Problem 10824

Proposed by Ho-joo Lee (South Korea).

Suppose \(P \) is a point in the interior of triangle \(ABC \) such that \(\angle PAB = \angle PBC = \angle PCA = 30^\circ \). Prove that \(ABC \) is equilateral.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let \(X = \angle PAC \), \(Y = \angle PBA \) and \(Z = \angle PCB \). We are going to show that \(X = Y = Z = 30^\circ \). By the Law of Sines

\[
\frac{|PC|}{\sin X} = \frac{|PA|}{\sin 30^\circ}, \quad \frac{|PA|}{\sin Y} = \frac{|PB|}{\sin 30^\circ}, \quad \frac{|PB|}{\sin Z} = \frac{|PC|}{\sin 30^\circ},
\]

and therefore it easily follows that

\[
(sin X \cdot sin Y \cdot sin Z)^{1/3} = \sin 30^\circ.
\]

Moreover, by the arithmetic-mean-geometric-mean-inequality and since the function \(\sin x \) is concave in \((0^\circ, 90^\circ)\)

\[
\sin 30^\circ = (sin X \cdot sin Y \cdot sin Z)^{1/3} \leq \frac{\sin X + \sin Y + \sin Z}{3} \leq \sin \left(\frac{X + Y + Z}{3} \right).
\]

But also the last term is equal to \(\sin 30^\circ \) because \(X + Y + Z = 90^\circ \). Hence the geometric mean and the arithmetic mean are equal and this happens if only if all the involved elements are equal. Therefore \(sin X = sin Y = sin Z \) that is \(X = Y = Z = 30^\circ \). \(\square \)