
Analisi Matematica - CdL Informatica
Svolgimento della prova scritta del 21/1/2026

Esercizio 1. Sia f(x) = (x2 − 2x− 7)e−x.

a) Tracciare il grafico di f specificando: il dominio, gli asintoti, gli intervalli di monotonia, i
massimi e i minimi relativi e assoluti, gli intervalli di convessità/concavità e i flessi.
b) Per quali valori di c ∈ R, l’equazione (x− 1)2 = 8− cex ha esattamente 3 soluzioni?

a) Il dominio è D = R. Inoltre

lim
x→+∞

(x2 − 2x− 7)e−x = 0 e lim
x→−∞

(x2 − 2x− 7)e−x = +∞.

Dato che limx→−∞

f(x)
x

= −∞, c’è solo l’asintoto orizzontale y = 0 per x → +∞.
Per x ∈ R,

f ′(x) = (2x− 2)e−x + (x2 − 2x− 7)(−e−x) = −(x2 − 4x− 5)e−x = −(x+ 1)(x− 5)e−x

Studiando il segno di f ′ si deduce che f è strettamente crescente in [−1, 5], mentre è strettamente
decrescente in (−∞,−1] e in [5,+∞). Dunque x = 5 è un punto di massimo relativo e x = −1
è un punto di minimo assoluto.
Per x ∈ R,

f ′′(x) = −(2x− 4)e−x − (x2 − 4x− 5)(−e−x) = (x2 − 6x− 1)e−x.

Dal segno di f ′′ si trova che f è concava in (−∞, 3 −
√
10] e [3 +

√
10,+∞) ed è convessa in

[3−
√
10, 3 +

√
10]. Quindi x = 3±

√
10 sono punti di flesso.

Grafico di f(x) = (x2 − 2x− 7)e−x
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b) L’equazione (x− 1)2 = 8− cex è equivalente a

x2 − 2x+ 1 = 8− cex ⇔ x2 − 2x− 7 = −cex ⇔ (x2 − 2x− 7)e−x = −c,

ossia a f(x) = −c.
Osservando il grafico e applicando il teorema dei valori intermedi alla funzione continua f
si ottiene che l’equazione f(x) = −c ha esattamente 3 soluzioni se e solo se −c appartiene
all’intervallo aperto di estremi 0 (il limite a + infinito) e f(5) = 8e−5 (il valore nel punto di
massimo relativo), ossia se c soddisfa le condizioni:

−8e−5 < c < 0.
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Esercizio 2. a) Al variare di b ∈ R, calcolare lim
x→+∞

xb

sin(
√
x+ 2−√

x)
.

b) Calcolare lim
x→+∞

( √
x

sin(
√
x+ 2−√

x)
− x

)

.

a) Abbiamo che per x → +∞, 1/x → 0+ e

√
x+ 2−

√
x =

√
x

(

(

1 +
2

x

)1/2

− 1

)

=
√
x

(

1 +
1

2
· 2
x
+ o(1/x)− 1

)

= x−1/2 + o(x−1/2).

Cos̀ı, dato che x−1/2 → 0+,

sin(
√
x+ 2−

√
x) = sin(x−1/2 + o(x−1/2)) = x−1/2 + o(x−1/2).

Quindi

lim
x→+∞

xb

sin(
√
x+ 2−√

x)
= lim

x→+∞

xb+1/2 =











+∞ se b > −1/2

1 se b = −1/2

0 se b < −1/2

.

b) Riprendiamo l’analisi fatta in a) e aumentiamo l’ordine degli sviluppi:

√
x+ 2−

√
x =

√
x

(

(

1 +
2

x

)1/2

− 1

)

=
√
x

(

1 +
1

2
· 2
x
− 1

8
· 4

x2
+ o(1/x2)− 1

)

= x−1/2 − x−3/2

2
+ o(x−3/2).

e

sin(
√
x+ 2−

√
x) = x−1/2 − x−3/2

2
− 1

6

(

x−1/2 − x−3/2

2
+ o(x−3/2)

)3

+ o(x−3/2)

= x−1/2 − x−3/2

2
− x−3/2

6
+ o(x−3/2)

= x−1/2 − 2x−3/2

3
+ o(x−3/2).

Quindi per x → +∞, t = x−1/2 → 0+ e

√
x

sin(
√
x+ 2−√

x)
− x =

1/t

t− 2t3

3
+ o(t3)

− 1

t2
=

t−
(

t− 2t3

3
+ o(t3)

)

t3 − 2t5

3
+ o(t5)

=
2t3

3
+ o(t3)

t3 + o(t3)
→ 2

3
.
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Esercizio 3. a) Dimostrare che per ogni intero n ≥ 1,

4n(n!)2

2n
≤ (2n)! ≤ 4n(n!)2.

b) Fare un esempio di x ∈ (0, 1) tale che la serie

∞
∑

n=1

(2n)! xn

(n!)2
sia convergente.

a) Dimostriamo separatamente le due disuguaglianze per induzione.

1) ∀n ≥ 1, (2n)! ≤ 4n(n!)2 (P (n)).

Passo base. Verifichiamo P (1): (2)! = 2 ≤ 4 = 41(1!)2.
Passo induttivo. Dimostriamo che, per n ≥ 1, se vale P (n) allora vale anche P (n+ 1):

(2(n+ 1))! = (2n+ 2)(2n+ 1)(2n)!
P (n)

≤ (2n + 2)(2n+ 1)4n(n!)2
?
≤ 4n+1((n+ 1)!)2

dove l’ultimo passaggio vale se

(2n+ 2)(2n+ 1) ≤ 4(n+ 1)2 ⇔ 2n + 1 ≤ 2(n+ 1) = 2n+ 2

che è vera.

2) ∀n ≥ 1,
4n(n!)2

2n
≤ (2n)! (P (n)).

Passo base. Verifichiamo P (1): 41(1!)2

2
= 2 ≤ (2)!.

Passo induttivo. Dimostriamo che, per n ≥ 1, se vale P (n) allora vale anche P (n+ 1):

(2(n+ 1))! = (2n+ 2)(2n+ 1)(2n)!
P (n)

≥ (2n+ 2)(2n+ 1)
4n(n!)2

2n

?
≥ 4n+1((n+ 1)!)2

2(n+ 1)

dove l’ultimo passaggio vale se

(2n+ 2)(2n+ 1)

n
≥ 4(n+ 1)2

n+ 1
⇔ 2n+ 1

n
≥ 2 ⇔ 2n+ 1 ≥ 2n

che è vera.

b) Se x ∈ (0, 1), per la seconda disuguaglianza data in a),

0 <
∞
∑

n=1

(2n)! xn

(n!)2
≤

∞
∑

n=1

4nxn =
∞
∑

n=1

(4x)2.

Notiamo che la serie geometrica a destra converge se 4x < 1 ossia se x < 1/4. Allora per
confronto anche la serie data converge per x < 1/4. Ad esempio converge se x = 1/5.

Alla stessa conclusione si arriva applicando il criterio del rapporto.
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Esercizio 4. a) Risolvere il problema di Cauchy per x ∈ (−1, 1),







2xy(x) =

(

y′(x)− 4

4x2 + 1

)

(1− x2)

y(0) = 2

b) Per quali valori di a > 0 l’integrale

∫ 1

1/2

∣

∣

∣

∣

y(x)

log(x)

∣

∣

∣

∣

a

dx è convergente?

a) Risistemando i termini abbiamo che

y′(x) +
2x

x2 − 1
y(x) =

4

4x2 + 1
.

Quindi a(x) = 2x
x2−1

,

A(x) =

∫

a(x) dx =

∫

2x

x2 − 1
dx = log |x2 − 1|

e il fattore integrante per x ∈ (−1, 1) è eA(x) = 1− x2.
Inoltre

∫

eA(x)f(x) dx =

∫

4− 4x2

4x2 + 1
dx =

∫
(

5

4x2 + 1
− 1

)

dx =
5

2
arctan(2x)− x+ c.

Cos̀ı la soluzione generale è

y(x) = e−A(x)

∫

eA(x)f(x) dx =
5
2
arctan(2x)− x+ c

1− x2
.

Imponendo la condizione y(0) = 2 si trova c = 2 e la soluzione cercata è

y(x) =
5
2
arctan(2x)− x+ 2

1− x2
.

b) L’unico punto da indagare è 1−. Per x → 1−,

y(x) ∼
5
2
arctan(2x)− x+ 2

(1− x)(1 + x)
∼ C

1− x
e log(x) = log(1 + x− 1) ∼ x− 1.

Cos̀ı, per x → 1−,
∣

∣

∣

∣

y(x)

log(x)

∣

∣

∣

∣

a

∼ |C|a
|x− 1|2a

e si conclude che l’integrale dato converge se e solo se 2a < 1 ossia se a < 1/2.
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