Problem 12205
(American Mathematical Monthly, Vol.127, October 2020)

Proposed by C. Chiser (Romania).

Find the minimum value of L
Jo #2(f'(x))? dx
Jo 22(f(x))2 dx

over all nonzero continuously differentiable functions f : [0,1] — R with f(1) = 0.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let g(z) = zf(x) then g € C*([0,1]), it is non-identically zero and g(0) = g(1) = 0.
Moreover, by integrating by parts we get
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Hence, by Wirtinger’s inequality,
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Let f(z) = Smi—m) (extended continuously at 0) then f(1) = 0. Therefore g(z) = sin(7z) and

Jy 22(f(x))? da _ (g (2))? da _ Jiy (7 cos(mx))? da _ 2
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Hence we may conclude that the desired minimum value is 72. O




