Prova scritta di Analisi Matematica I

Corso di Laurea in Matematica - Università di Roma "Tor Vergata" $25~{\rm giugno}~2013$

- 1. Sia $z\in\mathbb{C}\setminus\{1\}$ tale che $z^n=1$ dove n>1 è un numero intero. Dimostrare che $|z-1|\geq \frac{4}{n}.$
- **2.** Sia $A = {\sqrt{n} + m : n \in \mathbb{N}, m \in \mathbb{Z}}.$
 - i) Dimostrare che $A \cap \mathbb{Q} = \mathbb{Z}$.
 - ii) Dimostrare che $\mathbb{Q} \subset \overline{A}$.
 - iii) Determinare \overline{A} .
- 3. Sia $\{x_n\}_{n\geq 0}$ una successione tale che

$$\forall n \ge 0, \qquad x_n^2 - 7x_{n+1} + 10 = 0.$$

Determinare se esiste il limite $\lim_{n\to\infty} x_n$ e nel caso calcolarlo, nei seguenti tre casi: i) $x_0=1$, ii) $x_0=4$ e iii) $x_0=6$.

- **4.** Si considerino le funzioni $f(x) = \frac{a}{x}$ e $g(x) = \sqrt{x^2 b}$ con a e b numeri reali positivi.
 - i) Dimostrare che i grafici di f e g si intersecano in un unico punto P.
 - ii) Siano r_f e r_g le rette tangenti rispettivamente ai grafici di f e g nel punto P. Dimostrare che r_f e r_g sono ortogonali.
- 5. Siano a e n due numeri interi maggiori di 2. Dimostrare o confutare ciascuna delle seguenti proposizioni:

i)
$$\forall b \in \mathbb{N} \cap (1, a), \exists k \in \mathbb{N} : a^n < b^k < a^{n+1};$$

ii)
$$\forall k \in \mathbb{N} \cap (1, n), \exists b \in \mathbb{N} : a^n < b^k < (a+1)^n.$$