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Abstract. - We prove that the elements of an open dense subset of the non-
linear polynomials’ set have trivial centralizers, i. e. they commute only with their
own iterates.

0. Let C| [z] be the set of complex polynomials endowed with the topology
induced by the norm ||P || = sup0≤i≤n{|ai|} where n is the degree of P and

P (z) = anz
n + an−1z

n−1 + . . .+ a0.

Given a non-linear polynomial P ∈ C| [z], we define the centralizer Z(P ), as
the set of all non-linear polynomials Q which commute with P :

Z(P )
def
= {Q ∈ C| [z] : P ◦Q = Q ◦ P and deg(Q) ≥ 2}.

If n = deg(P ) ≥ 2 then the number of polynomials in Z(P ) of fixed degree is
at most n− 1 (see [Bo]), hence Z(P ) is always countable.

The purpose of this paper is to investigate when the centralizer Z(P ) con-
tains only the iterates of P . The following result is motivated by the fact that
the same problem has been already studied for other dynamical systems such
as the diffeomorphisms on the circle (see [Ko]), the expanding maps on the
circle (see [Ar]), and the Anosov diffeomorphisms on the torus (see [PaYo]).

Theorem 0.1 There exists an open dense subset of the set of all non-linear
polynomials whose elements P have trivial centralizer:

Z(P ) = {P k : k ≥ 1}.

The question arises whether it is possible to generalize this result for the
set of rational functions of degree at least two.

1. For a polynomial P of degree n ≥ 2, the Julia set J (P ) is defined as the

set of all points z ∈ Ĉ| such that the family of iterates {P k}k≥1 is not normal in
any neighborhood of z. We recall that J (P ) is a non-empty bounded perfect
set, which is completely invariant, i. e. P (J (P )) = P−1(J (P )) = J (P ).

Moreover, if J (P ) is the unit circle S1 = {z ∈ C| : |z| = 1} or the interval
[−1, 1] then P is conjugate to a Tchebycheff polynomial which is eiθTn for S1

where Tn(z) = zn and is Tn or −Tn for [−1, 1] where Tn is defined inductively
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in the following way Tn(z) = 2zTn−1(z) − Tn−2(z) and T0 = 1, T1(z) = z. A
Tchebycheff polynomial has a very big centralizer because Tn ◦Tm = Tm ◦Tn =
Tnm for n,m ≥ 0, and this is the only kind of non-linear polynomial whose
centralizer has at least a polynomial for any degree (see [BT] and [Ber]).

Recently, G. M. Levin, has recovered in a modern way a very old result of
J. F. Ritt. This is its reformulation:

Theorem 1.1 [Le], [Ri2] If two non-linear polynomials P and Q commute
then one of the following conditions is necessary:

(a) P and Q have a common iterate, i. e. there exist integers i, j ≥ 1 such
that P i = Qj;

(b) the common Julia set is either a circle or an interval.

A. F. Beardon, starting from the work of I. N. Baker and A. Eremenko
([BE]), has succeded to characterize all pairs of non-linear polynomials P which
have the same Julia set (e. g. when they commute) in the term of the group
Σ(P ) of symmetries of the Julia set of P :

Σ(P )
def
= {σ ∈ E : σ(J (P )) = J (P )}

where E is the group of the conformal Euclidean isometries of C| , z
σ→ eiθz+ c.

Since the Julia set of a non-linear polynomial P is bounded, then Σ(P ) can not
contain any translation z → z + c with c =/ 0. Moreover, if σ1, σ2 ∈ Σ(P ) then
their commutator σ1σ2σ

−1
1 σ−1

2 belongs also to Σ(P ) and it is a translation,
therefore it is the identity map. Hence, σ1 and σ2 commute and it follows that
Σ(P ) is a group of rotations about a common fixed point ζ ∈ C| . The next
theorem gives a complete description of this group:

Theorem 1.2 Let P be a non-linear polynomial then the following facts hold:
(a) [Be1] Σ(P ) is a group of rotations around the point ζ = −an−1

nan
, called

centroid of P (it is the barycentre of the zeros of P ). If Σ(P ) is infinite then
J (P ) is a circle. Otherwise Σ(P ) is finite and, if we put the centroid in 0, the
order of Σ(P ) is the largest integer d ≥ 1 such that P can be written in the

form P (z) = zaP̃ (zd) for some polynomial P̃ with 0 ≤ a < n.
(b)[Be2] If Q is a polynomial which has the same degree of P and J (P ) =

J (Q) then there is a symmetry σ ∈ Σ(P ) = Σ(Q) such that P = σQ.

These facts shed a new light on another result of J. F. Ritt which allow
us to be more precise when two commuting polynomials happen to have a
common iterate.

Theorem 1.3 [Ri1] If two non-linear polynomials P and Q have a common
iterate then there exist a non-linear polynomial R, two integers s, t ≥ 1 and
two symmetries σ1, σ2 ∈ Σ(P ) = Σ(Q) such that:

P (z) = σ1R
s(z) and Q(z) = σ2R

t(z) ∀z ∈ C| .
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Proof. We follow the Ritt’s proof emphasizing the steps where the theory of
Beardon is useful to semplify the reasoning.

Since P and Q have the same Julia set, there is a map Φ, called Böttcher
function, univalent in some neighborhood U of ∞ such that

Φ ◦ P ◦ Φ−1(z) = anz
n and Φ ◦Q ◦ Φ−1(z) = bmz

m ∀z ∈ U

where bmz
m is the leading term of Q. By hypothesis, P and Q have a common

iterate, hence there exist integers r, u, v such that n = ru and m = rv. If we
denote with (u, v) the G.C.D. of u and v then the polynomial R can be chosen
of the form:

R(z) = Φ−1(c[Φ(z)]r
(u,v)

)

where c ∈ C| is such that J (R) = J (P ) = J (Q). For two suitable positive
integers s and t, the degrees of P , Rs and Rt are equal and, by (b) of Theorem
1.2, there exist two symmetries σ1, σ2 ∈ Σ(P ) such that P = σ1R

s and Q =
σ1R

t. Q.E.D.

2. Now, we give the proof of Theorem 0.1.

Proof. Define the set S of all non-linear polynomials P such that Fix
Ĉ|

(P )
def
=

{z ∈ Ĉ| : P (z) = z} has n+ 1 different points where n ≥ 2 is the degree of P ,
and such that the following property holds

if x, y ∈ Fix
Ĉ|

(P ) and x =/ y then P ′(x) =/ P ′(y). (1)

It is clear that S is open and dense in the set of all non-linear polynomials.
Let P ∈ S then, since P (∞) =∞ and P ′(∞) = 0, by the property (1), at any
finite fixed point z of P , P ′(z) =/ 0. Conjugating P by an affine transformation
we can assume that the centroid is 0 and that J (P ) becomes S1 if it is a circle
or [−1, 1] if it is an interval. Note that the conjugation preserves the property
(1).
J (P ) can not be S1 because otherwise P = eiθTn and at the fixed point

0, P ′(0) = 0. If J (P ) = [−1, 1] then P = Tn or P = −Tn and all the finite

fixed points of P are contained in [−1, 1] because Ĉ| \ [−1, 1] is the basin of
attraction of∞. Moreover, for x ∈ [−1, 1], Tn(x) = cos(nα) with α = cos−1(x)
and therefore the derivative of Tn at x ∈]− 1, 1[ is

T ′n(x) = (
d

dα
cos(nα))

dα

dx
=
−n sin(nα)

− sin(α)
= n

sin(nα)

sin(α)
.

Hence, if x ∈ FixC| (P ) \ {1,−1} then | cos(nα)| = | cos(α)| and |P ′(x)| = n
because | sin(nα)| = | sin(α)|. By hypothesis P has n different finite fixed
points and, by property (1), the degree n has to be less than 5. Moreover, one
can easily check that ±T3 and ±T4 do not belong to S whereas ±T2 ∈ S.
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So, if P ∈ S \ {T2,−T2}, by Theorem 1.1, if Q ∈ Z(P ) then P and Q
must have a common iterate and, by Theorem 1.3, there exists a non-linear
polynomial R such that:

P (z) = σ1R
s(z) and Q(z) = σ2R

t(z) ∀z ∈ C| (2)

where s, t ≥ 1 and σ1, σ2 ∈ Σ(P ). Since J (P ) is not a circle, by (a) of Theorem
1.2, the group Σ(P ) is finite of order d ≥ 1.

Now we distinguish two cases:

(i) If 0 ∈ FixC| (P ) then d = 1 and therefore P = Rs and Q = Rt.

In fact, by (a) of Theorem 1.2, since J (R) = J (P ), P (z) = zaP̃ (zd) for some

polynomial P̃ . Assume that d ≥ 2, then, since P ′(0) =/ 0, a = 1 and computing
the derivative in a point z ∈ C| we obtain

P ′(z) = P̃ (zd) + dzdP̃ ′(zd).

Let σ ∈ Σ(P ) be different from the identity. Let z1 be a finite fixed point of P
different from 0 then z2 = σz1 is another finite fixed point of P because σd = 1
and

P (z2) = σz1P̃ (σdzd1) = σP (z1) = σz1 = z2.

Since zd1 = zd2 , if we compute the derivative in these points, we obtain

P ′(z1) = P̃ (zd1) + dzd1 P̃
′(zd1) = P ′(z2).

This contradicts the property (1) and d = 1.

(ii) If 0 6∈ FixC| (P ) then σ1 = σ2 and P = (σ1R)s and Q = (σ1R)t.

In fact, by (a) of Theorem 1.2, R(z) = zaR̃(zd) for some polynomial R̃. Since

P (0) =/ 0, then, by (2), a = 0 and R̃(0) =/ 0. If z ∈ FixC| (R) then

P i(z) = σ1R
si(z) = σ1z and Qj(z) = σ2R

tj(z) = σ2z

because σd1 = σd2 = 1. Since z =/ 0 and P i = Qj, we can conclude by the above
equation that σ1 = σ2. Moreover, P = σ1R

s = (σ1R)s and Q = σ2R
t = (σ2R)t.

In both cases (i) and (ii), we have found a non-linear polynomial G such
that P = Gs and Q = Gt; now we show that s = 1, i. e. Q is an iterate of P .
If z ∈ FixC| (P ) then P ′(z) =/ 0 and therefore also G′(z) =/ 0. Since P and G
commute, we have

P (G(z)) = G(P (z)) = G(z),

and deriving P ◦G = G ◦ P we obtain

P ′(G(z))G′(z) = G′(P (z))P ′(z) = G′(z)P ′(z).

These equations yield that also G(z) ∈ FixC| (P ) is a fixed point of P and
P ′(G(z)) = P ′(z). By property (1), G(z) = z and therefore G has as many
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fixed points as P . But, by hypothesis, the number of finite fixed points of P
is exactly n and therefore the degree of G is at least n. This is possible only
when s = 1.

Hence we can conclude that the wanted open dense set is S \ {T2,−T2}.
Q.E.D.

5



References

[Ar] C. Arteaga, Centralizers of expanding maps on the circle, Proc. Amer.
Math. Soc., 114 (1992), 263-267.

[BE] I. N. Baker and A. Eremenko, A problem on Julia set, Ann. Acad. Sci.
Fenn., 12 (1987), 229-236.

[Be1] A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc., 22
(1990), 576-582.

[Be2] A. F. Beardon, Polynomials with identical Julia sets, Complex Variables,
17 (1992), 195-200.

[Ber] E. A. Bertram, Polynomials which commute with Tchebycheff polyno-
mial, Amer. Math. Monthly, 78 (1971), 650-653.

[BT] H. D. Block and H. P. Thielman, Commutative Polynomials, Quart. J.
Math. Oxford, 2 (1951), 241-243.

[Bo] W. M. Boyce, On polynomials which commute with a given polynomial,
Proc. Amer. Math. Soc.,33 (1972), 229-234.

[Ko] N. Kopell, Commuting diffeomorphisms, Proc. Symposia Pure Math.
A.M.S., 14 (1970), 165-184.

[Le] G. M. Levin, Symmetries on Julia set, Math. Notes, 48 (1990), 1126-1131.

[Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures,
Stony Brook IMS Preprint 1990/5.

[PaYo] J. Palis and J. C. Yoccoz Centralizers of Anosov diffeomorphisms on
tori, Ann. Scient. Ec. Norm. Sup., 22 (1989), 99-108.

[Ri1] J. F. Ritt, On the iteration of rational functions, Trans. Amer. Math.
Soc., 21 (1920), 348-356.

[Ri2] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc., 25
(1923), 399-448.

[St] N. Steinmetz, Rational Iteration, de Gruyter, Berlin, 1993.

Roberto Tauraso
Scuola Normale Superiore, 56216 Pisa, Italy
E-mail: tauraso@sabsns.sns.it

6


