Problem 11344

Proposed by Albert Stadler, Switzerland.

Let \(\mu \) be the Möbius function of number theory. Show that if \(n \) is a positive integer and \(n > 1 \) then
\[
\sum_{j=1}^{n} \mu(j) = - \sum_{j=1}^{\lfloor (n-1)/2 \rfloor} j \sum_{k=\lceil (n+1)/(2j+3) \rceil}^{\lfloor n/(2j+1) \rfloor} \mu(k).
\]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

In the RHS, the range of the integer \(k \) is
\[
\frac{n+1}{2j+3} \leq k \leq \frac{n}{2j+1},
\]
hence
\[
\frac{1}{2} \left(\frac{n}{k} - 1 \right) - 1 + \frac{1}{2} \left(\frac{n+1}{k} - 3 \right) \leq j \leq \frac{1}{2} \left(\frac{n}{k} - 1 \right).
\]

It’s easy to see that there is only one integer \(j \) that satisfies the above inequalities and therefore, by exchanging the two sums, the RHS can be written as
\[
\sum_{k=1}^{\lfloor (n-1)/3 \rfloor} \mu(k) \left\lfloor \frac{1}{2} \left(\frac{n}{k} - 1 \right) \right\rfloor = - \sum_{k=1}^{n} \mu(k) \left\lfloor \frac{1}{2} \left(\frac{n}{k} - 1 \right) \right\rfloor
\]
so it suffices to prove that
\[
\sum_{k=1}^{n} \mu(k)g(n/k) = \sum_{k \geq 1} \mu(k)g(n/k) = f(n) = [n = 1]
\]
where \(g(x) = 1 + \left\lfloor \frac{1}{2} (x-1) \right\rfloor \) and \(f(x) = \lfloor x \rfloor = 1 \). Note that
\[
\sum_{j \geq 1} f(x/j) = \sum_{j \geq 1} \left\lfloor \frac{x}{j} \right\rfloor = \sum_{j \geq 1} \left((x/2) < j \leq x \right) = 1 + \left\lfloor \frac{1}{2} (x-1) \right\rfloor = g(x),
\]
Finally, since \(\sum_{k|m} \mu(k) = [m = 1] \) and \(\sum_{j \geq 1} \sum_{k \geq 1} |f(n/(kj))| < \infty \)
\[
\sum_{k \geq 1} \mu(k)g(n/k) = \sum_{k \geq 1} \mu(k) \sum_{j \geq 1} f(n/(kj)) = \sum_{j \geq 1} \sum_{k \geq 1} \mu(k)f(n/(kj)) = \sum_{m \geq 1} f(n/m) \sum_{k \geq 1} \mu(k) \sum_{m \geq 1} f(n/m) \sum_{k \geq 1} \mu(k) = \sum_{m \geq 1} f(n/m) \sum_{k \geq 1} \mu(k) = \sum_{m \geq 1} f(n/m)[m = 1] = f(n).
\]

Remark. This inversion law for the Möbius function holds for more general \(f \) and \(g \):
\[
g(x) = \sum_{k \geq 1} f(x/k) \quad \text{if and only if} \quad f(x) = \sum_{k \geq 1} \mu(k)g(x/k)
\]as soon as \(\sum_{j \geq 1} \sum_{k \geq 1} |f(n/(kj))| < \infty \) (see for example Concrete Mathematics by Graham, Knuth, and Patashnik).