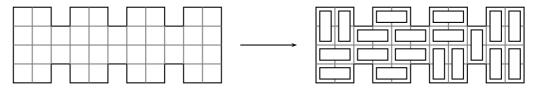
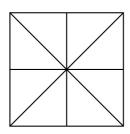
Matematica Discreta


Martedì 13 luglio 2010

Esercizio 1. Dimostrare che per ogni intero positivo n

$$\underbrace{\frac{2\overbrace{66\cdots6}}{66\cdots65}}_{n} = \frac{2}{5}$$


Esercizio 2. Un numero intero n si dice che è una potenza perfetta se esistono due numeri interi $x \ge 2$ e $d \ge 2$ tali che $n = x^d$. Determinare quante sono le potenze perfette nell'intervallo [2, 2010].

Esercizio 3. Un poligono è formato da n rettangoli 4×2 uniti, lungo la parte centrale del lato da 4, da n-1 rettangoli 2×1 . Tale poligono deve essere ricoperto con tessere rettangolari 2×1 o 1×2 . Qui sotto è rappresentato il caso n=4:

Calcolare la funzione generatrice $f(z) = \sum_{n=1}^{\infty} a_n z^n$ dove a_n è il numero di tali ricoprimenti.

Esercizio 4. Un quadrato è diviso in 8 triangoli da colorare di rosso, blu o giallo:

Due colorazioni sono equivalenti se una si può ottenere dall'altra attraverso una rotazione o una simmetria.

- (a) Quante sono le colorazioni non equivalenti?
- (b) Quante sono le colorazioni non equivalenti se devono essere presenti 4 triangoli gialli, 2 triangoli rossi e 2 triangoli blu.