Problem 11253

Proposed by David Beckwith, Sag Harbor, NY.

Let \(n \) be a positive integer and \(A \) be an \(n \times n \) matrix with all entries \(a_{i,j} \) positive. Let \(P \) be the permanent of \(A \). Prove that

\[
P \geq n! \left(\prod_{1 \leq i,j \leq n} a_{i,j} \right)^{1/n}.
\]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

The permanent \(P \) of an \(n \times n \) matrix \(A \) is defined as follows

\[
P = \sum_{\pi \in S_n} \prod_{i=1}^{n} a_{i,\pi(i)}
\]

where \(S_n \) is the set of all the permutations of the integer numbers from 1 to \(n \).

Since \(|S_n| = n! \), by the AM-GM inequality,

\[
P \geq n! \left(\prod_{\pi \in S_n} \prod_{i=1}^{n} a_{i,\pi(i)} \right)^{1/n!} = n! \left(\prod_{\pi \in S_n} \prod_{i=1}^{n} a_{i,\pi(i)} \right)^{1/n!}.
\]

For any \(1 \leq i \leq n \)

\[
\prod_{\pi \in S_n} a_{i,\pi(i)} = \left(\prod_{j=1}^{n} a_{i,j} \right)^{(n-1)!}
\]

because there are \((n-1)! \) permutations which have a specific number \(j \) at the \(i \)th position.

Therefore

\[
P \geq n! \left(\prod_{i=1}^{n} \left(\prod_{j=1}^{n} a_{i,j} \right)^{(n-1)!} \right)^{1/n!} = n! \left(\prod_{1 \leq i,j \leq n} a_{i,j} \right)^{1/n}.
\]