Problem 10958

(American Mathematical Monthly, Vol.109, August-September 2002)

Proposed by R. Chapman (UK).

Let A_n , be the n-by-n 0, 1-matrix with 1s in exactly those positions (j, k) such that $n \leq j+k \leq n+1$. Find the eigenvalues of A_n .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Let P_n be the characteristic polynomial of A_n

$$P_n(x) = \det\left(xI_n - A_n\right)$$

Expanding the determinant with respect to the last row of the matrix, it is simple to verify that the sequence of polynomials P_n satisfy the linear recurrence equation:

$$P_n(x) = x \cdot P_{n-1}(x) - P_{n-2}(x)$$
 with $P_0(x) = 1$, $P_1(x) = x - 1$.

By linearity, $T_n := P_n + P_{n-1}$ is another solution of the same recurrence equation but with different initial conditions:

$$T_n(x) = x \cdot T_{n-1}(x) - T_{n-2}(x)$$
 with $T_0(x) = 2$, $T_1(x) = x$

Note that T_n is just the Tchebycheff polynomial of order n and each P_n can be written in the following form

$$P_n(x) = T_n(x) - P_{n-1}(x) = \dots = (-1)^n \cdot \left[\sum_{k=1}^n (-1)^k T_k(x) + P_0(x)\right].$$

Since $T_n(2\cos\theta) = 2\cos(n\theta)$, then

$$P_n(2\cos\theta) = 2 \cdot (-1)^n \cdot \left[\sum_{k=1}^n (-1)^k \cos(k\theta) + \frac{1}{2}\right]$$

By the definition of the Dirichlet kernel $\delta_n(\theta)$

$$\delta_n(\theta) := \frac{\sin(n+\frac{1}{2})\theta}{2\pi\sin\frac{1}{2}\theta} = \frac{1}{\pi} \cdot \left[\sum_{k=1}^n \cos(k\theta) + \frac{1}{2}\right]$$

hence it follows that

$$\left[\sum_{k=1}^{n} (-1)^k \cos(k\theta) + \frac{1}{2}\right] = \pi \cdot \delta_n(\theta + \pi) = \frac{\sin(n + \frac{1}{2})(\theta + \pi)}{2\sin\frac{1}{2}(\theta + \pi)} = (-1)^n \cdot \frac{\cos(n + \frac{1}{2})\theta}{2\cos\frac{1}{2}\theta}$$

Therefore

$$P_n(2\cos\theta) = \frac{\cos(n+\frac{1}{2})\theta}{\cos\frac{1}{2}\theta}.$$

Now it is easy to find the zeros of P_n (i. e. the eigenvalues of A_n):

$$x_k = 2\cos\theta_k = 2\cos\frac{2k+1}{2n+1}\pi$$
 for $k = 0...n-1$.

г		
I.		
L		
L		