Problem 12103
(American Mathematical Monthly, Vol.126, March 2019)

Proposed by G. Apostolopoulos (Greece).

Let a, b, and ¢ be the side lengths of a triangle with inradius r and circumradius R. Let r, rp, and
r. be the exradii opposite the sides of length a, b, and ¢, respectively. Prove
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Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let s be the semiperimeter of the triangle and let A be its area. Then we have that
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and the inequalities can be written as
25 A2 < 1 n 1 n 1 < s3
(abc)® ~— a*(s—a) b*(s—b) c*s—c) ~ 1644

Let x=(b+c—a)/2>0,y=(c+a—0)/2>0,and z= (a+b—c)/2 > 0 then
a=zr+y b=y+tz,c=z+z,s=x+y+z A> =xyz(z+y+2)
and the inequalities become
32(zyz)(z+y+ 2) < 1 n 1 n 1 < (x+y+2)
(E+y)y+2)(z+2)° ~ z2(z+y)  wly+2)*  ylz+2)* — 16(zyz)?
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The inequality on the right holds because (z + y)/2 > /zy implies
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As regards the inequality on the left, by AM-GM inequality,
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Hence it remains to show that
23
wE@ty+ 2?2 (wyz2)"® < (@ +y)(y + 2)(z + 2).

Since (z +y)/2 > \/xy, we have that
(@ +y)y+2)(z+2) = (@ +y+2)(ey +yz +ay) —ayz
1
2 (¢ +y+2)(@y +yz+ay) = (@ +y)y +2)(z + ).

Therefore, by AM-GM inequality, it follows that

(@+y)y+2)(z+2) > (@ +y+2)(ey +yz + zy)
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and we are done. O



