Analisi Matematica - CdL Informatica
Svolgimento della prova scritta del 21/1/2026

Esercizio 1. Sia f(z) = (2* — 2 — 7)e™".

a) Tracciare il grafico di f specificando: il dominio, gli asintoti, gli intervalli di monotonia, i
massimi e 1 minimi relativi e assoluti, gli intervalli di convessita/concavita e i flessi.

b) Per quali valori di ¢ € R, I'equazione (x — 1)? = 8 — ce® ha esattamente 3 soluzioni?

a) Il dominio ¢ D = R. Inoltre

lim (22 =22 —T)e =0 e lim (2° —2x — 7)e™" = 4o0.
T——+00 r——00
Dato che lim,_,_ @ = —00, c’e solo I'asintoto orizzontale y = 0 per x — +o0.

Per x € R,
fl(@) =21 —2)e ™ + (2 =20 — 7)(—e ) = —(2° —da —5)e ™ = —(v + 1)(x — 5)e™ "

Studiando il segno di f’ si deduce che f & strettamente crescente in [—1, 5], mentre ¢ strettamente

decrescente in (—oo, —1] e in [5, +00). Dunque z = 5 ¢ un punto di massimo relativo e x = —1
€ un punto di minimo assoluto.
Per x € R,

f'(x) = —2x —4)e™™ — (2* — 42 —5)(—e ™) = (2> — 62 — 1)e™ ™.

Dal segno di f” si trova che f & concava in (—00,3 — 1/10] e [3 4+ /10, 4+00) ed & convessa in
[3 — /10,3 ++/10]. Quindi z = 3 & /10 sono punti di flesso.

Grafico di f(z) = (2® — 22 — 7)e™™



b) L’equazione (z — 1)* = 8 — ce” ¢ equivalente a

-2 +1=8—-ce" &’ —20—T=—ce" & (2* - 20— T)e ™" = —c,

ossia a f(z) = —c.
Osservando il grafico e applicando il teorema dei valori intermedi alla funzione continua f
si ottiene che l'equazione f(r) = —c ha esattamente 3 soluzioni se e solo se —c appartiene

all’intervallo aperto di estremi 0 (il limite a + infinito) e f(5) = 8¢~ (il valore nel punto di
massimo relativo), ossia se ¢ soddisfa le condizioni:

—8e® < ¢ < 0.



b

Esercizio 2. a) Al variare di b € R, calcolare lim

x
z—+o0 sin(y/T + 2 — /T)
: N3 3
b) Calcolare xl_l&loo (sin(\/aT— 7 x ).

a) Abbiamo che per x — +oo, 1/2 — 0" e

W—\f:\/%«ur;)m—l) :\/E<1—I—%-§+0(1/:):)—1) =72 o(z7V).

Cosi, dato che z~%2 — 0F,
(VAT 2 VE) = sin(a™? 4 o) = 27 4 ofa ).

Quindi
+o0o seb>—1/2
lim = lim 2""/2=1{1 seb=—1/2.

xr
T—+00 Sin(«/gj + 2 — \/E) T—+00 0 b < _1/2

b

b) Riprendiamo I'analisi fatta in a) e aumentiamo 1'ordine degli sviluppi:

2\ 1/2 1 2 1 4
Verz—va=va((1+2) 7 —1)=va (1452 -2 — +o(1/2?) — 1
x 2z 8 2
—3/2
LI 2/ + 0($_3/2).

: “1/2 ! “1/2 a8/ YN —3/2
sin(Vz +2—+r)==x ————(w — + o(z )) + o(x™%)

2 6 2
-3/2 -3/2
_ $_1/2 . xT i x . + O($_3/2)
~3/2

Quindi per z — +oo, t =27/ =5 0t e

Jz 1/t ] t—(t—¥+o(t3))
Sn(Vit2—v3) | t-E od) £ - o(p)

2 4ot

151 o(8%)

L2
3



Esercizio 3. a) Dimostrare che per ogni intero n > 1,

47(nl)?
2n

< (2n)! < 4"(nh)2

(2n)! "
(n!)?
a) Dimostriamo separatamente le due disuguaglianze per induzione.

1)Vn>1, (2n) <4"(n!)? (P(n)).

Passo base. Verifichiamo P(1): (2)! =2 <4 = 41(1!)2.
Passo induttivo. Dimostriamo che, per n > 1, se vale P(n) allora vale anche P(n + 1):

b) Fare un esempio di = € (0, 1) tale che la serie Z sia convergente.
n=1

2n+ 1) =2n+2)(2n+1)(2n)! P(gn) (2n +2)(2n + 1)4™(n!)? ; 4" ((n 4 1)1)?

dove I'ultimo passaggio vale se
2n+2)2n+1) <4(n+1°o2n+1<2(n+1)=2n+2

che ¢ vera.

n(n1)2
2) Vn > 1, 4"(n))
n

Passo base. Verifichiamo P(1): 41(2”)2 =2<(2)\

Passo induttivo. Dimostriamo che, per n > 1, se vale P(n) allora vale anche P(n + 1):

< (2n)! (P(n)).

2+ 1) = 2n+2)2n+1)20)! > (2n+2)(2n + 1)427:)2 2 4"227(1”:11))!)2

dove I'ultimo passaggio vale se

2
(2n+2)(2n+1) > 4(n+1) o 2n+1

>2&2n+12>2n
n n+1 n

che ¢ vera.

b) Se = € (0,1), per la seconda disuguaglianza data in a),

o0 ' n o (o @]
0< Zl (2(2)!‘);“ < ;4%:" = ;(4:[)2.

Notiamo che la serie geometrica a destra converge se 4x < 1 ossia se < 1/4. Allora per
confronto anche la serie data converge per z < 1/4. Ad esempio converge se © = 1/5.

Alla stessa conclusione si arriva applicando il criterio del rapporto.



Esercizio 4. a) Risolvere il problema di Cauchy per = € (—1,1),

20y(0) = (V) - ey ) (1= 2

y(0) =2
H oy |
b) Per quali valori di @ > 0 'integrale / dz e convergente?
1/2 log(z)
a) Risistemando i termini abbiamo che
2z 4
/ —

Quindi a(z) = -2

221"

e il fattore integrante per z € (—1,1) & eA®) =1 — 22,

Inoltre
4 — 42 ) )
/eA(x)f(I) dr — / Yo —|—I1 dr = / <4x2 i 1) dx = 3 arctan(2z) — x + c.

Cost la soluzione generale e

2 arctan(2z) — z + ¢

1 — 22

yla) =0 [ ) p(a) di =
Imponendo la condizione y(0) = 2 si trova ¢ = 2 e la soluzione cercata ¢

2 arctan(2z) — z + 2

b) L’unico punto da indagare ¢ 1-. Per z — 17,
5 arctan(2x) — x + 2 C
~ 2 ~ 1 = log(1 — )~z —1.
i)~ R e e og(e) = log(l 4w - 1)~
Cosi, per x — 17,
y(x) C]"
log(z) |w — 1[>

e si conclude che l'integrale dato converge se e solo se 2a < 1 ossia se a < 1/2.



