Commuting Holomorphic Maps of the Unit Disc

ROBERTO TAURASO

† Dipartimento di Matematica - Università di Roma "Tor Vergata" Via della Ricerca Scientifica, 00133 Roma, Italia (e-mail: tauraso@mat.uniroma2.it)

(Received)

Abstract. Let f and g be two commuting holomorphic self-maps of the open unit disc \mathbb{D} in the complex plane with a common Wolff point $\tau \in \partial \mathbb{D}$: if this two maps agree at τ up to the third order then $f \equiv g$.

1. Introduction

The purpose of this paper is to show a connection between iteration theory and the study of commuting holomorphic maps of the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$

The dynamical properties of a map $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ are well known (see the survey article of Burckel [6]): if f is not the identity map then it has at most one fixed point in \mathbb{D} which is attracting provided f is not an elliptic automorphism (a rotation). On the other hand, if f is fixed-point-free then there is still an attracting point τ , called *Wolff point* of f, but it is located on the boundary $\partial \mathbb{D}$ and the sequence of iterates f^n converges to τ uniformly on compact subsets of \mathbb{D} .

Now take another map $g \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ and assume that it commutes with f:

$$f \circ g = g \circ f.$$

If f has a fixed point $z_0 \in \mathbb{D}$ then

$$f(g(z_0)) = g(f(z_0)) = g(z_0)$$

and, by uniqueness, $g(z_0) = z_0$, that is z_0 is the fixed point also for the map g. A similar result holds when f is fixed-point-free: in this case f and g have the same Wolff point unless they are two hyperbolic automorphisms with the same fixed points (see [2],[9]).

The common Wolff point τ contains a lot of interesting information about the two maps. To extract this information we need the following regularity notion: we say that $f \in C_K^r(\tau)$ if it has an expansion at τ of the form

$$f(z) = \tau + f'(\tau)(z - \tau) + \ldots + \frac{1}{r!}f^{(r)}(\tau)(z - \tau)^r + o_K(|z - \tau|^r),$$

where o_K means that the limit is taken non-tangentially (i. e. within an angular region with vertex at τ):

$$\operatorname{K-lim}_{z \to \tau} \frac{o_K(|z - \tau|^r)}{|z - \tau|^r} = 0.$$

Moreover, we say that $f \in C^r(\tau)$ if $o_K(|z-\tau|^r)$ can be replaced by $o(|z-\tau|^r)$ that is the limit is taken in the full disc.

The Julia-Wolff-Carathéodory theorem says that some regularity at τ is expected although τ belongs to the boundary $\partial \mathbb{D}$: $f \in C_K^1(\tau)$ and $0 < f'(\tau) \le 1$. If $f'(\tau) < 1$ then f is called *hyperbolic*, whereas if $f'(\tau) = 1$ then f is called *parabolic*.

What happens if we compare the expansions of f and g at τ ? As we will see, to establish that $f \equiv g$ it suffices to check that the two maps agree up to the third order at τ . Note that this "identity principle" is not true neither when the attracting point stays in \mathbb{D} (z^n and z^m commute and their expansions at 0 agree up to the (min(n, m) - 1)-order nor when the commuting property does not hold (we will show an example in the last section).

In [4], we discussed this problem and we established the following result for the "extreme" cases: when f is hyperbolic or the identity (this is due to Burns and Krantz [5])

THEOREM 1.1. If one of the following conditions holds then $f \equiv g$.

- (1) f is hyperbolic with Wolff point at τ and $f'(\tau) = g'(\tau)$;
- (2) $f = Id, g \in C_K^3(\tau)$ and $f(\tau) = g(\tau) = \tau, f'(\tau) = g'(\tau) = 1, f''(\tau) = g''(\tau) = 0, f'''(\tau) = g'''(\tau) = 0.$

In this paper we will prove the following theorem for the "middle" case, that is when f is parabolic, improving a previous result appeared in [4].

THEOREM 1.2. If f is parabolic with Wolff point at τ and one of the following conditions holds then $f \equiv g$.

(1) $f \in C^{2}(\tau), g \in C_{K}^{2}(\tau), f''(\tau) = g''(\tau) \neq 0 \text{ and } \operatorname{Re}(f''(\tau)\tau) > 0;$ (2) $f, g \in C^{2}(\tau), f''(\tau) = g''(\tau) \neq 0 \text{ and } \operatorname{Re}(f''(\tau)\tau) = 0;$ (3) $f \in C^{3}(\tau), g \in C_{K}^{3}(\tau), f''(\tau) = g''(\tau) = 0 \text{ and } f'''(\tau) = g'''(\tau).$

2. The linear model in \mathbb{H}

The main tool that we are going to use is the construction of a *linear model* for our maps: a "change of coordinates" in a neighborhood of the Wolff point which transforms f in an automorphism of the upper half-plane $\mathbb{H} = \{w \in \mathbb{C} : \operatorname{Im} w > 0\}$ or of the entire plane \mathbb{C} . To simplify notations, from now on we will work in the upper half-plane which is biholomorphically equivalent to the unic disc \mathbb{D} by the *Cayley transformation* $C(z) = i\frac{\tau+z}{\tau-z}$ that maps τ to ∞ . Then, by Julia-Wolff-Carathéodory theorem,

$$\operatorname{K-lim}_{w \to \infty} \frac{F(w)}{w} = \alpha$$

where

$$\alpha := \inf \left\{ \frac{\operatorname{Im} F(w)}{\operatorname{Im} w} : w \in \mathbb{H} \right\} \in [0, +\infty).$$

Therefore, if $\alpha > 0$ then $F \in C^1_K(\infty)$, $\alpha = 1/f'(\tau)$ and

 $F(w) = \alpha w + \Gamma(w)$ with $\Gamma(w) = o_K(|w|).$

If ∞ is the Wolff point of F then $\alpha \geq 1$. When $\alpha = 1$ and F is not the identity then $\Gamma(w) \in \operatorname{Hol}(\mathbb{H}, \mathbb{H})$ and

$$\Gamma(w) = \beta + o_K(1) \quad \text{if } f \in C_K^2(\tau), \Gamma(w) = \beta + \frac{\gamma}{w} + o_K(\frac{1}{|w|}) \quad \text{if } f \in C_K^3(\tau),$$

where $\beta = if''(\tau)\tau$, $\gamma = 2S_f(\tau)\tau^2/3$ and $S_f(\tau) = f'''(\tau) - \frac{3}{2}(f''(\tau))^2$ (the Schwarzian derivative of f at τ). Note that $\operatorname{Re}\beta \geq 0$ and if $\beta = 0$ then $\gamma \leq 0$.

The following result due to Cowen [7] gives some precious information about the orbits behaviour.

THEOREM 2.1 (COWEN) Let $F \in Hol(\mathbb{H}, \mathbb{H})$ with Wolff point at ∞ . Then there is an open connected, simply connected set V, called fundamental set for F, such that:

- (1) V is F-invariant that is $F(V) \subset V$;
- (2) for all compact set K of \mathbb{H} , the sequence $F^n(K)$ is evenly contained in V;
- (3) F is univalent in V.

The Poincaré distance in \mathbb{H} is defined by

$$d(w, w') = \operatorname{tgh}^{-1} \left| \frac{w - w'}{w - \overline{w'}} \right| \quad \forall w, w' \in \mathbb{H}.$$

We say that F is of *automorphic type* $(F \in A)$ if all orbits are separated in the Poincaré distance:

$$\lim_{n \to \infty} d(w_{n+1}, w_n) > 0 \quad \forall w \in \mathbb{H}$$

where $w_n = x_n + iy_n = F^n(w)$. The above limit exists because F is a *d*-contraction. If F is hyperbolic then $F \in \mathcal{A}$, on the other hand if F is parabolic then it can be of automorphic type or not. Furthermore, $F \notin \mathcal{A}$ if and only if

$$q_n := \frac{w_{n+1} - w_n}{w_{n+1} - \overline{w_n}} \to 0.$$

Here is the construction of the *linear model* for F due to Baker and Pommerenke (see [8], [1])

THEOREM 2.2 (BAKER-POMMERENKE) Let $w_0 \in \mathbb{H}$ and

$$\sigma_n(w) := \frac{w_n - x_n^0}{y_n^0},$$

then the limit

$$\sigma := \lim_{n \to \infty} \sigma_n$$

exists locally uniformly in \mathbb{H} and satisfies $\sigma(w_0) = i$. Moreover, there is an automorphism Φ of \mathbb{H} which fixes ∞ such that

$$\begin{array}{ccc} \mathbb{H} & \stackrel{F}{\longrightarrow} & \mathbb{H} \\ \sigma & & \downarrow \sigma \\ \mathbb{H} & \stackrel{\Phi}{\longrightarrow} & \mathbb{H} \end{array}$$

The map $\sigma \not\equiv i$ if and only if $F \in \mathcal{A}$. If $F \notin \mathcal{A}$ let

$$\rho_n(w) := \frac{\sigma_n(w) - i}{q_n^0},$$

then the limit

$$\rho := \lim_{n \to \infty} \rho_n$$

exists locally uniformly in \mathbb{H} and satisfies $\rho(w_0) = 0$. Moreover

$$\begin{array}{ccc} \mathbb{H} & \xrightarrow{F} & \mathbb{H} \\ \rho & & & \downarrow \rho \\ \mathbb{C} & \underbrace{w+2i} & \mathbb{C} \end{array}$$

The following key-lemma will be very useful later.

LEMMA 2.1. Let F, G be two commuting maps with Wolff point at ∞ . If one of the following conditions holds then $F \equiv G$.

- (1) $F \in \mathcal{A}$ and $\sigma \circ F = \sigma \circ G$;
- (2) $F \notin \mathcal{A}$ and $\rho \circ F = \rho \circ G$.

Proof. Let V be a fundamental set for F. Since F is univalent in V and the set V is F-invariant then also F^n , σ_n , ρ_n are univalent in V for any $n \in \mathbb{N}$. If $F \in \mathcal{A}$ then the limit σ is not constant and, by Hurwitz theorem, it is univalent in V. In the same way, if $F \notin \mathcal{A}$ then the limit ρ (which is not constant) is univalent in V too. Moreover, if G commutes with F and K is a non-empty compact subset of G(V)then $F^n(K) \subset V$ for some $n \in \mathbb{N}$ and

$$F^{n}(K) \subset F^{n}(G(V)) = G(F^{n}(V)) \subset G(V).$$

Therefore the open set $G(V) \cap V$ is non-empty because it contains $F^n(K)$ and it is possible to find a non-empty open set $W \subset V$ such that $G(W) \subset V$. Since σ is injective in V and both sets F(W) and G(W) are contained in V then the condition

$$\sigma(F(w)) = \sigma(G(w)) \quad \forall w \in W$$

implies that $F \equiv G$ in \mathbb{H} . In a similar way

$$\rho(F(w)) = \rho(G(w)) \quad \forall w \in W$$

implies that $F \equiv G$ in \mathbb{H} .

As a first application of the previous results we discuss the cases when f is hyperbolic or f is the identity map.

Proof. [Proof of Theorem 1.1.]

Case (1). We know $F(w) = \alpha_F w + \Gamma_F(w)$, $G(w) = \alpha_G w + \Gamma_G(w)$. Since F and G commute then

$$\frac{F^n(G(w)) - x_n^0}{y_n^0} = \frac{G(w_n) - x_n^0}{y_n^0} = \alpha_G \frac{w_n - x_n^0}{y_n^0} + (\alpha_G - 1) \frac{x_n^0}{y_n^0} + \frac{\Gamma_G(w_n)}{w_n} \left(\frac{w_n - x_n^0}{y_n^0} + \frac{x_n^0}{y_n^0}\right)$$

By a result due to Cowen (see Lemma 2.2 in [7]), w_n goes to ∞ non-tangentially and therefore the sequence x_n^0/y_n^0 is bounded and, up to subsequence, we can assume that it converges to the real number M. Moreover

$$\lim_{n \to \infty} \frac{\Gamma_G(w_n)}{w_n} = 0.$$

Thus by Theorem 2.2, taking the limit, we find

$$\sigma(G(w)) = \alpha_G \,\sigma(w) + (\alpha_G - 1) \, M.$$

Similarly

$$\sigma(F(w)) = \alpha_F \,\sigma(w) + (\alpha_F - 1) \,M$$

If $f'(\tau) = g'(\tau)$ then $\alpha_F = \alpha_G$ and therefore $\sigma \circ F \equiv \sigma \circ G$. Since $F \in \mathcal{A}$, by Lemma 2.1, we find that $F \equiv G$.

Case (2). By hypothesis

$$G(w) = w + \Gamma(w)$$
 with $\underset{w \to \infty}{\operatorname{K-lim}} w \Gamma(w) = 0$

If G is not the identity map then, by the maximum principle, $T(\mathbb{H}) \subset \mathbb{H}$ where $T(w) := -1/\Gamma(w)$. Furthermore

$$\operatorname{K-lim}_{w \to \infty} \frac{T(w)}{w} = \operatorname{K-lim}_{w \to \infty} \frac{-1}{w\Gamma(w)} = \infty$$

and this is a contradiction because, by the Julia-Wolff-Carathéodory theorem applied to the map T, this limit has to be finite.

3. The parabolic case

First we establish a result about the kind of convergence of the orbits of F to ∞ . The first case has been proved by Bourdon and Shapiro [3].

PROPOSITION 3.1. Let $F \in Hol(\mathbb{H}, \mathbb{H})$ be parabolic with Wolff point at ∞ .

- (1) If $F \in C^2(\infty)$ and $\beta \neq 0$ then w_n goes to ∞ non-tangentially if and only if $Im(\beta) > 0$.
- (2) If $F \in C^3(\infty)$ and $\beta = 0$ then $\gamma < 0$ and w_n has a subsequence that goes to ∞ non-tangentially.

Proof. Case (1): if $F \in C^2(\infty)$ then

$$\frac{w_n}{n} = \frac{w}{n} + \beta + \frac{1}{n} \sum_{j=0}^{n-1} \Gamma(w_j).$$

Therefore, since $\Gamma(w) = o(1)$,

$$\lim_{n \to \infty} \frac{w_n}{n} = \beta$$

Hence

$$\lim_{n \to \infty} \frac{x_n}{n} = \operatorname{Re} \beta \quad \text{and} \quad \lim_{n \to \infty} \frac{y_n}{n} = \operatorname{Im} \beta$$

and if $\beta \neq 0$ then w_n goes to ∞ nontangentially if and only if $\text{Im}(\beta) > 0$. Case (2): now $\beta = 0, F \in C^3(\infty)$ and $\gamma < 0$ by Theorem 1.1 because F si not the identity map. Therefore

$$w_{n+1} = w_n + \frac{\gamma}{w_n} + o(\frac{1}{|w_n|}) = w_n + \frac{\gamma \,\overline{w_n} + |w_n| \cdot o(1)}{|w_n|^2}.$$

Taking the real part we find that

$$x_{n+1} = x_n \cdot \left(1 + \frac{\gamma + \frac{|w_n|}{x_n} \cdot \operatorname{Re}\left(o(1)\right)}{|w_n|^2} \right).$$

Assume by contradiction that the sequence w_n has no subsequence which goes to ∞ nontangentially. Then the sequence $|x_n|/y_n$ is bounded away from zero and the sequence

$$\frac{|w_n|}{x_n} = \frac{|x_n|}{x_n} \sqrt{1 + \left(\frac{y_n}{x_n}\right)^2} \text{ is bounded.}$$

Hence evenly

$$c_n := 1 + \frac{\gamma + \frac{|w_n|}{x_n} \cdot \operatorname{Re}(o(1))}{|w_n|^2} \in (0, 1).$$

and

$$|x_{n+1}| = c_n |x_n| \le |x_n|$$

which means that also the sequence x_n is bounded. Since $|w_n|$ goes to infinity then y_n can not be bounded therefore $|x_n|/y_n$ goes to zero against our assumption. \Box

The following theorem establishes a necessary and sufficient condition so that two parabolic commuting maps coincide.

THEOREM 3.1. Let $F, G \in \text{Hol}(\mathbb{H}, \mathbb{H})$ be two parabolic commuting maps with Wolff point at ∞ . Then the following limit exists locally uniformly in \mathbb{H}

$$H(w) := \lim_{n \to \infty} \frac{\Gamma_G(w_n)}{\Gamma_F(w_n)}.$$

Moreover, $F \equiv G$ if and only if $H \equiv 1$.

Proof. First assume that $F \in \mathcal{A}$. Thus by Theorem 2.2, taking the limit in

$$\sigma_n(F(w)) = \sigma_n(w) + \frac{\Gamma_F(w_n)}{y_n^0}$$

we find that

$$\sigma(F(w)) = \sigma(w) + a_F$$

where

$$a_F = \lim_{n \to \infty} \frac{\Gamma_F(w_n)}{y_n^0} \in \mathbb{R} \setminus \{0\}.$$

It can not be zero otherwise

$$q_n^0 = \frac{1}{2i\frac{y_n^0}{\Gamma_F(w_n^0)} + 1} \rightarrow 0$$

against the fact that $F \in \mathcal{A}$.

Moreover, since F and G commute

$$\sigma_n(G(w)) = \sigma_n(w) + \frac{\Gamma_F(w_n)}{y_n^0} \cdot \frac{\Gamma_G(w_n)}{\Gamma_F(w_n)}$$

and taking the limit we find

$$H(w) = \frac{\sigma(G(w)) - \sigma(w)}{a_F} = \frac{\sigma(G(w)) - \sigma(w)}{\sigma(F(w)) - \sigma(w)}$$

Hence $H \equiv 1$ if and only if $\sigma \circ F \equiv \sigma \circ G$ and, by Lemma 2.1, this is equivalent to $F \equiv G$.

Now we consider the case when $F \notin \mathcal{A}$. Thus by Theorem 2.2, taking the limit in

$$\rho_n(F(w)) = \rho_n(w) + \frac{\Gamma_F(w_n)}{y_n^0 q_n^0}$$

we find

$$\rho(F(w))=\rho(w)+2i$$

and

$$\lim_{n \to \infty} \frac{\Gamma_F(w_n)}{y_n^0 q_n^0} = 2i.$$

Moreover

$$\rho_n(G(w)) = \rho_n(w) + \frac{\Gamma_F(w_n)}{y_n^0 q_n^0} \cdot \frac{\Gamma_G(w_n)}{\Gamma_F(w_n)}$$

and taking the limit

$$H(w) = \frac{\rho(G(w)) - \rho(w)}{2i} = \frac{\rho(G(w)) - \rho(w)}{\rho(F(w)) - \rho(w)}$$

Hence $H \equiv 1$ if and only if $\rho \circ F \equiv \rho \circ G$ and, by Lemma 2.1, this is equivalent to $F \equiv G$.

Note that in the previous theorem the condition that F and G commute is necessary. For example, taking

$$F(w) = w + i$$
 and $G(w) = w + i - \frac{1}{(w+i)^N}$

with $N \ge 1$, then it is simple to verify that these two maps coincide up to the (N+1)th-order at ∞ and $H \equiv 1$ even if they are not equal.

Now we are ready to prove our main result.

Proof. [Proof of Theorem 1.2.] First we prove that the regularity conditions for F and G at τ and the Proposition 3.1 imply that H is identically constant. Case (1): since $\beta_F = if''(\tau)\tau \neq 0$ and $\operatorname{Im} \beta_F = \operatorname{Re} (f''(\tau)\tau) > 0$ then w_n goes to ∞ non-tangentially and

$$H(w) = \lim_{n \to \infty} \frac{\Gamma_G(w_n)}{\Gamma_F(w_n)} = \lim_{w_n \to \infty} \frac{\beta_G + o_K(1)}{\beta_F + o_K(1)} = \frac{\beta_G}{\beta_F}.$$

Case (2): since $\beta_F \neq 0$ and $\operatorname{Im} \beta_F = 0$ then w_n goes to ∞ tangentially and

$$H(w) = \lim_{n \to \infty} \frac{\Gamma_G(w_n)}{\Gamma_F(w_n)} = \lim_{w_n \to \infty} \frac{\beta_G + o(1)}{\beta_F + o(1)} = \frac{\beta_G}{\beta_F}$$

Case (3): since $\beta_F = 0$ then $\gamma_F = 2/3 f'''(\tau) \tau^2 < 0$, w_n has a subsequence that goes to ∞ non-tangentially and

$$H(w) = \lim_{j \to \infty} \frac{\Gamma_G(w_{n_j})}{\Gamma_F(w_{n_j})} = \lim_{w_{n_j} \to \infty} \frac{\gamma_G + w_{n_j} o_K(1/|w_{n_j}|)}{\gamma_F + w_{n_j} o_K(1/|w_{n_j}|)} = \frac{\gamma_G}{\gamma_F}$$

By the conditions on the derivatives we obtain that $H \equiv 1$ and therefore $F \equiv G$ by the previous theorem.

Note that if $F(w_0) = G(w_0)$ for some $w_0 \in \mathbb{H}$ and $F \circ G = G \circ F$ then $F^n(w_0) = G^n(w_0)$ for all $n \in \mathbb{N}$. We have already seen that the regularity conditions for F and G imply that the map H is identically constant. Again this constant is just 1 and therefore $F \equiv G$: if $F \in \mathcal{A}$ then

$$H(w_0) = \frac{\sigma(G(w_0)) - \sigma(w_0)}{\sigma(F(w_0)) - \sigma(w_0)} = 1,$$

if $F \not\in \mathcal{A}$ then

$$H(w_0) = \frac{\rho(G(w_0)) - \rho(w_0)}{\rho(F(w_0)) - \rho(w_0)} = 1.$$

This remark is non-trivial provided the sequence w_n^0 is not a Blaschke sequence, that is

$$\sum_{j=0}^{\infty} \operatorname{Im}\left(\frac{-1}{F^{j}(w_{0})}\right) < \infty.$$

This happens for the parabolic map of automorphic type

$$F(w) = w + 1 - \frac{1}{w}$$

In fact, we have that

$$\lim_{n \to \infty} \frac{w_n}{n} = 1$$

and therefore $|w_n| \approx n$. Moreover

$$\operatorname{Im}(w_n) = \operatorname{Im} w + \sum_{j=0}^{n-1} \operatorname{Im} \left(\frac{-1}{w_j}\right)$$
$$\leq \operatorname{Im} w + \sum_{j=0}^{n-1} \frac{1}{|w_j|} \leq C \log n$$
$$\operatorname{Im}(w_n) = \operatorname{Im} w + \sum_{j=0}^{n-1} \frac{\operatorname{Im}(w_j)}{|w_j|^2}$$

$$\leq \quad \text{Im} \, w + C \sum_{j=0}^{n-1} \frac{\log j}{j^2} < +\infty$$

Hence

$$\sum_{j=0}^{\infty} \operatorname{Im}\left(\frac{-1}{w_j}\right) = \lim_{n \to \infty} \operatorname{Im}\left(w_n\right) - \operatorname{Im}w < +\infty$$

References

- I. N. Baker and Ch. Pommerenke, On the iteration of analytic functions in a half-plane II, J. London Math. Soc. 20 (1979), 255–258.
- D. F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114–120.
- [3] P. S. Bourdon and J. H. Shapiro, Cyclic Phenomena for Composition Operators, Mem. Amer. Math. Soc. n. 596, Providence, 1997.
- [4] F. Bracci, R. Tauraso and F. Vlacci, Identity Principles for Commuting Holomorphic Self-Maps of the Unit Disc, J. Math. Anal. Appl. 270 (2002), 451–473.
- [5] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661–676.
- [6] R. B. Burckel, Iterating analytic self-maps of discs, Amer. Math. Monthly 88 (1981), 396– 407.
- [7] C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69–95.
- [8] Ch. Pommerenke, On the iteration of analytic functions in a half-plane I, J. London Math. Soc. 19 (1979), 439–447.
- [9] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703–706.

Prepared using etds.cls

8