Problem 11117

Proposed by Michael Nyblom, RMIT University, Melbourne, Australia.

An integer \(n \) is a positive power if there exist integers \(a \) and \(k \) such that \(a \geq 1 \), \(m \geq 2 \), and \(n = a^m \). Let \(N(x) \) denote the number of positive powers \(n \) such that \(1 \leq n \leq x \). For real \(x \geq 4 \) and with \(L = \lfloor \log_2 x \rfloor \), show that

\[
N(x) = \sum_{k=1}^{L-1} (-1)^{k+1} \sum_{2 \leq i_1 < \cdots < i_k \leq L} \lfloor x^{1/\text{lcm}(i_1, \ldots, i_k)} \rfloor.
\]

Solution proposed by Giulio Francot and Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

For \(m \geq 2 \) and for \(x \geq 4 \), let \(A_m(x) \) be the set of \(m \)-powers contained in the interval \([1, x]\). Since \(|A_m(x)| = \lfloor x^{1/m} \rfloor \) then \(A_m(x) = \{1\} \) for \(m > L = \lfloor \log_2 x \rfloor \geq 2 \) and by the inclusion-exclusion principle

\[
N(x) = \left| \bigcup_{m=2}^{L} A_m(x) \right| = \sum_{k=1}^{L-1} (-1)^{k+1} \sum_{2 \leq i_1 < \cdots < i_k \leq L} |A_{i_1}(x) \cap \cdots \cap A_{i_k}(x)|
\]

Let \(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorization of \(n \) then \(n \in A_m(x) \) if and only if \(1 \leq n \leq x \) and \(m \mid \alpha_s \) for all \(s = 1, \ldots, r \). Hence

\[
A_{i_1}(x) \cap \cdots \cap A_{i_k}(x) = A_{\text{lcm}(i_1, \ldots, i_k)}(x),
\]

and therefore

\[
N(x) = \sum_{k=1}^{L-1} (-1)^{k-1} \sum_{2 \leq i_1 < \cdots < i_k \leq L} |A_{\text{lcm}(i_1, \ldots, i_k)}(x)| = \sum_{k=1}^{L-1} (-1)^{k+1} \sum_{2 \leq i_1 < \cdots < i_k \leq L} \lfloor x^{1/\text{lcm}(i_1, \ldots, i_k)} \rfloor.
\]