Problem 12148

(American Mathematical Monthly, Vol.126, December 2019)

Proposed by T. Beke (USA).

Let p be a prime number, and let f be a symmetric polynomial in p-1 variables with integer coefficients. Suppose that f is homogeneous of degree d and that p-1 does not divide d. Prove that p divides f(1, 2, ..., p-1).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. If p-1 does not divide $d \ge 1$ then p is a prime greater than 2 and \mathbb{Z}_p^* is cylic. It follows that if g is a generator then $g^d \not\equiv 1 \pmod{p}$ and the multiplication by g permutes the elements of \mathbb{Z}_p^* . Hence, by symmetry and homogeneity,

$$f(1, 2, \dots, p-1) \equiv f(g \cdot 1, g \cdot 2, \dots, g \cdot (p-1)) = g^d \cdot f(1, 2, \dots, p-1) \pmod{p}$$

which implies that

$$(g^d - 1)f(1, 2, \dots, p - 1) \equiv 0 \pmod{p}.$$

Since $g^d \not\equiv 1 \pmod{p}$, we have that p divides $f(1, 2, \dots, p-1)$.