Prova scritta di Analisi Matematica 2

Corso di Laurea in Matematica - Università di Roma "Tor Vergata" 20 Settembre 2018

- 1. Dimostrare o confutare le seguenti affermazioni.
- (a) Sia f una funzione derivabile e convessa in $(0, +\infty)$ tale che

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = +\infty$$

allora $\lim_{x \to +\infty} (f(x) - xf'(x)) = -\infty.$

- (b) Se $a_n \neq -1$ per ogni $n \geq 1$ e $\sum_{n=1}^{\infty} a_n$ converge allora $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converge.
- 2. Rispondere alle seguenti domande.
- (a) Quanto vale $\int_{-1}^{1} |\arcsin(x)|^2 dx$?
- (b) Quanto valgono $\lim_{n\to\infty} \int_{-1}^1 |\arcsin(x)|^n dx$ e $\lim_{n\to\infty} \int_{-1}^1 |\arcsin(x^n)| dx$?
- 3. Sia $a \in \mathbb{R}$ e per ogni intero $n \ge 1$ sia

$$f_n(x) = \frac{n\cos(x)}{n^2(x-a)^2 + 1}.$$

- (a) Per quali $a \in \mathbb{R}$, la successione $\{f_n\}_{n\geq 1}$ converge uniformemente in \mathbb{R} ?
- (b) Calcolare il limite $\lim_{n\to\infty} \int_{-\infty}^{+\infty} f_n(x) dx$ per a=0.
- 4. Si consideri per $x \in \mathbb{R}$ il seguente problema di Cauchy

$$\begin{cases} y'(x)(4x - y'(x)) = 4y(x) \\ y(2) = t \end{cases}$$

(a) Per ogni $t \in \mathbb{R}$, determinare il numero delle soluzioni della forma

$$y(x) = ax^2 + bx + c \quad \text{con } a, b, c \in \mathbb{R}.$$

(b) Per t = 4, esiste una soluzione $y : \mathbb{R} \to \mathbb{R}$ che non sia un polinomio?