphism and S is hyperbolic i.e., all the

eigenvalues of S have absolute value different from 1. ΦS ∈ E(Tn) iff S has all

the eigenvalues of S of absolute value greater than 1 (see [2]).

If F : Tn → Tn is a continuous map, there exists a lifting F̃ of F such that
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the following diagram commutes:

IRn F̃−→ IRn

π ↓ ↓ π
Tn F−→ Tn

The lifting F̃ determines a unique homomorphism of ZZn, the group of the

covering transformations, represented by the integral matrix A which satisfies

the equation

A(u) = F̃ (y + u)− F̃ (y) ∀u ∈ ZZn and ∀y ∈ IRn. (1)

Thus the map F and the toral endomorphism ΦA induce the same homomor-

phism of π1(Tn) ' ZZn, the fundamental group of Tn, and since the universal

covering space IRn is contractible, this means that they are homotopic (see [7]).

Any F ∈ A(Tn)∪E(Tn) is topologically conjugated to the endomorphism ΦA

i.e., there exists a homeomorphism h of Tn such that h ◦ F ◦ h−1 = ΦA.

Since A(Tn) and E(Tn) are invariant under this topological conjugation the

structure of the spectrum of the linear map A is described in 3). Hence all

topological properties of F can be recovered by those of the associated endo-

morphism ΦA: by 1) N , the degree of F , is equal to | det(A)| ≥ 1 and by 2) the

cardinality of the set FixTn(F ) is equal to n(F ) = n(ΦA) = | det(A− I)| ≥ 1.

Note that N = 1 iff F ∈ A(Tn).

Let F,G be two continuous map which commute on Tn, that is

(F ◦G)(x) = (G ◦ F )(x) ∀x ∈ Tn

and let F̃ and G̃ be two of their liftings. By the commutativity of F and G

there exists r ∈ ZZn such that

F̃ (G̃(y)) = G̃(F̃ (y)) + r ∀y ∈ IRn. (2)

As in (1), let ΦA and ΦB be the toral endomorphisms associated respectively

to F and G. We denote by S the set of all continuous maps α̃ : IRn → IRn

such that

α̃(y + u) = y + α̃(u) ∀u ∈ ZZn and ∀y ∈ IRn. (3)
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Now assume that F,G ∈ A(Tn) ∪ E(Tn). Then the linear maps A and B are

invertible and we can define for α̃ ∈ S the maps

F(α̃)(·) def
= (A−1 ◦ α̃ ◦ F̃ )(·) and Gθ(α̃)(·) def

= (B−1 ◦ α̃ ◦ G̃)(·)−B−1θ

where θ ∈ IRn is a parameter that will be chosen in a suitable way. The maps

F and Gθ send S into itself because for all u ∈ ZZn and y ∈ IRn

F(α̃)(y + u) = (A−1 ◦ α̃ ◦ F̃ )(y + u) = (A−1 ◦ α̃)(F̃ (y) + Au) =

= A−1(α̃(F̃ (y)) + Au) = F(α̃)(y) + u

that is F(α̃) ∈ S. The same kind of arguments holds for Gθ. It can be proved

that the map F has exactly one fixed point α̃ in S and its projection α is

a homeomorphism of Tn (see [2] page 244). Now, it will be shown that the

parameter θ can be chosen in such a way that the maps Gθ and F have the

same fixed point. The first step is the following lemma:

Lemma 1.1 The matrices A and B commute.

Proof. Let u ∈ ZZn. Since B(u) ∈ ZZn, (1) implies that

A(B(u)) = F̃ (y +B(u))− F̃ (y) = F̃ (y + G̃(u)− G̃(0))− F̃ (y) ∀y ∈ IRn.

Choosing y = G̃(0) yields

A(B(u)) = F̃ (G̃(u))− F̃ (G̃(0)) (4)

and, in the same way, since A(u) ∈ ZZn,

B(A(u)) = G̃(F̃ (u))− G̃(F̃ (0)). (5)

Hence subtracting (5) from (4) we have, by (2), that A(B(u)) = B(A(u)) for

all u ∈ ZZn.

Q.E.D.

The second step is to make the maps F and Gθ commute:
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Proposition 1.2 If we choose θ = (A− I)−1r then the maps F and Gθ com-

mute in S.

Proof. First of all, for every α̃ ∈ S and y ∈ IRn

F(Gθ(α̃))(y) = (A−1 ◦ Gθ(α̃) ◦ F̃ )(y) =

= A−1(B−1 ◦ α̃ ◦ G̃)(F̃ (y))− A−1B−1θ =

= A−1B−1α̃(G̃(F̃ (y)))− A−1B−1θ

Similarly

Gθ(F(α̃))(y) = (B−1 ◦ F(α̃) ◦ G̃)(y)−B−1θ =

= B−1(A−1 ◦ α̃ ◦ F̃ )(G̃(y))−B−1θ =

= B−1A−1α̃(F̃ (G̃(y)))−B−1θ

Then (2) and (3) yield

α̃(F̃ (G̃(y))) = α̃(G̃(F̃ (y)) + r) = α̃(G̃(F̃ (y))) + r (6)

and by (6) and lemma 1.1, we find that F and Gθ commute iff

F(Gθ(α̃)(y)− Gθ(F(α̃)(y) = −A−1B−1θ − A−1B−1r +B−1θ ≡ 0

that is iff θ = (A− I)−1r.

Q.E.D.

From now on we choose θ = (A−I)−1r and we prove the following theorem.

Theorem 1.3 If F,G ∈ A(Tn) ∪ E(Tn) commute, there exists a homeomor-

phism α of Tn onto itself such that α̃ ∈ S and{
α ◦ F ◦ α−1 = ΦA

α ◦G ◦ α−1 = Rθ ◦ ΦB
(7)

Proof. We know that the map F has a unique fixed point α̃ ∈ S and by

proposition 1.2 the maps F and Gθ commute in S.
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Hence F(Gθ(α̃)) = Gθ(F(α̃)) = Gθ(α̃) and the uniqueness of α yields

Gθ(α̃) = α̃. Thus {
α̃ ◦ F̃ = A ◦ α̃
α̃ ◦ G̃ = B ◦ α̃ + θ

(8)

and, since α is a homeomorphism of Tn, the projection of (8) onto Tn gives (7).

Q.E.D.

If F,G ∈ A(Tn) ∪ E(Tn) commute then, by theorem 1.3, they may be

conjugated to two affine toral maps which turn out to offer a better view of

the set of their common fixed points. The following theorem yields an existence

criterion.

Theorem 1.4 Two commuting maps F,G ∈ A(Tn) ∪ E(Tn) have a common

fixed point on Tn iff the following equation in p, q ∈ ZZn is solvable:

(A− I)q − (B − I)p = r. (9)

If that is the case, for every solution (p, q), α−1(π((A − I)−1p) is a common

fixed point.

Proof. The point w = π(y) ∈ Tn is a common fixed point iff there exist

p, q ∈ ZZn such that {
F̃ (y) = y + p

G̃(y) = y + q

Then, by (8),{
(A ◦ α̃)(y) = (α̃ ◦ F̃ )(y) = α̃(y + p) = α̃(y) + p

(B ◦ α̃)(y) = (α̃ ◦ G̃)(y)− θ = α̃(y + q)− θ = α̃(y) + q − θ

that is {
(A− I) ◦ α̃(y) = p
(B − I) ◦ α̃(y) = q − (A− I)−1r

which yields (9).

On the other hand, the solvability of (9) with respect to p, q ∈ ZZn implies

that α−1(π((A− I)−1p)) ∈ Tn is fixed point of F and G.

Q.E.D.

The existence of a common fixed point semplifies the equations (7):
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Corollary 1.5 If F,G ∈ A(Tn) ∪ E(Tn) are two commuting maps with at

least one common fixed point on Tn, there exists a homeomorphism h of Tn

such that {
h ◦ F ◦ h−1 = ΦA

h ◦G ◦ h−1 = ΦB

Proof. By theorem 1.4, the existence of a common fixed point, implies that

(9) is solvable. If (p, q) is a solution we can choose h = Rϕ ◦ α with ϕ =

−(A− I)−1p. In fact, by (7), since (I − A)ϕ = p ∈ ZZ,

h ◦ F ◦ h−1 = Rϕ ◦ ΦA ◦R−ϕ = R(I−A)ϕ ◦ ΦA = ΦA

and, by (9), (I −B)ϕ+ θ = q ∈ ZZ,

h ◦G ◦ h−1 = Rϕ+θ ◦ ΦB ◦R−ϕ = R(I−B)ϕ+θ ◦ ΦB = ΦB.

Q.E.D.

As a consequence of theorem 1.4 we are able to establish a sufficient condi-

tion for the existence of a common fixed point, depending only on the number

of fixed points of the two commuting maps:

Theorem 1.6 Let F,G ∈ A(Tn) ∪ E(Tn) be two commuting maps, if n(F )

and n(G) are relatively prime then there exists one and only one common fixed

point on Tn.

Proof. Existence: (A−I), (B−I) ∈ ZZn×n have a left greatest common divisor

D ∈ ZZn×n (i.e., D is a left divisor of (A− I) and (B − I) and every other left

divisor of (A − I) and (B − I) is a left divisor of D). Moreover there exist

P,Q ∈ ZZn×n such that

(A− I)Q− (B − I)P = D (10)

(see chapter 14 in [9]). Since D is a common left divisor, det(D) ∈ ZZ divides

n(F ) = | det(A − I)| ≥ 1 and n(G) = | det(B − I)| ≥ 1. But by hypothesis

n(F ), n(G) are relatively prime, hence det(D) = ±1 i.e., D ∈ GL(n,ZZ).
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Multiplying both sides of (10) by D−1r ∈ ZZn on the right, we can write

(A− I)Q(D−1r)− (B − I)P (D−1r) = D(D−1r) = r

and (9) is solvable with p = P (D−1r) ∈ ZZn and q = Q(D−1r) ∈ ZZn.

As for uniqueness, since there exists at least one common fixed point, we

obtain from corollary 1.5 that

FixTn(F ) ∩ FixTn(G) = h−1(FixTn(ΦA) ∩ FixTn(ΦB)).

The order of the subgroup FixTn(ΦA)∩ FixTn(ΦB) divides n(F ) and n(G), so

card(FixTn(F ) ∩ FixTn(G)) = 1.

Q.E.D.

§2. Let Hol(∆n,∆n) be the set of all holomorphic maps of ∆n into ∆n and

I(∆n)
def
= Hol(∆n,∆n) ∩ C(∆

n
,∆

n
) ∩ C(Tn,Tn).

If F = (f1, . . . , fn) ∈ I(∆n) then every component map fi : ∆
n → ∆ is inner

in ∆n and continuous on ∆
n
; hence every fi for i = 1, . . . , n is a rational

function with the following form (see chapter 5 in [15]):

fi(z) =
Mi(z)Qi(

1
z
)

Qi(z)
(11)

where Qi is a polynomial in C| [z1, . . . , zn] which has no zero in ∆
n
, Qi is

the polynomial Qi with the conjugated coefficients; 1
z

stands for ( 1
z1
, . . . , 1

zn
).

Mi is a monomial whose coefficient has absolute value 1 and is such that

Pi(z)
def
= Mi(z)Qi(

1
z
) is a polynomial in C| [z1, . . . , zn].

If f ∈ L1(Tn,C| ), then the value of the Poisson integral P [f ] computed in

a point z of the polydisc ∆n is

P [f ](z) =
∫

Tn
f(x)Pz(x)dν(x) (12)

where ν is the normalized Lebesgue measure on Tn and the Poisson kernel

Pz(x)
def
=
∏n
i=1

1−|zi|2
|xi−zi|2 for all x ∈ Tn. Now, we recall two of its main properties

that we will use later (see chapter 2 in [15]).
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1) If f is continuous on ∆
n

and n-harmonic in ∆n, that is f is harmonic

in each variable, then

P [f ](z) = f(z) ∀z ∈ ∆n. (13)

2) If f ∈ L1(Tn,C| ) then

lim
r→1−

P [f ](rw) = f(w) for almost every w ∈ Tn. (14)

The following lemma will be useful later

Lemma 2.1 Let r, s ≥ 1 such that r + s = n and

f(u, v) =
M(u, v)Q( 1

u
, 1
v
)

Q(u, v)
=
P (u, v)

Q(u, v)
: ∆

r ×∆
s → ∆

be a rational function of the form (11) (where we identify z with (u, v)). If

there exists (ũ, ṽ) ∈ Tr×∆s such that |f(ũ, ṽ)| = 1 then f does not depend on

the variable v.

Proof. Assuming f(ũ, ṽ) = 1, by the maximum principle f(ũ, ·) ≡ 1. Write

Q(u, v) in the form a(u)vd + . . . + b(u) ∈ C| [v1, . . . , vs] where vd = vd1
1 . . . vdss ,

with dj ∈ IN, and |d| def
= d1 + . . . + ds is the degree of Q(u, v) with respect to

the variable v. By the hypothesis on Q, Q(u, 0) = b(u) 6= 0 for all u ∈ Tr.

Let M(u, v) = eiθud
′′
vd
′

then d′i ≥ di for i = 1, . . . , s. If |d′| > |d| then we

should have P (u, 0) = 0 for all u ∈ Tr whereas

P (ũ, 0) = f(ũ, 0)Q(ũ, 0) = b(ũ) 6= 0. (15)

Hence d′ = d and P (u, 0) = eiθud
′′
a( 1

u
) = eiθud

′′
a(u) for all u ∈ Tr.

Let v(ζ)
def
= (ζ, . . . , ζ) ∈ ∆

s
for ζ ∈ ∆, then

q(ζ)
def
= Q(ũ, v(ζ)) = a(ũ)ζ |d| + . . .+ b(ũ) ∈ C| [ζ].

If |d| > 0 the polynomial q has |d| zeros and the absolute value of the product

of such zeros is, by (15)∣∣∣∣∣ b(ũ)

a(ũ)

∣∣∣∣∣ =

∣∣∣∣∣P (ũ, 0)

a(ũ)

∣∣∣∣∣ =

∣∣∣∣∣eiθũd
′′
a(ũ)

a(ũ)

∣∣∣∣∣ = 1.
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Hence at least one zero, say ζ̃ belongs to ∆ that is q(ζ̃) = Q(ũ, v(ζ̃)) = 0 and

we have a contradiction because (ũ, v(ζ̃)) ∈ ∆
n
. So d = 0, and f does not

depend on the variable v.

Q.E.D.

The following proposition generalizes a result proved for n = 1: see [13]

and [20].

Theorem 2.2 If F ∈ I(∆n) and expanding on the Šilov boundary Tn then F

has one and only one fixed point in ∆n.

Proof. Assume that F does not have any fixed point in ∆n. Then, the sequence

{F k} of the iterates of F is divergent on the compact sets of ∆n and there

exists a subsequence {F kj} converging to a map in Hol(∆n, ∂(∆
n
)) (see [1]).

By the maximum principle, at least one component of this limit map, say the

first, is identically equal to c ∈ T1. Hence the subsequence {(F kj)1} converges

uniformly on the compact sets of ∆n to the constant c.

Put pm(ζ)
def
= ζm with m ∈ IN and ζ ∈ ∆; then pm ◦ (F kj)1 is holomorphic

in ∆n and continuous on ∆
n
. Therefore we can apply (13) and for all z ∈ ∆n

we have∫
Tn
pm((F kj)1(x))Pz(x)dν(x) = P [pm ◦ (F kj)1](z) = pm((F kj)1(z)). (16)

Now, the limit of (16), for j → ∞ equals pm(c). Since the complex vector

space generated by the functions pm, pm for all m ∈ IN is dense in C(T1,C| ) (it

is the space of the trigonometric polynomials, see [15]), for all g ∈ C(T1,C| )

lim
j→∞

∫
Tn
g((F kj)1(x))Pz(x)dν(x) = g(c). (17)

Note that the complex vector space generated by the Poisson kernels Pz for

all z ∈ ∆n is dense in L1(Tn,C| ), because, if f ∈ L∞(Tn,C| ) is such that∫
Tn
f(x)Pz(x)dν(x) = 0 ∀z ∈ ∆n

then, by (14), f(x) = 0 for almost every x ∈ Tn.

11



Therefore, by (17) and the identity
∫
Tn Pz(x)dν(x) = 1, the following equa-

tion holds for all h ∈ L1(Tn,C| ) and g ∈ C(T1,C| ):

lim
j→∞

∫
Tn
g((F kj)1(x))h(x)dν(x) = g(c)

∫
Tn
h(x)dν(x). (18)

Since F|Tn is C∞-expanding, there exists an invariant probability measures µF

equivalent to the Lebesgue measure ν (see for example [23]). Therefore, by

the Radon-Nikodym theorem, it is possible to find h ∈ L1(Tn, IR) such that

dµF = hdν; thus, by (18),

lim
j→∞

∫
Tn
g((F kj)1(x))dµF (x) = g(c)

∫
Tn
h(x)dν(x) = g(c)µF (Tn) = g(c). (19)

By the invariance of the measure µF , for all g ∈ C(T1,C| ) and all j ∈ IN, then

∫
Tn
g((F kj)1(x))dµF (x) =

∫
Tn
g(x1)dµF (x), (20)

and, by (19), this implies

∫
Tn
g(x1)dµF (x) = g(c) ∀g ∈ C(T1,C| ). (21)

Let {gi} be a bounded sequence in C(T1,C| ) that converges pointwise to Ic,

the characteristic function of the set {c}, and let E = {c} ×Tn−1. Then

lim
i→∞

∫
Tn
gi(x1)dµF (x) = lim

i→∞
gi(c) = Ic(c) = 1. (22)

On the other hand, since ν(E) = 0 also µF (E) = 0 (because µF and ν are

equivalent) and (21) yields

lim
i→∞

∫
Tn
gi(x1)dµF (x) =

∫
Tn
Ic(x1)dµF (x) =

∫
Tn
IE(x)dµF (x) = µF (E) = 0

which contradicts (22). Hence F must have at least one fixed point in ∆n.

An inductive argument will show that the existence of at least two fixed

points in ∆n leads to a contradiction. If n = 1, F is the identity map (see

[22]) which is not expanding on T1. Now suppose that uniqueness has been

established for 1 ≤ r < n. Since ∆n is homogeneous, we can assume that one
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of the fixed points is in 0. Let a ∈ ∆n \ {0} be another fixed point. There

exists a complex geodesic ϕ ∈ Hol(∆,∆n) whose range contains 0 and a and

ϕ(∆) ⊂ Fix∆n(F )
def
= {x ∈ ∆n : F (x) = x}

(see [21]). At least one component of ϕ, say the first, is an automorphism

of ∆, hence, the closure of the range of this complex geodesic intersects the

boundary of the polydisc in at least one point z̃ ∈ T1 × ∆
n−1

. Therefore,

by permuting the last n − 1 variables, we can assume that z̃ is of the form

(ũ, ṽ) ∈ Tr ×∆s with r ≥ 1, s ≥ 0 and r + s = n.

Since F is continuous on ∆
n

we have that F (ũ, ṽ) = (ũ, ṽ). At each fixed

point of F in ∆n, the eigenvalues of the differential of F have absolute value

less or equal to 1 (see [22]). Hence

| det(Dϕ(ζ)F )| ≤ 1 ∀ζ ∈ ∆ implies that | det(D(ũ,ṽ)(F ))| ≤ 1.

On the other hand, since F is expanding, | det(D(u,v)F )| > 1 for each fixed

point (u, v) ∈ Tn; therefore the intersection (ũ, ṽ) can not stay on the Šilov

boundary Tn. Then, since fi(ũ, ṽ) = ũi for i = 1, . . . , r, by lemma 2.1 the

first r component maps f1, . . . , fr of F , do not depend on the last s vari-

ables. So we can define the map F1 = (f1, . . . , fr) ∈ I(∆r) that has 0 and

(ϕ1(1
2
), . . . , ϕr(

1
2
)) ∈ ∆r as fixed points. Note that they are certainly different

because ϕ1 is an automorphism of ∆ which fixes 0. Moreover,

D(u,v)F
k =

∣∣∣∣∣ DuF
k
1 0
∗ ∗

∣∣∣∣∣ ∀(u, v) ∈ Tr ×Ts.

If w ∈ Tu(Tr), by the expanding hypothesis, the matrix D(u, v)F k is invertible

and there is a w′ ∈ IRs such that

‖DuF
k
1 w‖ = ‖D(u,v)F

k(w,w′)‖ ≥ cλk‖(w,w′)‖ ≥ cλk‖w‖.

Hence also F1 is expanding on Tr and this contradicts the inductive as-

sumption.

Q.E.D.
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Now, in order to establish the theorem stated at the beginning of this

paper, note that, by (13) the commutative property is easily extended from

Tn to ∆
n
, and that, by theorem 2.2, F has a unique fixed point a ∈ ∆n. Since

F (G(a)) = G(F (a)) = G(a) then G(a) = a. The second part of the theorem

is proved in theorem 1.6.
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