Analisi Matematica 2 - Ing. Meccanica e Energetica - Prova scritta del 20-6-2025

Cognome:		
Nome:		
Orale:		

Esercizio	Punteggio
1	
2	
3	
4	
Totale	

Esercizio 1. Sia $f(x,y) = \frac{e^{x+y} - 1}{x^3 + y^3}$.

- (a) Determinare il dominio D di f e dimostrare che f è sempre positiva in D.
- (b) Calcolare $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ per ogni $(x_0,y_0) \notin D$.

Esercizio 2. Si consideri il sistema: $\begin{cases} 4x^2 + yz + 8 = 3y^2 \\ x^3 + z^2 + 3 = 2y \end{cases}$.

- (a) Verificare che in un intorno del punto (1,2,0) il sistema definisce implicitamente due funzioni $y = \varphi(x)$ e $z = \psi(x)$ e calcolare $\varphi'(1)$ e $\psi'(1)$.
- (b) Sia C l'insieme dei punti $(x, y, z) \in \mathbb{R}^3$ che soddisfano il sistema. Scrivere la retta tangente a C in (1, 2, 0) sia in forma parametrica che come intersezione di due piani.

Esercizio 3. Sia $T = \{(x, y, 0) : 2x \le 2y \le 8x - 3x^2\}$ e sia D il solido ottenuto ruotando di 360° l'insieme T attorno alla retta $L = \{(t, t, 0) : t \in \mathbb{R}\}.$

- (a) Determinare un piano tangente a D che sia parallelo a L.
- (b) Calcolare il volume di D.

Esercizio 4. Per a > 0 sia $S_a = \{(x, y, z) : a^2x^2 + y^2 + a^2z^2 = a^2, y \ge 0\}.$

- (a) Per $a \in (0,1)$, calcolare $\iiint_{D_a} \frac{5x+6y}{1+\sqrt{x^2+z^2}} dx dy dz$ dove D_a è il solido limitato che ha come bordo $S_a \cup S_1$.
- (b) Per a > 0, calcolare $\iint_{S_a} \langle \boldsymbol{F}, d\boldsymbol{S} \rangle$ dove $\boldsymbol{F}(x, y, z) = (4x + e^z, e^{x^2 + z^2} 5y, 7z + e^y)$ e S_a è orientata in modo che $\langle \boldsymbol{n}, \boldsymbol{j} \rangle \geq 0$ in ogni suo punto.