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Mathematical Quantum Field Theory

Quantum mechanics: Hilbert space, Hamiltonian (a specific
self-adjoint operator), spectral analysis, observables (self-adjoint
operators)...
Quantum field theory (QFT): infinite degrees of freedom on
continuum configulation space (infrared and ultraviolet difficulties)
Axiomatic approaches: Wightman, Osterwalder-Schrader,
Araki-Haag-Kastler.
Examples: free fields, P(φ)2 models (and more
“(super)renormalizable” models), some gauge theories in
d = 1 + 1, 1 + 2, φ4

3 model, integrable models in d = 1 + 1,
conformal field theories (CFT) in d = 1 + 1.
In physics, CFTs capture universal properties of larger classes of QFT.
Two-dimensional CFTs have infinite dimensional symmetries, many
examples and purely algebraic axiomatization (Vertex (operator)
algebras).

Yoh Tanimoto (Tor Vergata) Unitary vertex algebras and Wightman CFT EF Rome, 08/06/2022 2 / 8



Two-dimensional chiral conformal field theory

In relativistic QFT in d = 1 + 1, one puts the Lorentzian metric
(x , y) = x0y0 − x1y1 on R2.
The conformal group (transformations of R2 which preserve the
metric up to a function) is Diff(R)×Diff(R), acting on the lightrays
x0 ± x1 = 0.
In a quantum theory, Diff(R)×Diff(R) gets a (projective) unitary
representation.
There are observables that are invariant by ι×Diff(R) (or
Diff(R)× ι): chiral observables.
Chiral observables are quantum fields living on the lightray R. By
conformal symmetry, they extend to the one-point compactification
(the circle S1 under the stereographic projection, and have Diff(S1)
as the symmetry group).
Many examples: free fields (boson/fermion), Diff(S1)-symmetry itself
(the Virasoro algebra), the WZW models (loop groups).
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Axiomatic approaches to 2d CFT
Wightman fields:

Operator-valued distributions φ. For f ∈ C∞(S1,R), φ(f ) gives an
(unbounded) operator on a Hibert space H.
Locality: [φ(f ), φ(g)] = 0 if supp f ∩ supp g = ∅, Möbius covariance,
spectrum condition, vacuum...

Vertex (operator) algebras:
Algebra generated by formal series Y (a, z) =

∑
n∈Z a(n)z−n−1, V a

linear space, a ∈ V and a(n) ∈ End(V ).
Locality: [Y (a,w),Y (b, z)](w − z)N = 0 where N depends on a, b,
Möbius covariance, grading, vacuum...

(Conformal (Araki-Haag-Kastler) nets:
Family of operator algebras A(I) parametrized by intervals I ⊂ S1.
(Isotony), locality, covariance, grading, vacuum...)

Many examples have been constructed in all of these axioms,
separately.
What are the relations between axioms? (cf. Kac, Fredenhagen-Jörß,
Carpi-Kawahigashi-Longo-Weiner under some technical conditions)
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Examples

Diff(S1): infinite dimensional Lie group with Vect(S1)(∼= C∞(S1,R))
as the Lie algebra: [f , g ] = f ′g − fg ′. Complexification Vect(S1,C)
contains a dense subalgebra of trigonometric polynomials
Ln(eiθ) = einθ: [Lm, Ln] = (m + n)Lm+n (the Witt algebra)
The Witt algebra admits a (unique) central extension, the Virasoro
algebra:

[Lm, Ln] = (m + n)Lm+n + c
12m(m2 − 1)δm,−n

The Virasoro algebra admits the vacuum representation V (the lowest
weight representation with the trivial lowest weight, with the lowest
weight vector Ω) with positive-definite invariant sesquilinear form for
some c > 0.
Wightman field: L(f ) =

∑
n Ln f̂n, f̂n =

∫
f (eiθ)e−inθdθ

Vertex (operator) algebra: Y (ν, z) =
∑

n Lnz−n−2.
(Conformal net: A(I) = {eiL(f ) : supp f ⊂ I}′′)
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Equivalence between VA and W with UBO
(Raymond-T.-Tener, to appear in Commun. Math. Phys.)

Eigenspaces of L0 are assumed to be finite-dimensional.
From Unitary vertex algebras to Wightman fields:

Unitarity: scalar product 〈·, ·〉.
Formal power series Y (a, z) =

∑
n a(n)z−n−1.

Convergence?
∑

n a(n) f̂nΦ,Φ ∈ V
Automatic estimate (uniformly bounded order (UBO)):
|〈a1,(n1) · · · ak,(nk )Φ,Φ′〉| ≤ pΦ,Φ′,a1,··· ,ak (n1, · · · nk), where p is a
polynomial whose degree is independent of Φ,Φ′ (cf. polynomial
energy bounds, Carpi-Kawahigashi-Longo-Weiner).
(proof: conformal (Möbius) covariance, decomposition of V into
irreducible representations (quasi-primary fields))∑

n v(n) f̂nΦ,Φ ∈ V converges in the Hilbert space completion.
From Wightman fields with UBO:

{φ}: generating quantum fields satisfying UBO
Fourier components φn = φ(fn), fn(e iθ) = e inθ.
Locality in W [φ1(f ), φ2(g)]Φ = 0 + UBO ⇒ Locality in VA
[φ1(w), φ2(z)](w − z)N = 0 for some N.
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From fields to conformal nets

φ: conformal Wightman field on S1.
When does eiφ(f ) make sense, and when is it local?
φ(f ) should be self-adjoint as an unbouded operator, and φ(f )
and φ(g) should commute strongly (their spectral projections should
commute).
Spectral problem!
Usually solved by a “linear energy bound” (the Nelson-Glimm-Jaffe
commutator theorem).
For many conformal fields, linear energy bound fails.
When φ satisfies local energy bound, then it is strongly local
(Carpi-T.-Weiner ‘22, Commun. Math. Phys.).
Local energy bounds can be derived from an optimal bound
‖φnΦ‖ ≤ C‖(L0 + 1)d−1Φ‖, where d is the conformal dimension of φ
(an algebraic problem).
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Outlook

Maybe VOA, Wightman, Araki-Haag-Kastler are equivalent?
Removing UBO?
Local energy bounds automatic?

Axiomatization of full 2d CFT?
Non-conformal QFT from 2d CFT?
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