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Abstract. It is proven that the sets of periods for expanding maps on n-
dimensional flat manifolds are uniformly cofinite, i.e. there is a positive integer m0,
which depends only on n, such that for any integer m ≥ m0, for any n-dimensional
flat manifold M and for any expanding map F on M, there exists a periodic point
of F whose least period is exactly m.

Expanding maps were first introduced in a differentiable setting by M. Shub
in [12], and then studied by D. Ruelle in [11] who proposed a more general
definition based on a simple metric property: they are open continuous maps
which locally expand distances. In general, it is rather difficult to prove the
existence of at least an expanding map on a metric space, but there is a class of
connected compact manifolds where the set of expanding maps is always non-
empty: flat manifolds. The term flat derives from the fact that flat manifolds
are connected Riemannian compact manifolds whose Levi-Civita connection
has curvature that identically vanishes (e.g. the n-torus, the Klein bottle...).

Due to the strong topological properties of expanding maps on flat mani-
folds, in this note, I am able to determine the uniform cofiniteness of their sets
of periods. This work has been inspired by the paper [7] where B. Jiang and
J. Llibre studied the sets of periods for generic continuous maps of the n-torus
and obtained a similar result in the expanding case.

I wish to thank the referee for very helpful comments and suggestions.

1. Preliminaries.

Let M be a compact connected topological n-dimensional manifold.

Definition 1.1 An open continuous map F :M→M is expanding if there
exist a metric d compatible with the topology of M and constants ε0 > 0,
λ > 1 such that for x, x′ ∈M

d(x, x′) ≤ ε0 implies d(F (x), F (x′)) ≥ λd(x, x′). (1)

We will denote by E(M) the set of all maps expanding on M.
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We briefly summarize the properties of expanding maps which will be useful
later (see [12] for more details). Let F ∈ E(M) then

(i) F is a self-covering map, N -to-1 with N ≥ 2;
(ii) F k ∈ E(M) for all k ≥ 1;

(iii) the set of fixed points FixM(F )
def
= {x∈M : F (x) =x} is non-empty

and finite, and the set of periodic points
⋃
k≥1 FixM(F k) is countable and dense

in M;
(iv) the homomorphism F̃ ] induced by F on the deck transformation group

of the universal covering space ofM is injective and characterizes the topolog-
ical properties of F . This means that expanding maps which induce the same
homomorphism are topologically conjugate: if Φ ∈ E(M) and F̃ ] = Φ̃] then
there exists a homeomorphism α0 of M such that

F = α−1
0 ◦ Φ ◦ α0.

In this note we are interested in a particular class of manifolds: flat mani-
folds (see [4] as a general reference).

Definition 1.2 A cocompact, torsion free, discrete subgroup Γ of O(n).<IRn,
the group of the affine isometries of IRn, is called a Bieberbach group and
M = IRn/Γ is the flat manifold associated to Γ.

The following statements will allow us to find a better representation of a
given flat manifold and of its expanding maps. Let Γ be a Bieberbach group
then

(v) ([2]) the holonomy group of Γ, i. e. Ψ
def
= Γ/(Γ∩ ({II}.<IRn)), has finite

order |Ψ|;
(vi) ([3]) there is an element (B, b) of the affine group Aff(IRn), which

conjugates Γ to a subgroup Γ′ ⊂ Aff(IRn), called affine Bieberbach group, such
that for any γ ∈ Γ′:

γ = (U, u) with U ∈ GL(n,ZZ) and |Ψ|u ∈ ZZn.

Note that | det(U)| = 1. Moreover, Γ′ ∩ ({II}.<IRn) = {II}.<ZZn and the holon-
omy group becames Ψ′ = Γ′/({II}.<ZZn);

(vii) ([8]) if ϕ : Γ′ → Γ′ is an injective homomorphism of the affine Bieber-
bach group Γ′, there exists (A, a) ∈ ZZn×n.<IRn ⊂ Aff(IRn) such that, for all
γ = (U, u) ∈ Γ′:

ϕ(γ) = (A, a)](γ) = (A, a)γ(A, a)−1 = (AUA−1, Au+ (II− AUA−1)a).

LetM = IRn/Γ be a flat manifold and letM′ be the quotient space IRn/Γ′,
where Γ′ = (B, b)Γ(B, b)−1 is the affine Bieberbach group given by (vi). Then,
(B, b) induces a homeomorphism fromM ontoM′. For this reason, from now
on, the flat manifoldM will be considered as the quotient space of IRn by the
affine Bieberbach group Γ′ rather than the Bieberbach group Γ.
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Let F be an expanding map of M then, by (iv), F induces an injective
homomorphism ϕ on the deck transformation group Γ′ of the universal cov-
ering IRn. By (vii), there is an affine map (A, a), that is a lifting to IRn of

a map Φ(A,a) ∈ E(M), which induces on Γ′ a homomorphism Φ]
(A,a) equal to

ϕ. Therefore, again by (iv), F and Φ(A,a) are topologically conjugate and we
will say that Φ(A,a) is the endomorphism associated to F . Note that, by (1),
the map Φ(A,a) is expanding iff all the eigenvalues of the integer matrix A are
outside the closed unit disc in C| .

Now we are ready to establish a result, proved by D. Epstein and M. Shub in
[5], which really motivates the study of expanding maps just on flat manifolds.

Theorem 1.3 If M is a flat manifold, then E(M) is not empty.

Proof. The flat manifoldM can be represented as quotient space IRn/Γ′ where
Γ′ is an affine Bieberbach group. The affine map ((|Ψ′|+ 1)II, 0) induces on Γ′

a homomorphism ϕ such that, for all γ = (U, u) ∈ Γ′,

ϕ(γ) = ((|Ψ′|+ 1)II, 0)γ((|Ψ′|+ 1)II, 0)−1 = (U, (|Ψ′|+ 1)u) = (II, |Ψ′|u)(U, u).

By (vi), |Ψ′|u ∈ ZZn, hence ϕ(γ) ∈ Γ′.
Therefore, the affine map ((|Ψ′|+1)II, 0) is the lifting of the map Φ(|Ψ′|+1)σI,0)

which belongs to E(M) because (|Ψ′|+ 1) ≥ 2. 2

2. Fixed points.

Let M be a flat manifold and let F ∈ E(M). We know by (iii) that the
number of fixed points of F is finite. Now, we want to compute exactly the

number N (F )
def
= card(FixM(F )). The following remarks and the next lemma

will be of value for this purpose.
Since, by (vi), II.<ZZn is a subgroup of the affine Bieberbach group Γ′, then

M is always covered by the torus Tn def
= IRn/(II.<ZZn). When this covering is

not trivial, i. e. when Ψ′ =/ {(II, 0)}, the manifold is called an infra-torus. If
Φ(A,a) is the endomorphism associated to F then the following commutative
diagram holds

IRn (A,a)−→ IRn

π′ ↓ ↓ π′

Tn Ra◦ΦA−→ Tn

π′′ ↓ ↓ π′′

M
Φ(A,a)−→ M

where: Ra : Tn → Tn is a toral rotation, Ra(x) = x+ a and ΦA : Tn → Tn is
a toral linear endomorphism ΦA(x) = Ax.

Lemma 2.1 Let A be a matrix in ZZn×n then:
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(a) if A is non-singular then ΦA is a self-covering of Tn with degree equal
to | det(A)| ≥ 1;

(b) if the spectrum of A has no roots of unity, i. e. det(Ak− II) =/ 0 for all
k ≥ 1 then

card(FixTn(Φk
A)) = | det(Ak − II)| ∀k ≥ 1.

Proof. (a) Since A is non-singular, ΦA is a self-covering of Tn. Moreover there
exist two matrices P,Q ∈ GL(n,ZZ) such that A = PDQ where D ∈ ZZn×n is
diagonal (see [6] p. 384). This means that ΦA = ΦP ◦ΦD ◦ΦQ where ΦP and
ΦQ are homeomorphisms of Tn. Hence

card(Φ−1
A (0)) = card(Φ−1

D (0)) = | det(D)| = | det(A)| ≥ 1.

(b) A point x ∈ FixTn(Φk
A) iff there exists y ∈ IRn such that (Ak−II)y ∈ ZZn.

Therefore, since det(Ak − II) =/ 0 for all k ≥ 1,

FixTn(Φk
A) = Ker(Φ(Ak−σI)) = Φ−1

(Ak−σI)(0),

and, by (a), card(FixTn(Φk
A)) = | det(Ak − II)|. 2

Here is the theorem which gives the explicit formula for N (F ).

Theorem 2.2 Let M be a flat manifold. If F ∈ E(M) and Φ(A,a) is the
endomorphism associated to F , then

N (F ) =
1

|Ψ′|
∑

U∈r(Ψ′)
| det(A− U)|. (2)

where r is the map that assigns to each (U, u) ∈ Ψ′ its rotational part U .

Proof. Since the maps F and Φ(A,a) are topologically conjugate, N (F ) =
N (Φ(A,a)) and it is enough to compute the number of fixed points of Φ(A,a).
Since x ∈ FixM(Φ(A,a)) iff there exist y ∈ IRn and (U, u) ∈ Γ′ such that
(A, a)(y) = (U, u)(y) and π′′(π′(y)) = x,

FixM(Φ(A,a)) = π′′◦π′(
⋃

(U,u)∈Γ′

(A−U)−1(u−a)) = π′′(
⋃

(U,u)∈Ψ′

Φ−1
(A−U)(π

′(u−a))). (3)

Now, we show that if (U, u) and (V, v) are two different elements of Ψ′ then

Φ−1
(A−U)(π

′(u− a)) ∩ Φ−1
(A−V )(π

′(v − a)) = ∅.

Otherwise there exist y ∈ IRn and p, q ∈ ZZn such that{
(A− U)y = u− a+ p
(A− V )y = v − a+ q.
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These equations yield (V, v+q)−1(U, u+p)y = y. Since the action of Γ′ on IRn is
properly discontinuous, (V, v+q)−1(U, u+p) = (II, 0) and U = V contradicting
the hypothesis. By (3), since the degree of the covering π′′ is equal to |Ψ′|,

N (Φ(A,a)) =
1

|Ψ′|
∑

U∈r(Ψ′)
card(Φ−1

(A−U)(π
′(u− a))).

To complete the proof, it is enough to remark that card(Φ−1
(A−U)(π

′(u− a))) =

| det(A− U)| by the preceding lemma. 2

3. Sets of periods and uniform cofiniteness.

Definition 3.1 For m ≥ 1, the number of periodic points of least period m
for F is denoted by

pF (m)
def
= card

(
FixM(Fm) \

m−1⋃
k=1

FixM(F k)

)
.

The set of periods P(F ) of the map F is the set of positive integers m such
that pF (m) > 0.

By (iii), we know that pF (m) is finite for all m ≥ 1 and P(F ) is infinite.
But some periods may be missing: for example, Φ−2σI ∈ E(Tn) has no points
of period 2:

pΦ−2I
(2) = N (Φ2

−2σI)−N (Φ−2σI) = | det(4II−II)|−| det(−2II−II)| = 3n−3n = 0.

However, B. Jiang and J. Llibre have proven in [7] that there is a positive
integer m0 such that for any integer m ≥ m0 and for any expanding map F of
Tn there exists a periodic point of F whose least period is exactly m. In the
next theorem we state that the above property is verified not only for Tn but
for each n-dimensional flat manifold M. The following lemma on algebraic
numbers (see [7] and [10] ) is needed.

Lemma 3.2 Let α be a nonzero algebraic number with minimal polynomial
Q ∈ ZZ[x] of degree d. If |α| =/ 1 then

||α| − 1| ≥ 1

2d2M(α)d

with M(α)
def
= |a|∏d

i=1 max{1, |αi|} where a is the leading coefficient of Q and
α1, . . . , αd the roots of Q.

Here is the main result of this note.
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Theorem 3.3 Let n be a positive integer. Then the sets of periods for expand-
ing maps on n-dimensional flat manifolds are uniformly cofinite, i.e. there is
a positive integer m0, which depends only on n, such that for any integer
m ≥ m0, for any n-dimensional flat manifold M and for any expanding map
F on M, there exists a periodic point of F whose least period is exactly m.

Proof. LetM be a n-dimensional flat manifold and let F ∈ E(M) with Φ(A,a)

the associated endomorphism. Suppose that α1, . . . , αn are the eigenvalues of

A and let %(A)
def
= max{|α1|, . . . , |αn|}.

First observe that if U ∈ r(Ψ′) and k ≥ 1 then

(AkU−1)j = (AkU−1A−k)(A2kU−1A−2k) . . . (AjkU−1A−jk)Ajk ∀j ≥ 1. (4)

Since, by (v) and (vi), Ar(Ψ′)A−1 ⊂ r(Ψ′) and r(Ψ′) is a finite group of order
|Ψ′|, there is an integer 1 ≤ j0 ≤ |Ψ′| such that Aj0kU−1A−j0k = U−1. Let

V = (AkU−1A−k)(A2kU−1A−2k) . . . (Aj0kU−1A−j0k).

Then V ∈ r(Ψ′) and therefore V |Ψ
′| = II. Hence, by (4),

(AkU−1)j0|Ψ
′| = V |Ψ

′|Akj0|Ψ
′| = (Ak)j0|Ψ

′|.

This means that, in absolute value, the eigenvalues of AkU−1 and Ak are the
same: |α1|k, . . . , |αn|k.

Since, by (vi), | det(U)| = 1 for all U ∈ r(Ψ′), it follows from (2) that

N (F k) =
1

|Ψ′|
∑

U∈r(Ψ′)
| det(Ak − U)| = 1

|Ψ′|
∑

U∈r(Ψ′)
| det(AkU−1 − II)|.

Therefore, for m, k ≥ 1

N (Fm)

N (F k)
=

∑
U∈r(Ψ′) | det(AmU−1 − II)|∑
U∈r(Ψ′) | det(AkU−1 − II)|

≥
n∏
i=1

|αi|m − 1

|αi|k + 1
. (5)

The eigenvalues α1, . . . , αn are algebraic numbers greater than 1 in absolute
value: the minimal polynomial of each αi is monic, has degree di ≤ n and
therefore 2 ≤M(αi) ≤ %(A)n. Hence, by the previous lemma,

|αi| − 1 ≥ 1

2d
2
iM(αi)di

≥ 1

2n2%(A)n2 .

Let 1 ≤ k ≤ m
2

. Then

|αi|m − 1

|αi|k + 1
≥ |αi|k

|αi|m−k − 1

|αi|k + 1
≥ |αi|k

|αi| − 1

|αi|k + 1
≥ |αi| − 1

2
≥ 1

2n2+1%(A)n2 ,
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and it follows from (5) that

N (Fm)

N (F k)
≥ (

1

2n2+1%(A)n2 )n−1%(A)m − 1

%(A)k + 1
≥ %(A)

m
2 − 1

2n3%(A)n3 .

The right member of the above inequality is an increasing function with respect
to %(A) for m ≥ 2n3. Thus there is m0 ≥ 2n3, which depends only on the
dimension n, such that the inequality

N (Fm)

N (F k)
≥ %(A)

m
2 − 1

2n3%(A)n3 ≥
2
m
2n − 1

2n3+n2 >
m

2
(6)

holds for all m ≥ m0.
Let x ∈ M be a fixed point of Fm. Then it has a least period k with

1 ≤ k ≤ m. Moreover k divides m: indeed m = qk + r with q ≥ 0 and
0 ≤ r < k, so x = Fm(x) = F r(F qk(x)) = F r(x), which implies that r = 0 by
the minimality of k. Therefore

pF (m) = card(FixM(Fm) \
⋃

k|m,k<m
FixM(F k)),

and, since the conditions k|m and k < m imply that 1 ≤ k ≤ m
2

, we obtain by
inequality (6)

pF (m) ≥ N (Fm)−
∑

k|m,k<m
N (F k) > N (Fm)(1−

∑
1≤k≤m

2

2

m
) = 0,

that is m ∈ P(F ) for m ≥ m0. 2

As a final remark, we give the complete list of all the missing periods for
expanding maps on flat manifolds up to dimension 3 (for higher dimensions
there are no results). As regards the n-torus, the situation is summarized in
the following table (see [1] and [7]).

Torus Characteristic Polynomial of A IN∗ \ P(ΦA)

T1 x+ 2 2

T2 x2 + 2x+ 2 2, 3
x2 + 2 4

T3 x3 + 2 2, 6
x3 − 2 3
x3 + x2 + x+ 2 2, 4
x3 + x2 + 2 5

On the other hand, if we consider an n-infra-torusM then P(F ) = IN∗ for all
F ∈ E(M) and n ≤ 3 (see [9] for n = 2 and [13] for n = 3).
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[3] Brown H, Bülow R, Neubüser J, Wondratschek H, Zassenhaus

H (1978) Crystallographic groups of four dimensional space. New York:
Wiley

[4] Charlap LS (1986) Bieberbach Groups and Flat Manifolds. New York:
Springer-Verlag

[5] Epstein D, Shub M (1968) Expanding endomorphisms of flat manifolds.
Topology 7: 139-141

[6] Hua LK (1982) Introduction to Number Theory. Berlin: Springer-Verlag

[7] Jiang B, Llibre J (1998) Minimal sets of periods for torus maps. Discrete
and Continuous Dyn. Sys. 4: 301-320

[8] Lee KB, Shin J, Yokura S (1993) Free actions of finite abelian groups
on the 3-torus. Topology Appl 53: 153-175

[9] Llibre J (1993) A note on the set of periods for Klein bottle maps. Pacific
J Math 157: 87-93

[10] Mignotte M, Waldschmidt M (1993) On algebraic numbers of small
height: linear forms in one logarithm. J Number Theory 47: 43-62

[11] Ruelle D (1978) The thermodynamic formalism. Reading: Addison-
Wesley

[12] Shub M (1969) Endomorphisms of compact differentiable manifolds.
Amer J Math 91: 175-199

[13] Tauraso R (1996), Periodic points for expanding maps and for their
extensions. Pisa: Ph.D. thesis, Scuola Normale Superiore

R. Tauraso

Dipartimento di Matematica “U. Dini”
Viale Morgagni, 67/A
50134 Firenze
Italy
e-mail:
tauraso@sns.it

tauraso@udini.math.unifi.it

8


