Sets of Periods for Expanding Maps on Flat Manifolds

By

Roberto Tauraso, Firenze, Italy

Abstract. It is proven that the sets of periods for expanding maps on *n*-dimensional flat manifolds are uniformly cofinite, i.e. there is a positive integer m_0 , which depends only on n, such that for any integer $m \ge m_0$, for any *n*-dimensional flat manifold \mathcal{M} and for any expanding map F on \mathcal{M} , there exists a periodic point of F whose least period is exactly m.

Expanding maps were first introduced in a differentiable setting by M. Shub in [12], and then studied by D. Ruelle in [11] who proposed a more general definition based on a simple metric property: they are open continuous maps which locally expand distances. In general, it is rather difficult to prove the existence of at least an expanding map on a metric space, but there is a class of connected compact manifolds where the set of expanding maps is always nonempty: flat manifolds. The term *flat* derives from the fact that flat manifolds are connected Riemannian compact manifolds whose Levi-Civita connection has curvature that identically vanishes (e.g. the *n*-torus, the Klein bottle...).

Due to the strong topological properties of expanding maps on flat manifolds, in this note, I am able to determine the uniform cofiniteness of their sets of periods. This work has been inspired by the paper [7] where B. Jiang and J. Llibre studied the sets of periods for generic continuous maps of the *n*-torus and obtained a similar result in the expanding case.

I wish to thank the referee for very helpful comments and suggestions.

1. Preliminaries.

Let \mathcal{M} be a compact connected topological *n*-dimensional manifold.

Definition 1.1 An open continuous map $F : \mathcal{M} \to \mathcal{M}$ is expanding if there exist a metric *d* compatible with the topology of \mathcal{M} and constants $\epsilon_0 > 0$, $\lambda > 1$ such that for $x, x' \in \mathcal{M}$

$$d(x, x') \le \epsilon_0$$
 implies $d(F(x), F(x')) \ge \lambda d(x, x').$ (1)

We will denote by $\mathcal{E}(\mathcal{M})$ the set of all maps expanding on \mathcal{M} .

¹⁹⁹¹ Mathematics Subject Classification. Primary 58F15; Secondary 55M20, 57S30. Key words and phrases. Expanding maps, periodic points, flat manifolds.

We briefly summarize the properties of expanding maps which will be useful later (see [12] for more details). Let $F \in \mathcal{E}(\mathcal{M})$ then

(i) F is a self-covering map, N-to-1 with $N \ge 2$;

(ii) $F^k \in \mathcal{E}(\mathcal{M})$ for all $k \ge 1$;

(iii) the set of fixed points $\operatorname{Fix}_{\mathcal{M}}(F) \stackrel{\text{def}}{=} \{x \in \mathcal{M} : F(x) = x\}$ is non-empty and finite, and the set of periodic points $\bigcup_{k \geq 1} \operatorname{Fix}_{\mathcal{M}}(F^k)$ is countable and dense in \mathcal{M} ;

(iv) the homomorphism \tilde{F}^{\sharp} induced by F on the deck transformation group of the universal covering space of \mathcal{M} is injective and characterizes the topological properties of F. This means that expanding maps which induce the same homomorphism are topologically conjugate: if $\Phi \in \mathcal{E}(\mathcal{M})$ and $\tilde{F}^{\sharp} = \tilde{\Phi}^{\sharp}$ then there exists a homeomorphism α_0 of \mathcal{M} such that

$$F = \alpha_0^{-1} \circ \Phi \circ \alpha_0.$$

In this note we are interested in a particular class of manifolds: flat manifolds (see [4] as a general reference).

Definition 1.2 A cocompact, torsion free, discrete subgroup Γ of $O(n) \ltimes \mathbb{R}^n$, the group of the affine isometries of \mathbb{R}^n , is called a *Bieberbach group* and $\mathcal{M} = \mathbb{R}^n / \Gamma$ is the *flat manifold* associated to Γ .

The following statements will allow us to find a better representation of a given flat manifold and of its expanding maps. Let Γ be a Bieberbach group then

(v) ([2]) the holonomy group of Γ , i. e. $\Psi \stackrel{\text{def}}{=} \Gamma/(\Gamma \cap (\{\mathbb{I}\} \bowtie \mathbb{R}^n))$, has finite order $|\Psi|$;

(vi) ([3]) there is an element (B, b) of the affine group $\operatorname{Aff}(\mathbb{R}^n)$, which conjugates Γ to a subgroup $\Gamma' \subset \operatorname{Aff}(\mathbb{R}^n)$, called *affine Bieberbach group*, such that for any $\gamma \in \Gamma'$:

$$\gamma = (U, u)$$
 with $U \in \operatorname{GL}(n, \mathbb{Z})$ and $|\Psi| u \in \mathbb{Z}^n$.

Note that $|\det(U)| = 1$. Moreover, $\Gamma' \cap (\{\mathbb{I}\} \bowtie \mathbb{R}^n) = \{\mathbb{I}\} \bowtie \mathbb{Z}^n$ and the holonomy group becames $\Psi' = \Gamma'/(\{\mathbb{I}\} \bowtie \mathbb{Z}^n);$

(vii) ([8]) if $\varphi : \Gamma' \to \Gamma'$ is an injective homomorphism of the affine Bieberbach group Γ' , there exists $(A, a) \in \mathbb{Z}^{n \times n} \ltimes \mathbb{R}^n \subset \operatorname{Aff}(\mathbb{R}^n)$ such that, for all $\gamma = (U, u) \in \Gamma'$:

$$\varphi(\gamma) = (A, a)^{\sharp}(\gamma) = (A, a)\gamma(A, a)^{-1} = (AUA^{-1}, Au + (\mathbb{I} - AUA^{-1})a).$$

Let $\mathcal{M} = \mathbb{R}^n / \Gamma$ be a flat manifold and let \mathcal{M}' be the quotient space \mathbb{R}^n / Γ' , where $\Gamma' = (B, b) \Gamma(B, b)^{-1}$ is the affine Bieberbach group given by (vi). Then, (B, b) induces a homeomorphism from \mathcal{M} onto \mathcal{M}' . For this reason, from now on, the flat manifold \mathcal{M} will be considered as the quotient space of \mathbb{R}^n by the affine Bieberbach group Γ' rather than the Bieberbach group Γ . Let F be an expanding map of \mathcal{M} then, by (iv), F induces an injective homomorphism φ on the deck transformation group Γ' of the universal covering \mathbb{R}^n . By (vii), there is an affine map (A, a), that is a lifting to \mathbb{R}^n of a map $\Phi_{(A,a)} \in \mathcal{E}(\mathcal{M})$, which induces on Γ' a homomorphism $\Phi_{(A,a)}^{\sharp}$ equal to φ . Therefore, again by (iv), F and $\Phi_{(A,a)}$ are topologically conjugate and we will say that $\Phi_{(A,a)}$ is the endomorphism associated to F. Note that, by (1), the map $\Phi_{(A,a)}$ is expanding iff all the eigenvalues of the integer matrix A are outside the closed unit disc in \mathbb{C} .

Now we are ready to establish a result, proved by D. Epstein and M. Shub in [5], which really motivates the study of expanding maps just on flat manifolds.

Theorem 1.3 If \mathcal{M} is a flat manifold, then $\mathcal{E}(\mathcal{M})$ is not empty.

Proof. The flat manifold \mathcal{M} can be represented as quotient space \mathbb{R}^n/Γ' where Γ' is an affine Bieberbach group. The affine map $((|\Psi'|+1)\mathbb{I}, 0)$ induces on Γ' a homomorphism φ such that, for all $\gamma = (U, u) \in \Gamma'$,

$$\varphi(\gamma) = ((|\Psi'| + 1)\mathbb{I}, 0)\gamma((|\Psi'| + 1)\mathbb{I}, 0)^{-1} = (U, (|\Psi'| + 1)u) = (\mathbb{I}, |\Psi'|u)(U, u).$$

By (vi), $|\Psi'|u \in \mathbb{Z}^n$, hence $\varphi(\gamma) \in \Gamma'$.

Therefore, the affine map $((|\Psi'|+1)\mathbb{I}, 0)$ is the lifting of the map $\Phi_{(|\Psi'|+1)\sigma I, 0)}$ which belongs to $\mathcal{E}(\mathcal{M})$ because $(|\Psi'|+1) \geq 2$.

2. Fixed points.

Let \mathcal{M} be a flat manifold and let $F \in \mathcal{E}(\mathcal{M})$. We know by (iii) that the number of fixed points of F is finite. Now, we want to compute exactly the number $\mathcal{N}(F) \stackrel{\text{def}}{=} \operatorname{card}(\operatorname{Fix}_{\mathcal{M}}(F))$. The following remarks and the next lemma will be of value for this purpose.

Since, by (vi), $\mathbb{I} \bowtie \mathbb{Z}^n$ is a subgroup of the affine Bieberbach group Γ' , then \mathcal{M} is always covered by the torus $\mathbf{T}^n \stackrel{\text{def}}{=} \mathbb{R}^n / (\mathbb{I} \bowtie \mathbb{Z}^n)$. When this covering is not trivial, i. e. when $\Psi' \neq \{(\mathbb{I}, 0)\}$, the manifold is called an *infra-torus*. If $\Phi_{(A,a)}$ is the endomorphism associated to F then the following commutative diagram holds

where: $R_a : \mathbf{T}^n \to \mathbf{T}^n$ is a toral rotation, $R_a(x) = x + a$ and $\Phi_A : \mathbf{T}^n \to \mathbf{T}^n$ is a toral linear endomorphism $\Phi_A(x) = Ax$.

Lemma 2.1 Let A be a matrix in $\mathbb{Z}^{n \times n}$ then:

(a) if A is non-singular then Φ_A is a self-covering of \mathbf{T}^n with degree equal to $|\det(A)| \ge 1$;

(b) if the spectrum of A has no roots of unity, i. e. $det(A^k - \mathbb{I}) \neq 0$ for all $k \geq 1$ then

$$\operatorname{card}(\operatorname{Fix}_{\mathbf{T}^n}(\Phi_A^k)) = |\det(A^k - \mathbf{I})| \quad \forall k \ge 1.$$

Proof. (a) Since A is non-singular, Φ_A is a self-covering of \mathbf{T}^n . Moreover there exist two matrices $P, Q \in \operatorname{GL}(n, \mathbb{Z})$ such that A = PDQ where $D \in \mathbb{Z}^{n \times n}$ is diagonal (see [6] p. 384). This means that $\Phi_A = \Phi_P \circ \Phi_D \circ \Phi_Q$ where Φ_P and Φ_Q are homeomorphisms of \mathbf{T}^n . Hence

$$\operatorname{card}(\Phi_A^{-1}(0)) = \operatorname{card}(\Phi_D^{-1}(0)) = |\det(D)| = |\det(A)| \ge 1.$$

(b) A point $x \in \text{Fix}_{\mathbf{T}^n}(\Phi_A^k)$ iff there exists $y \in \mathbb{R}^n$ such that $(A^k - \mathbb{I})y \in \mathbb{Z}^n$. Therefore, since $\det(A^k - \mathbb{I}) \neq 0$ for all $k \geq 1$,

$$\operatorname{Fix}_{\mathbf{T}^n}(\Phi_A^k) = \operatorname{Ker}(\Phi_{(A^k - \sigma I)}) = \Phi_{(A^k - \sigma I)}^{-1}(0),$$

and, by (a), $\operatorname{card}(\operatorname{Fix}_{\mathbf{T}^n}(\Phi_A^k)) = |\det(A^k - \mathbb{I})|.$

Here is the theorem which gives the explicit formula for $\mathcal{N}(F)$.

Theorem 2.2 Let \mathcal{M} be a flat manifold. If $F \in \mathcal{E}(\mathcal{M})$ and $\Phi_{(A,a)}$ is the endomorphism associated to F, then

$$\mathcal{N}(F) = \frac{1}{|\Psi'|} \sum_{U \in r(\Psi')} |\det(A - U)|.$$
(2)

where r is the map that assigns to each $(U, u) \in \Psi'$ its rotational part U.

Proof. Since the maps F and $\Phi_{(A,a)}$ are topologically conjugate, $\mathcal{N}(F) = \mathcal{N}(\Phi_{(A,a)})$ and it is enough to compute the number of fixed points of $\Phi_{(A,a)}$. Since $x \in \operatorname{Fix}_{\mathcal{M}}(\Phi_{(A,a)})$ iff there exist $y \in \mathbb{R}^n$ and $(U, u) \in \Gamma'$ such that (A, a)(y) = (U, u)(y) and $\pi''(\pi'(y)) = x$,

$$\operatorname{Fix}_{\mathcal{M}}(\Phi_{(A,a)}) = \pi'' \circ \pi'(\bigcup_{(U,u)\in\Gamma'} (A-U)^{-1}(u-a)) = \pi''(\bigcup_{(U,u)\in\Psi'} \Phi_{(A-U)}^{-1}(\pi'(u-a))).$$
(3)

Now, we show that if (U, u) and (V, v) are two different elements of Ψ' then

$$\Phi_{(A-U)}^{-1}(\pi'(u-a)) \cap \Phi_{(A-V)}^{-1}(\pi'(v-a)) = \emptyset.$$

Otherwise there exist $y \in \mathbb{R}^n$ and $p, q \in \mathbb{Z}^n$ such that

$$\begin{cases} (A-U)y = u - a + p\\ (A-V)y = v - a + q. \end{cases}$$

These equations yield $(V, v+q)^{-1}(U, u+p)y = y$. Since the action of Γ' on \mathbb{R}^n is properly discontinuous, $(V, v+q)^{-1}(U, u+p) = (\mathbb{I}, 0)$ and U = V contradicting the hypothesis. By (3), since the degree of the covering π'' is equal to $|\Psi'|$,

$$\mathcal{N}(\Phi_{(A,a)}) = \frac{1}{|\Psi'|} \sum_{U \in r(\Psi')} \operatorname{card}(\Phi_{(A-U)}^{-1}(\pi'(u-a))).$$

To complete the proof, it is enough to remark that $\operatorname{card}(\Phi_{(A-U)}^{-1}(\pi'(u-a))) = |\det(A-U)|$ by the preceding lemma. \Box

3. Sets of periods and uniform cofiniteness.

Definition 3.1 For $m \ge 1$, the number of periodic points of least period m for F is denoted by

$$p_F(m) \stackrel{\text{def}}{=} \operatorname{card} \left(\operatorname{Fix}_{\mathcal{M}}(F^m) \setminus \bigcup_{k=1}^{m-1} \operatorname{Fix}_{\mathcal{M}}(F^k) \right).$$

The set of periods $\mathcal{P}(F)$ of the map F is the set of positive integers m such that $p_F(m) > 0$.

By (iii), we know that $p_F(m)$ is finite for all $m \ge 1$ and $\mathcal{P}(F)$ is infinite. But some periods may be missing: for example, $\Phi_{-2\sigma I} \in \mathcal{E}(\mathbf{T}^n)$ has no points of period 2:

$$p_{\Phi_{-2\mathbf{I}}}(2) = \mathcal{N}(\Phi_{-2\sigma I}^2) - \mathcal{N}(\Phi_{-2\sigma I}) = |\det(4\mathbf{I} - \mathbf{I})| - |\det(-2\mathbf{I} - \mathbf{I})| = 3^n - 3^n = 0.$$

However, B. Jiang and J. Llibre have proven in [7] that there is a positive integer m_0 such that for any integer $m \ge m_0$ and for any expanding map F of \mathbf{T}^n there exists a periodic point of F whose least period is exactly m. In the next theorem we state that the above property is verified not only for \mathbf{T}^n but for each *n*-dimensional flat manifold \mathcal{M} . The following lemma on algebraic numbers (see [7] and [10]) is needed.

Lemma 3.2 Let α be a nonzero algebraic number with minimal polynomial $Q \in \mathbb{Z}[x]$ of degree d. If $|\alpha| \neq 1$ then

$$||\alpha| - 1| \ge \frac{1}{2^{d^2} M(\alpha)^d}$$

with $M(\alpha) \stackrel{\text{def}}{=} |a| \prod_{i=1}^{d} \max\{1, |\alpha_i|\}$ where a is the leading coefficient of Q and $\alpha_1, \ldots, \alpha_d$ the roots of Q.

Here is the main result of this note.

Theorem 3.3 Let n be a positive integer. Then the sets of periods for expanding maps on n-dimensional flat manifolds are uniformly cofinite, i.e. there is a positive integer m_0 , which depends only on n, such that for any integer $m \ge m_0$, for any n-dimensional flat manifold \mathcal{M} and for any expanding map F on \mathcal{M} , there exists a periodic point of F whose least period is exactly m.

Proof. Let \mathcal{M} be a *n*-dimensional flat manifold and let $F \in \mathcal{E}(\mathcal{M})$ with $\Phi_{(A,a)}$ the associated endomorphism. Suppose that $\alpha_1, \ldots, \alpha_n$ are the eigenvalues of A and let $\varrho(A) \stackrel{\text{def}}{=} \max\{|\alpha_1|, \ldots, |\alpha_n|\}.$

First observe that if $U \in r(\Psi')$ and $k \ge 1$ then

$$(A^{k}U^{-1})^{j} = (A^{k}U^{-1}A^{-k})(A^{2k}U^{-1}A^{-2k})\dots(A^{jk}U^{-1}A^{-jk})A^{jk} \quad \forall j \ge 1.$$
(4)

Since, by (v) and (vi), $Ar(\Psi')A^{-1} \subset r(\Psi')$ and $r(\Psi')$ is a finite group of order $|\Psi'|$, there is an integer $1 \leq j_0 \leq |\Psi'|$ such that $A^{j_0k}U^{-1}A^{-j_0k} = U^{-1}$. Let

$$V = (A^{k}U^{-1}A^{-k})(A^{2k}U^{-1}A^{-2k})\dots(A^{j_{0}k}U^{-1}A^{-j_{0}k}).$$

Then $V \in r(\Psi')$ and therefore $V^{|\Psi'|} = \mathbb{I}$. Hence, by (4),

$$(A^{k}U^{-1})^{j_{0}|\Psi'|} = V^{|\Psi'|}A^{kj_{0}|\Psi'|} = (A^{k})^{j_{0}|\Psi'|}.$$

This means that, in absolute value, the eigenvalues of $A^k U^{-1}$ and A^k are the same: $|\alpha_1|^k, \ldots, |\alpha_n|^k$.

Since, by (vi), $|\det(U)| = 1$ for all $U \in r(\Psi')$, it follows from (2) that

$$\mathcal{N}(F^k) = \frac{1}{|\Psi'|} \sum_{U \in r(\Psi')} |\det(A^k - U)| = \frac{1}{|\Psi'|} \sum_{U \in r(\Psi')} |\det(A^k U^{-1} - \mathbf{I})|.$$

Therefore, for $m, k \geq 1$

$$\frac{\mathcal{N}(F^m)}{\mathcal{N}(F^k)} = \frac{\sum_{U \in r(\Psi')} |\det(A^m U^{-1} - \mathbb{I})|}{\sum_{U \in r(\Psi')} |\det(A^k U^{-1} - \mathbb{I})|} \ge \prod_{i=1}^n \frac{|\alpha_i|^m - 1}{|\alpha_i|^k + 1}.$$
(5)

The eigenvalues $\alpha_1, \ldots, \alpha_n$ are algebraic numbers greater than 1 in absolute value: the minimal polynomial of each α_i is monic, has degree $d_i \leq n$ and therefore $2 \leq M(\alpha_i) \leq \varrho(A)^n$. Hence, by the previous lemma,

$$|\alpha_i| - 1 \ge \frac{1}{2^{d_i^2} M(\alpha_i)^{d_i}} \ge \frac{1}{2^{n^2} \varrho(A)^{n^2}}.$$

Let $1 \le k \le \frac{m}{2}$. Then

$$\frac{|\alpha_i|^m - 1}{|\alpha_i|^k + 1} \ge |\alpha_i|^k \frac{|\alpha_i|^{m-k} - 1}{|\alpha_i|^k + 1} \ge |\alpha_i|^k \frac{|\alpha_i| - 1}{|\alpha_i|^k + 1} \ge \frac{|\alpha_i| - 1}{2} \ge \frac{1}{2^{n^2 + 1}\varrho(A)^{n^2}}$$

and it follows from (5) that

$$\frac{\mathcal{N}(F^m)}{\mathcal{N}(F^k)} \ge \left(\frac{1}{2^{n^2+1}\varrho(A)^{n^2}}\right)^{n-1} \frac{\varrho(A)^m - 1}{\varrho(A)^k + 1} \ge \frac{\varrho(A)^{\frac{m}{2}} - 1}{2^{n^3}\varrho(A)^{n^3}}.$$

The right member of the above inequality is an increasing function with respect to $\rho(A)$ for $m \geq 2n^3$. Thus there is $m_0 \geq 2n^3$, which depends only on the dimension n, such that the inequality

$$\frac{\mathcal{N}(F^m)}{\mathcal{N}(F^k)} \ge \frac{\varrho(A)^{\frac{m}{2}} - 1}{2^{n^3}\varrho(A)^{n^3}} \ge \frac{2^{\frac{m}{2n}} - 1}{2^{n^3 + n^2}} > \frac{m}{2} \tag{6}$$

holds for all $m \ge m_0$.

Let $x \in \mathcal{M}$ be a fixed point of F^m . Then it has a least period k with $1 \leq k \leq m$. Moreover k divides m: indeed m = qk + r with $q \geq 0$ and $0 \leq r < k$, so $x = F^m(x) = F^r(F^{qk}(x)) = F^r(x)$, which implies that r = 0 by the minimality of k. Therefore

$$p_F(m) = \operatorname{card}(\operatorname{Fix}_{\mathcal{M}}(F^m) \setminus \bigcup_{k|m,k< m} \operatorname{Fix}_{\mathcal{M}}(F^k)),$$

and, since the conditions k|m and k < m imply that $1 \le k \le \frac{m}{2}$, we obtain by inequality (6)

$$p_F(m) \ge \mathcal{N}(F^m) - \sum_{k|m,k < m} \mathcal{N}(F^k) > \mathcal{N}(F^m)(1 - \sum_{1 \le k \le \frac{m}{2}} \frac{2}{m}) = 0,$$

that is $m \in \mathcal{P}(F)$ for $m \geq m_0$.

As a final remark, we give the complete list of all the missing periods for expanding maps on flat manifolds up to dimension 3 (for higher dimensions there are no results). As regards the *n*-torus, the situation is summarized in the following table (see [1] and [7]).

Torus	Characteristic Polynomial of A	$\mathbb{N}^* \setminus \mathcal{P}(\Phi_A)$
\mathbf{T}^1	x+2	2
\mathbf{T}^2	$x^2 + 2x + 2$	2,3
	$x^2 + 2$	4
\mathbf{T}^3	$x^{3} + 2$	2, 6
	$x^{3}-2$	3
	$x^3 + x^2 + x + 2$	2, 4
	$x^3 + x^2 + 2$	5

On the other hand, if we consider an *n*-infra-torus \mathcal{M} then $\mathcal{P}(F) = \mathbb{N}^*$ for all $F \in \mathcal{E}(\mathcal{M})$ and $n \leq 3$ (see [9] for n = 2 and [13] for n = 3).

References

- [1] ALSEDÀ L, BALDWIN S, LLIBRE J, SWANSON R, SZLENK W (1993) Torus maps and Nielsen numbers. Contemporary Math 152: 1-7
- [2] AUSLANDER L (1960) Bieberbach theorems on space groups and discrete uniform subgroups of Lie groups. Ann Math 71: 579-590
- [3] BROWN H, BÜLOW R, NEUBÜSER J, WONDRATSCHEK H, ZASSENHAUS H (1978) Crystallographic groups of four dimensional space. New York: Wiley
- [4] CHARLAP LS (1986) Bieberbach Groups and Flat Manifolds. New York: Springer-Verlag
- [5] EPSTEIN D, SHUB M (1968) Expanding endomorphisms of flat manifolds. Topology 7: 139-141
- [6] HUA LK (1982) Introduction to Number Theory. Berlin: Springer-Verlag
- [7] JIANG B, LLIBRE J (1998) Minimal sets of periods for torus maps. Discrete and Continuous Dyn. Sys. 4: 301-320
- [8] LEE KB, SHIN J, YOKURA S (1993) Free actions of finite abelian groups on the 3-torus. Topology Appl 53: 153-175
- [9] LLIBRE J (1993) A note on the set of periods for Klein bottle maps. Pacific J Math 157: 87-93
- [10] MIGNOTTE M, WALDSCHMIDT M (1993) On algebraic numbers of small height: linear forms in one logarithm. J Number Theory 47: 43-62
- [11] RUELLE D (1978) The thermodynamic formalism. Reading: Addison-Wesley
- [12] SHUB M (1969) Endomorphisms of compact differentiable manifolds. Amer J Math 91: 175-199
- [13] TAURASO R (1996), Periodic points for expanding maps and for their extensions. Pisa: Ph.D. thesis, Scuola Normale Superiore

R. TAURASO Dipartimento di Matematica "U. Dini" Viale Morgagni, 67/A 50134 Firenze Italy *e-mail*: tauraso@sns.it tauraso@udini.math.unifi.it