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Abstract

Two-dimensional full conformal field theories have been studied in various mathe-
matical frameworks, from algebraic, operator-algebraic to categorical. In this work, we
focus our attention on theories with chiral components having pointed braided tensor
representation subcategories, namely where there are automorphisms whose equivalence
classes form an abelian group. For such theories, we exhibit the explicit Hilbert space
structure and construct primary fields as Wightman fields for the two-dimensional full
theory. Given a finite collection of chiral components with automorphism categories
with vanishing total braiding, we also construct a local extension of their tensor product
as a chiral component. We clarify the relations with the Longo–Rehren construction,
and illustrate these results with concrete examples including the U(1)-current.

1 Introduction

Two-dimensional conformal field theories (CFTs) have been studied extensively [DMS97]
and have attracted the interest of mathematicians for their algebraic, analytic and geometric
structures. In particular, the conformal symmetry in two-dimensional Minkowski spacetime
is described by the diffeomorphism group of the lightrays, therefore it is infinite-dimensional.
This allows to study first the theories that depend only on one of the lightray coordinates
(the chiral components) and then their two-dimensional (full) extensions.

From the operator-algebraic point of view (Haag–Kastler axioms), a general quantum
field theory can be formulated as a net of von Neumann algebras associated with the open
spacetime regions [Haa96]. The relations between the full theory and the chiral components
have been obtained, e.g., in [Reh00], and they resulted in classification schemes for certain
classes of two-dimensional CFTs, see, e.g., [KL04b], [BKL15]. In this course, it was important
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that from two copies of a single chiral theory and a family of charged sectors, one can
construct two-dimensional theories as extensions of the two-dimensional theory obtained just
by combining the chiral components, and then extended it by introducing non-chiral (bulk)
fields. Among such extensions, the most studied ones are the “diagonal” extensions, obtained
by letting the chiral theories act simultaneously on a direct sum of copies of their vacuum
representation, and then introducing “charged” fields that mix the different components.

Since [LR95], in the operator-algebraic setting, the (finite index, i.e., “relatively small”)
extensions can be equivalently well be described by Q-systems (i.e., C∗-Frobenius algebra
objects) in the unitary braided tensor representation category of the net that one wants to
extend. Locality of the extension can also be characterized by means of a commutativity con-
dition on the associated Q-system. In the operator-algebras context, the Q-system associated
with a finite index “diagonal” extension is called a Longo–Rehren Q-system.

It is worth mentioning that the method of Q-systems apply both to chiral and to two-
dimensional theories (in fact even in four-dimensions), and that similar ideas (commutative
Frobenius algebra objects in tensor categories) emerged independently in other algebraic
approaches to CFT, such as vertex operator algebras [HKL15], [KO02], both in one and two
dimensions, see, e.g., [FRS02], [HK07], [Kon07], [RFFS07]. In the unitary VOA [CKLW18],
[DL14], [Gui22] and unitary tensor category context [GLR85], [DR89], [LR97], these notions
(Frobenius algebras, C∗-Frobenius algebras, Q-systems, to describe extensions) have been
recently shown to be equivalent [CGGH22].

The relationship between chiral and full two-dimensional CFTs (not restricted to a single
Minkowski spacetime) can also be cast and studied [BGS22] in the more general categori-
cal/operadic framework of locally covariant AQFT [BFV03], [BSW21].

Let us note, however, that most of the purely algebraic frameworks, see, e.g., [HK07],
are designed particularly for conformal field theories, and do not apply, as they are, to
massive theories. On the other hand, it is natural to expect that a two-dimensional full CFT
can be described in a more traditional framework for quantum field theory, the Wightman
axioms [SW00]. Wightman fields are operator-valued distributions on a Hilbert space, and a
reasonable description of such fields and the Hilbert space would be desirable.

Having explicit Wightman fields is not just interesting on its own, but could be a starting
point for constructing non-conformal field theory, e.g., by perturbing the dynamics of the
CFT by these fields. Such an idea is presented in [Zam89], where certain massive integrable
fields are associated with charged fields in CFT. Perturbing the dynamics of the free field
on the same Hilbert space has been carried out on the de Sitter space [BJM23]. Therefore,
developing a theory of Wightman fields in two dimensions will be a basis for rigorously
studying the relations between CFT and massive models [JT].

In this paper, we study full two-dimensional CFTs whose chiral components admit a
(finite or infinite) collection of automorphisms (invertible objects in the language of tensor
categories) among their irreducible representations (superselection sectors). We will define
and construct both two-dimensional conformal Haag–Kastler nets and two-dimensional con-
formal Wightman fields explicitly in terms of the Hilbert space of the chiral components and
of their charged sectors. We introduce charged primary fields as operators between different
charged sectors of the chiral components, and combine them to obtain local bulk fields.

To be more specific, let AL and AR be chiral conformal nets on S1 admitting a family of
automorphisms (including the defining vacuum representation) among their charged repre-
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sentations (in the sense of Doplicher–Haag–Roberts [DHR69a], [DHR69b], [DHR71] [DHR74],
but in one and two dimensions instead of four) respectively denoted by κL(g) and κR(g), and
parametrized by the same abelian group G. These automorphisms are defined on the same
Hilbert spaces, but we denote them as HL(g)

L ,HR(g)
R to distinguish the representation. On the

Hilbert space
⊕

g∈GHL(g)
L ⊗ HR(g)

R , the chiral observables AL ⊗ AR act diagonally. We will
add charged fields that shift the sectors in the direct sum, under some condition on their
braiding (which is satisfied in many cases, see, e.g. the end of Section 6) and obtain full
two-dimensional conformal nets and conformal Wightman fields. Moreover, with a similar
technique, we construct some (presumably new) local conformal nets on S1 by combining
and extending a family of conformal nets, in such a way that a certain (total) braiding van-
ishing condition is fulfilled. This generalizes the well-known extensions of a single chiral
U(1)-current net [BMT88], and it can be seen as a variation of the “gluing” construction due
to [CKM22] for VOAs.

We describe explicitly the fields for the U(1)-current algebra. Charged primary fields of
a single chiral component are given as formal series between charged sectors [TZ12], [TL97].
We expect that our construction works for loop group nets (for a simply-laced simple, sim-
ply connected compact group) at level 1 as well [Was98], [TL97]. With a more involved
combination of left and right chiral components, it should also be possibile to generalize it
to other completely rational nets (when the charged fields are available), in the presence of
irreducible representations with statistical dimension greater that 1 (i.e., in the non-pointed
tensor category case).

This paper is organized as follows. In Section 2, we recall the fact that two-dimensional
conformal field theories extend to the Einstein cylinder, then set out the operator-algebraic
formulation of the chiral components and of the full two-dimensional CFTs. We also collect
some facts about representations and charged fields of chiral components, in the case of
automorphisms. In Section 3, from a family of chiral components equipped with a collection
of automorphisms and satisfying certain conditions on the braiding, we construct an extension
of their tensor product on S1. In Section 4, we take a pair of left and right chiral components
with a collection of automorphisms and assume that their braidings cancel in a certain sense,
and we construct a full two-dimensional CFT extending the tensor product of the chiral
components. In Section 5, we study the case where the charged primary fields are given as
formal series. Under similar assumptions on the braiding and assuming energy bounds, we
exhibit the Wightman fields responsbile for the extensions at the level of nets constructed in
the previous sections. In Section 6, we consider the explicit example of the U(1)-current. We
exhibit its charge structure, their braiding and charged fields, and we show that they fit in
the general construction of the previous sections. In Section 7, we summarize our outlook.

Notations

In order to keep uniform notations throughout the paper, we label chiral (one-dimensional)
objects, while we use symbols without a label for two-dimensional objects.

• Aκ, ϕj, ψκ,AL,AR, ψR, ψL: chiral net/chiral fields/chiral charged fields.

• AK , ψK : chiral extension/chiral charged local fields.
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• A: two-dimensional net.

• Ã, ψ̃: two-dimensional net/two-dimensional charged local fields.

2 Preliminaries

2.1 Einstein cylinder

Four-dimensional conformally covariant Wightman fields have been shown to extend naturally
to the Einstein cylinder [LM75]. Moreover, the conformal group acts on the Einstein cylinder
in a natural way and the fields are covariant with respect to its action. In two dimensions,
an analogous procedure can be carried out with one more step because the two-dimensional
Einstein cylinder is not simply connected. To state these results, let us first discuss the
conformal geometry. We follow [KL04b], and start the discussion with the lightrays R in
R1+1.

The Möbius group PSL(2,R) ∼= Möb acts on the one-point compactification S1 of R,
where R is identified with S1 \ {−1} through the stereographic projection. Hence, by lifting
such action, its universal covering group Möb acts on R, the universal covering of S1. The
original lightray R is identified with the interval (−π, π) in R as the universal covering of S1.
For an interval I such that I ⊂ (−π, π), there is a neighborhood U of the unit element in
Möb such that if γ ∈ U , then γ · I ⊂ (−π, π). In this sense, the group Möb acts locally on
the lightray.

The two-dimensional Minkowski space R1+1 has the metric (a, b) = a0b0 − a1b1, where

a, b ∈ R1+1. With the lightcone coordinates (a−, a+) =
(

a0−a1√
2
, a0+a1√

2

)
, the Minkowski space

is the product of two lightrays R1+1 = R× R (in the lightcone coordinates, not the (a0, a1)-
coordinates) and the metric can be written as (a, b) = a−b++a+b−. A conformal transforma-
tion of R1+1 is, by definition, a transformation of R1+1 that preserves the metric up to a scalar.
From the above expression, it is clear that a product of any pair of orientation-preserving
diffeomorphisms of lightrays is a conformal transformation.

The diamond D0 = {(a−, a+) : −π < a± < π} can be mapped to the Minkowski space
R1+1 by the conformal transformation (a−, a+) 7→ (tan(1

2
a−), tan(

1
2
a+)). Through this trans-

formation, R1+1 can be identified with D0. On D0 = (−π, π)×(−π, π), the group Möb×Möb
acts locally in the sense above.

Let Rt be the lift of the rotation by t in Möb. In a two-dimensional conformal field
theory, the correlation functions are invariant under the local action of Möb × Möb, and
moreover, the spacelike 2π-rotations R := {R2nπ × R−2nπ : n ∈ Z} are often trivial. If this
holds, the field theory can be extended to the Einstein cylinder1 E = R1+1/R. In the most
favorable case, the theory extends to E and there is also a local action of the conformal
group C = Diff+(S1)×Diff+(S1)/R.

1This is topologically equivalent to S1 × R, but the product structure is different from the lightray
decomposition.
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Figure 1: The Minkowski space R1+1, depicted as the diamond. When the spacelike rotation
R2π ×R−2π is trivial, the dotted lines are identified and it is a subset of the Einstein cylinder
E .

2.2 Chiral components and representation theory

2.2.1 Conformal net on S1

Among conformal fields, there are those that do not depend on one of the lightray coordinates.
They are called chiral fields, and can be restricted to the lightray, then extended to the
circle S1 by locality. We put the index κ to the objects in this section, although we study a
single chiral component. This convention will be useful later when we combine various such
components, while we denote two-dimensional objects without index.

Let us start with a net on R, and see how it extends to S1. Note that if a unitary
projective Uκ representation of Diff+(S1) on a Hilbert spaceHκ is restricted to the semisimple
subgroup Möb, there is a unique true (non-projective) representation whose quotient in
PU(Hκ) coincides with Uκ. In this sense, we can consider the spectrum of Uκ restricted to
Möb without ambiguity [Bar54, Theorem 7.1].

We call a triple (Aκ, Uκ,Ωκ) a conformal net on R if Aκ assigns to each open non-dense
non-empty interval I ⊂ R a von Neumann algebra Aκ(I) on a Hilbert space Hκ, Uκ is a
unitary projective representation of Diff+(S1) and Ωκ ∈ Hκ such that

(1dCN1) Isotony: if I1 ⊂ I2, then Aκ(I1) ⊂ Aκ(I2).

(1dCN2) Locality: if I1 and I2 are disjoint, then Aκ(I1) ⊂ Aκ(I2)
′.

(1dCN3) Diffeomorphism covariance: For a bounded interval I ⊂ R, there is a neigh-
borhood U of the unit element of Diff+(S

1) such that if γ ∈ U then γ · I ⊂ R
and

Uκ(γ)Aκ(I)Uκ(γ)
∗ = Aκ(γ · I).

Furthermore, if supp γ is disjoint from I, then AdUκ(γ)(x) = x for x ∈ Aκ(I).

(1dCN4) Positivity of energy: the restriction of Uκ to the translation subgroup R ⊂ Möb
has the spectrum contained in R+.

5



(1dCN5) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a
phase) vector Ωκ ∈ Hκ such that Uκ(g)Ωκ = Ωκ for g ∈ Möb and Aκ(I)Ω = Hκ.

If we assume only the covariance with respect to Möb, we call it a Möbius-covariant net.
If Uκ factors through Diff+(S

1) as a projective representation, that is, if Uκ(R2nπ), n ∈ Z
is a scalar, then Aκ can be extended to a net defined on the set I of non-dense, non-trivial
open intervals on S1 and it satisfies the usual axioms of conformal net on S1, that is a
triple (Aκ, Uκ,Ωκ) satisfying isotony, locality, Diff+(S

1)-covariance, positivity of energy and
the vacuum properties. See, e.g., [KL04a, Section 2.1], [CKLW18, Chapter 3].

We also recall that Uκ can be made into a unitary multiplier representation (rather than
projective) of Diff+(S1), that is, Uκ(γ1)Uκ(γ2) = c(γ1, γ2)Uκ(γ1γ2) for some c(γ1, γ2) ∈ C
[Car04, Theorem A.2], [FH05, Proposition 5.1]. Such c is called the cocycle of the multiplier
representation.

Proposition 2.1. Let (Aκ, Uκ,Ωκ) be a conformal net on R. Assume furthermore that
Uκ(R2π) = 1 (in PU(Hκ)), that is, the lift of 2π-rotation is trivial. Then (Aκ, Uκ,Ωκ)
extends to S1.

Proof. If Uκ(R2π) = 1, then its adjoint action is trivial, and the natural extension of Aκ on
(−π, π) to R (the universal covering of S1) is periodic, hence we can regard it as a net on S1.
It is known that the positivity of energy restricted to the rotation subgroup and that to the
translation subgroup are equivalent (see e.g., [Wei06, Lemma 3.1]). The remaining axioms
of [KL04a, Section 2.1] follow easily.

The assumption Uκ(R2π) = 1 is necessary, but we do not know whether this follows from
more general assumptions (cf. the Bisognano–Wichmann property is necessary and sufficient
[GLW98, Theorem 1.4], but we are not aware whether it is automatic for conformal nets on
R).

There is an example of a net on R with a weaker covariance and not extending to S1

(Uκ is only a projective representation of the group generated by translations, dilations and
diffeomorphisms of R with compact support): the U(1)-current net with the perturbed stress-
energy tensor [BSM90], see also the discussion in [MT18, Section 5.2].

2.2.2 Representations of chiral conformal nets

A representation of a conformal net Aκ (or more precisely of (Aκ, Uκ,Ωκ)) on S
1 is a family

of representations ρ = {ρI} of {Aκ(I)}I∈I on a single Hilbert space Hρ
κ, which is compatible

in the sense that if I1 ⊂ I2, then ρI2|Aκ(I1) = ρI1 . If Hρ
κ is equal to Hκ and ρI(Aκ(I)) = Aκ(I),

equivalently if the C∗-tensor categorical or statistical dimension dρ equals 1, we say that ρ is
an automorphism of Aκ.

Let us summarize the observations (cf. [MTW18, Section 6]):

• Any automorphism is irreducible, hence diffeomorphism covariant in the following sense
(cf. [DFK04, Theorem 6] for projective representations, [CDVIT21, Section 3.2] for
local multiplier representations): there is a local unitary multiplier representation Uρ

κ

of a neighborhood U of the unit element of Diff+(S1) with the same cocycle as that
of Uκ such that Uρ

κ(γ) = ρ(Uκ(γ)) if supp γ ⊂ I for some I and AdUρ
κ(γ)(ρ(x)) =
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ρ(AdUκ(γ)(x)) for x ∈ Aκ(I) for some I, γ ∈ U (the last restriction is why we call it
a local representation). Uρ

κ extends to Diff+(S1) as a projective representation because
Diff+(S1) is simply connected. Moreover, its restriction to Möb is a true representation
and it has automatically positive energy [Wei06, Theorem 3.8]. Therefore, the lowest
eigenvalue of the generator of lift rotations Lρ

0 is uniquely determined, and we denote
it by hρκ. This is called the conformal dimension. As the 2π-rotation is trivial, the
spectrum of Lρ

0 is contained in hρκ + (N ∪ {0}). By the first part of the proof of [FH05,
Theorem 5.1], the representation Uρ

κ extends to a unitary multiplier representation of
Diff+(S1).

• If ρ, ρ′ are two representations of Aκ and there is a unitary V ∈ U(Hκ) such that
V ρI(x) = ρ′I(x)V , for every x ∈ Aκ(I) and for all I ∈ I we say that they are unitarily
equivalent. We also say that V is a unitary intertwiner between ρ and ρ′.

• An automorphism is said to be localized in I if ρI′ = id, where I ′ is the interior of
S1 \ I. In this case, ρI maps Aκ(I) to itself, i.e., it is an endomorphism (in this case
an automorphism) of Aκ(I), by Haag duality on S1. Given ρ localized in I1, one can
always find a unitarily equivalent automorphism localized in another interval I2. If
I1 ∪ I2 is not dense in S1, one can take a proper interval I that contains I1 ∪ I2, and
by Haag duality on S1, the unitary operator V implementing the equivalence belongs
to Aκ(I). Such a V is called a charge transporter.

• The operator zκ,ρ(γ) := Uκ(γ)U
ρ
κ(γ)

∗ for γ ∈ Diff+(S1) is a charge transporter between
ρ and ργ, where ργ := AdUκ(γ) ◦ ρ ◦ AdUκ(γ

−1) is localized in γ · I if ρ is localized in
I. We call zκ,ρ(γ) the covariance cocycle, or just cocycle, of ρ.

• The DHR tensor product of representations ρ1 and ρ2 is defined by the composition
of the associated endomorphisms (automorphisms in this case) localized in each I. In
symbols, (ρ1)I ⊗ (ρ2)I := (ρ1)I ◦ (ρ2)I , or just (ρ1)I(ρ2)I , for short. The resulting
representation is denoted by ρ1 ⊗ ρ2, or just by ρ1ρ2. See, e.g., [GF93, Sections IV.2].
For strongly additive conformal nets on S1, or equivalently for conformal nets on R that
satisfy Haag duality on R, the tensor product can be defined globally, see, [KLM01,
Appendix B], [GR18], which is closer in spirit to the original definition of Doplicher–
Haag–Roberts [DHR69a], [DHR69b].

• Let ρ1, ρ2 be two automorphisms localized in I. In order to define the DHR braiding
[DHR71], [FRS89] between ρ1 and ρ2, let us choose a point on S1, identified with the
point at infinity by means of the corresponding stereographic projection onto R. Take
ρ̃1, ρ̃2 localized in Ĩ1, Ĩ2, respectively, such that Ĩ1∩ Ĩ2 = ∅, Ĩ1, Ĩ2 are away from infinity,
and take charge transporters V1, V2 between ρ1 and ρ̃1, ρ2 and ρ̃2, respectively. The
operator ϵ±ρ1,ρ2 := ρ2(V

∗
1 )V

∗
2 V1ρ1(V2), where ± depends on whether I1 is on the left or

right of I2, is a unitary intertwiner between ρ1ρ2 and ρ2ρ1 with all the properties of a
unitary braiding in a unitary tensor category. It does not depend on the choice of ρ̃1, ρ̃2
or V1, V2 under the same configuration of Ĩ1, Ĩ2, or on the chosen point at infinity, see,
e.g., [GF93, Section IV.4].
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• Let ρ be an automorphism localized in I. The conjugate automorphism ρ of ρ is the
automorphism localized in I ′ given by j ◦ ρ ◦ j, where j = Ad JI and JI is the modular
conjugation of Aκ(I) with respect to the vacuum. It follows that ρ ◦ ρ ∼= id, see [GL92,
Theorem 8.3], [GL96, Theorem 2.11].

Let (Bκ, Uκ,Ωκ) be a conformal net on S1 and let {Aκ}I∈I be a family of von Neumann
subalgebras Aκ(I) ⊂ Bκ(I) satisfying covariance with respect to Uκ. Then, on the subspace
HAκ =

⋃
I∈I Aκ(I)Ω, (Aκ|HAκ

, Uκ|HAκ
,Ωκ) is a Möbius-covariant net with respect to Uκ

because Uκ(γ)xΩκ = AdUκ(γ)(x)Ωκ ∈ A(γ · I)Ω for x ∈ Aκ(I), thus Uκ(γ) preserves HAκ .
The restriction of Uκ|HAκ

to Möb often extends to Diff+(S
1) and Aκ|HAκ

is covariant with
respect to it, in which case we say that Aκ is a (conformal) subnet of Bκ and write Aκ ⊂ Bκ

for simplicity. In this case, we say that Bκ is an extension of Aκ.

2.2.3 Charged fields associated with automorphisms

Let {(Aκ, Uκ,Ωκ)} be a conformal net on S1. In this section, we assume that among its irre-
ducible representations there are non-trivial automorphisms, cf. [DHR69b], [Bau95, Chapter
3] in the four-dimensional context with symmetric tensor categories. In the language of tensor
categories, the representations of Aκ contain a (braided) pointed tensor subcategory.

Fix an interval I ∈ I. Let ∆κ be a choice of mutually inequivalent automorphisms of Aκ

localized in I, one for each unitary equivalence class, including the trivial automorphism id
(the defining vacuum representation) of Aκ. Under the present assumption, the equivalence
classes of automorphisms form a discrete (finite or infinite) abelian group G under class
multiplication [ρ][σ] = [ρσ] (where ρσ is the composition of automorphisms) and inversion
[ρ]−1 = [ρ−1]. Let us assume that G is finitely generated, whose elements we denote by
g, h, g−1, . . ., and we denote by ι the identity element. Let κ(g) ∈ ∆κ, for every g ∈ G, be
the previously made choice of automorphisms of Aκ. We assume that κ(ι) = id. Without
loss of generality, by suitably changing the localization of the automorphisms inside I, we
may assume that κ(g)κ(h) = κ(h)κ(g) for every g, h ∈ G. Note that we are not assuming
κ(g)κ(h) = κ(gh), as ∆κ need not be closed under composition and inverses. For every
g, h ∈ G, let V g,h be a unitary intertwiner in Aκ(I) between κ(gh) and κ(g)κ(h) realizing
the equivalence [κ(gh)] = [κ(g)][κ(h)]. Namely, V g,hκ(gh)(x) = κ(g)(κ(h)(x))V g,h for every
x ∈ Aκ(I). We may assume that V g,h = V h,g and that V g,ι = V ι,h = 1.

For each g ∈ G, we define the operator ψg
κ acting on the Hilbert space Ĥκ :=

⊕
g∈GHκ(g)

κ ,

where Hκ(g)
κ := Hκ the vacuum Hilbert space of Aκ, by setting

(ψg
κΨ)h := V g,h(Ψ)gh,

for every Ψ ∈ Ĥκ. We call the ψg
κ charged field operators. They satisfy the following:

• Each ψg
κ is unitary on Ĥκ and it maps Hκ(h)

κ to Hκ(gh)
κ for every h ∈ G.

• Consider the representation κ̂(x) :=
⊕

h∈G κ(h)(x) of x ∈ Aκ(I) on Ĥκ. Then

(ψg
κκ̂(x)Ψ)h = V g,h (κ̂(x)Ψ)gh

= V g,hκ(gh)(x) (Ψ)gh
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= κ(g)(κ(h)(x))V g,h (Ψ)gh

= κ(h)(κ(g)(x))V g,h (Ψ)gh

= κ(h)(κ(g)(x)) (ψg
κΨ)h

= (κ̂(κ(g)(x))ψg
κΨ)h ,

for every Ψ ∈ Ĥκ, where we used that κ(h) and κ(g) commute in the 4th equality.

Therefore, we have the “charged field intertwiner” property (in the sense of Doplicher–
Roberts [DR72]) together with its conjugate (by substituting x with κ(g)−1(x∗)):

ψg
κκ̂(x) = κ̂(κ(g)(x))ψg

κ, (2.1)

(ψg
κ)

∗κ̂(x) = κ̂(κ(g)−1(x))(ψg
κ)

∗,

for every x ∈ Aκ(I), as operators on Ĥκ.

• The covariance cocycles zκ(g)(γ) for γ ∈ Diff+(S1) are unitary charged transporters
between κ(g) and κ(g)γ, and they fulfill the following tensoriality property. See [Lon97,
Appendix A], [DG18, Section 7], [MTW18, Proposition 6.1]. Tensoriality of cocycles :
zκ(g)(γ)κ(g)(zκ(h)(γ)) = zκ(g)κ(h)(γ), or equivalently zκ(g)(γ)⊗ zκ(h)(γ) = zκ(g)⊗κ(h)(γ).

• Let Ûκ(γ) :=
⊕

h∈G U
κ(h)
κ (γ) be a representation of Diff+(S1). As in [DG18, Theorem

7.7], [MTW18, Section 6], we get

(Ûκ(γ)ψ
g
κÛκ(γ)

∗Ψ)h = Uκ(h)
κ (γ)(ψg

κÛκ(γ)
∗Ψ)h

= Uκ(h)
κ (γ)V g,h(Ûκ(γ)

∗Ψ)gh

= Uκ(h)
κ (γ)V g,hUκ(gh)

κ (γ)∗(Ψ)gh

= Uκ(h)
κ (γ)Uκ(g)κ(h)

κ (γ)∗V g,h(Ψ)gh

= Uκ(h)
κ (γ)Uκ(ι)

κ (γ)∗Uκ(ι)
κ (γ)Uκ(g)κ(h)

κ (γ)∗V g,h(Ψ)gh

= zκ(h)(γ)
∗zκ(h)κ(g)(γ)V

g,h(Ψ)gh

= κ(h)(zκ(g)(γ))V
g,h(Ψ)gh

= (κ̂(zκ(g)(γ))ψ
g
κΨ)h,

for every Ψ ∈ Ĥκ. We used that U
κ(g)
κ (γ) = κ(g)(Uκ(γ)) if supp γ ⊂ I in the 4th equality

(see Section 2.2.2), the definition of zκ(g)(γ) in the 6th equality, and the tensoriality of
the cocycles in the 7th equality.

Therefore, we have the following “covariance property” of the charged fields: for every
γ ∈ Diff+(S1), as operators on Ĥκ,

Ad Ûκ(γ)(ψ
g
κ) = κ̂(zκ(g)(γ))ψ

g
κ, (2.2)

Ad Ûκ(γ)((ψ
g
κ)

∗) = κ̂(zκ(g)−1(γ))(ψg
κ)

∗,

where we used that (ψg
κ)

∗κ̂(zκ(g)(γ)) = κ̂(zκ(g)−1(γ)∗)(ψg
κ)

∗ = κ̂(zκ(g)−1(γ))(ψg
κ)

∗ by the
charged field intertwiner property of (ψg

κ)
∗ and the tensoriality of cocycle.
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Remark 2.2. Note that the charged fields constructed above are highly non-canonical, as they
depend, e.g., on the choice of V g,h for every g, h ∈ G. Note also that we are not demanding
neither ψg

κψ
h
κ = ψgh

κ nor ψg
κ
∗ = ψg−1

κ for g, h ∈ G, i.e., the charged field operators need
not form a group, cf. [Reh90, Section 3]. Nevertheless, by the intertwiner and covariance
properties, for every choice of V g,h, they give rise to relatively local extensions of Aκ.

Later we shall need the condition ψg
κψ

h
κ = ψh

κψ
g
κ on the charged fields just defined, in

order to produce local extensions of tensor products by “gluing” conformal nets. Note that
ψg
κψ

h
κ = ψh

κψ
g
κ, alone, does not mean locality of the extension. Note also that the group

multiplication condition ψg
κψ

h
κ = ψgh

κ would imply the commutativity condition ψg
κψ

h
κ = ψh

κψ
g
κ,

as G is abelian.

Proposition 2.3. In the notation of this section, suppose that G = Zn whose elements we
label by {0, 1, . . . , n − 1} modulo n, and let α ∈ ∆κ be an automorphism localized in I such
that αk ∈ ∆κ and [αn] = [id]. Choose a unitary V ∈ Aκ(I) intertwining id with αn, i.e.,
V x = αn(x)V for every x ∈ Aκ(I). Let the V g,h, g, h ∈ G, be defined by V g,h := V if
g + h ≥ n, where g, h ∈ {0, 1, · · · , n− 1} are thought of as representatives, and by V g,h := 1

if g + h < n. Then ψg
κψ

h
κ = ψh

κψ
g
κ and (ψg

κ)
∗ψh

κ = ψh
κ(ψ

g
κ)

∗ for every g, h ∈ G.

Proof. Only in this proof, we use the additive notation g + h for the group operation.
We first note that with our choice V g,hκ(g + h) = κ(g)κ(h)V g,h. By taking the represen-

tative g, h ∈ {0, 1, . . . , n− 1}, this can be checked by cases depending on whether g + h ≥ n
or g + h < n and using that κ(g) = κ(1)g.

From the definition, it is straightforward that ψ1
κ (where the upper index 1 is the group

element, not the exponent) is the product of a shift on
⊕

g∈GHκ(g)
κ =

⊕
g∈G Hκ as a Hilbert

space followed by 1 or V , and that ψg
κ = (ψ1

κ)
g, again with g ∈ {0, 1, . . . , n − 1}. From this

it is clear that ψg
κ, (ψ

g
κ)

∗ and ψh
κ commute.

Now let G be a finitely generated abelian group. Then it is isomorphic to a finite product
of cyclic groups Zn or Z. Let us assume that ∆κ is a choice of mutually inequivalent auto-
morphisms of Aκ localized in I and their equivalence classes form G as a group. For each
of the finite cyclic groups Zn in G, we can choose a generator in ∆κ localized in a smaller
interval I ⊂ I. For each of these generators, we choose V h,g ∈ A(I) as in Proposition 2.3,
constructing the operator ψh

κ for such h, g ∈ Zn. We can make this choice for each copy of Zn

by choosing finitely many mutually disjoint smaller intervals inside I, obtaining commuting
operators ψh

κ, ψ
g
κ where g, h are in different finite cyclic groups in G. For each of the copies of

the infinite cyclic group Z, we can take a generator 1 and we may assume that κ(g) = κ(1)g

for all g ∈ Z, thus we can set V g,h := 1 and ψg
κψ

h
κ = ψgh

κ for every g, h ∈ Z. Altogether, we
obtain charged fields ψh

κ for every h ∈ G, satisfying ψh
κψ

g
κ = ψg

κψ
h
κ.

Remark 2.4. Even if G is not finitely generated, if there is a choice of ∆κ such that κ(g)κ(h) =
κ(gh), then one can construct ψh

κ satisfying ψg
κψ

h
κ = ψgh

κ = ψh
κψ

g
κ as in [MTW18, Section 6],

thus (ψg)∗ = ψg−1
and the rest of our construction works as well. This happenes with the

U(1)-current net with G = Q or R.
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2.3 Two-dimensional conformal nets

In [KL04b], it was shown that any Haag–Kastler net on R1+1 that is locally conformally
covariant extends to the Einstein cylinder, using a slight modification of the conformal spin-
statistics theorem [GL96], [MT18, Theorem A.5]. To state this result precisely, let us start
with a net on R1+1. We call a triple (A, U,Ω) a conformal net on R1+1 if A assigns to each
open region O ⊂ R1+1 a von Neumann algebra A(O) on a Hilbert space H, U is a unitary
projective representation of Diff+(S1)×Diff+(S1) and Ω ∈ H satisfying

(2dCN1) Isotony: if O1 ⊂ O2, then A(O1) ⊂ A(O2).

(2dCN2) Locality: if O1 and O2 are spacelike separated, then A(O1) ⊂ A(O2)
′.

(2dCN3) Diffeomorphism covariance: For a bounded region O ⊂ R1+1, there is a neigh-
borhood U of the unit element of Diff+(S1) × Diff+(S1) such that if γ ∈ U then
γ ·O ⊂ R1+1 and

U(γ)A(O)U(γ)∗ = A(γ ·O).
Furthermore, if supp γ is disjoint from O, then AdU(γ)(x) = x for A(O).

(2dCN4) Positivity of energy: the restriction of U to the translation subgroup R2 ⊂
Möb × Möb has the joint spectrum contained in the closed forward light cone
V+ = {(a0, a1) ∈ R1+1 : a20 − a21 ≥ 0, a0 ≥ 0}.

(2dCN5) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a
phase) vector Ω ∈ H such that U(g)Ω = Ω for g ∈ Möb and is cyclic for any local
algebra, namely A(O)Ω = H.

If there is a conformal net on R1+1 as above, we can consider it as a net on the diamond D0 =
(−π, π)× (−π, π) as in Section 2.1. With this identification, the group Diff+(S1)×Diff+(S1)
acts on R × R, and we can extend the net A by covariance. However, this extension is not
very natural. Indeed, it often happens that the conformal net extends to E rather than to
R × R. We say that (A, U,Ω) is a conformal net on E if A is defined for regions in E ,
covariant with respect to U along the natural action of Diff+(S1)×Diff+(S1) and local in the
sense that A(O1) and A(O2) commute whenever there is a translation γ of the cylinder such
that D0 contains γ · O1, γ · O2 and they are spacelike there. A sufficient condition is given
in [MT18, Theorem A.5] (the Bisognano–Wichmann property for wedges), however, it is not
immediate to check it in the examples we construct. Instead, the following is easier to check
and gives immediately the desired extension.

Proposition 2.5. Let (A, U,Ω) be a conformal net on R1+1. Assume furthermore that
U(R2π × R−2π) = 1 (in PU(H)), that is, the spacelike 2π-rotation is trivial. Then (A, U,Ω)
extends to a conformal net on E.

Proof. This is parallel to Proposition 2.1.
As U(R2π × R−2π) = 1, the representation U factors through the group C (see Section

2.1). Furthermore, as U(R2π × R−2π) = 1, for any region O, A(O) and A(R2π × R−2π · O)
coincide. Therefore, we can identify any point x on R×R and R2π ×R−2π ·x, and obtain the
Einstein cylinder E . Covariance follows by definition, and locality in the sense above follows
from covariance and locality in D0.
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In the situation of Proposition 2.5, our net (A, U,Ω) is equivalent to a local conformal
net in the sense of [KL04b, Section 2].

Rehren introduced the maximal chiral nets of a two-dimensional conformal net (A, U,Ω)
that extends to E [Reh00]: let IL × IR be a diamond in R1+1. Define Amax

L (IL) = A(IL ×
IR) ∩ U(ι × Diff+(S1))′, where ι is the unit element of Diff+(S1). Then Amax

L is a priori a
conformal net on R defined on the Hilbert subspace HL = Amax

L Ω, and satisfies the condition
of Proposition 2.1, therefore, it extends to S1. Similarly, one can define Amax

R on HR. The
original full net A contains the tensor product Amax

L ⊗Amax
R on the subspace HL ⊗HR ⊂ H

(more precisely, there is a natural injective homomorphism from Amax
L ⊗ Amax

R into A). In
this sense, a generic two-dimensional conformal net A is an extension of the tensor product
net Amax

L ⊗Amax
R .

3 One-dimensional gluing from vanishing total braid-

ing

In this Section, from a family of conformal nets on S1 satisfying certain conditions, we con-
struct local extensions of their tensor products. Let us start with a finite collection conformal
nets {(Aκ, Uκ,Ωκ)}κ∈K on S1 labelled by κ ∈ K, |K| < ∞. We fix an interval I ∈ I. We
assume that each Aκ admits a (not necessarily finite) collection ∆κ of mutually inequivalent
and commuting automorphisms localized in I, containing the trivial automorphism idκ, and
whose fusion rules (up to unitary equivalence) are isomorphic to the same abelian group
G, as in Section 2.2.3. This group G should be either a finitely generated abelian group,
or we assume that we can choose elements in ∆κ and charged fields ψh

κ as in Section 2.2.3,
fulfilling the conclusions of Proposition 2.3 (for each κ ∈ K). Denote also by κ : G → ∆κ a
bijection (not necessarily an isomorphism, as each ∆κ need not be closed under composition
and inverses), such that κ(ι) = idκ, for each κ ∈ K. Here κ is used as an index as well as a
map, with a slight abuse of notations, hence κ(g) is an automorphism of Aκ. Furthermore,
we assume that, for all g1, g2, g ∈ G,

•
∏

κ ϵ
±
κ(g1),κ(g2)

= 1,

•
∏

κ ϵ
±
κ(g1)−1,κ(g2)

= 1,

•
∑

κ h
κ(g)
κ ∈ Z,

where the choice of± above is common for all κ, and we denoted by the same symbol ϵ±κ(g1),κ(g2)
the phase multiple of 1 (the trivial intertwiner between κ(g1)κ(g2) and itself) associated with
the braiding of κ(g1) and κ(g2). This makes sense by the commutativity assumption on ∆κ,
namely κ(g1)κ(g2) = κ(g2)κ(g1).

Now we construct a conformal net AK on S1 as follows.

• The Hilbert space for our net is HK :=
⊕

g∈G
⊗

κ∈K Hκ(g)
κ . On this space, we let

any operator of the form
⊗

κ xκ ∈
⊗

κ Aκ(I) act
2 as

⊕
g∈G

⊗
κ κ(g)(xκ). Denote this

2To clarify the notation once more, κ in xκ and ∆κ works as an index to distinguish different tensor
components, while κ in κ(g) indicates the choice of automorphism in ∆κ labelled by g ∈ G. Therefore,
κ(g)(xκ) is a bounded operator on Hg

κ. In general, κ works as an index except for κ(g).
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representation of the tensor product net
⊗

κAκ by K.

• We also consider an auxiliary tensor product space ĤK :=
⊗

κ∈K
⊕

g∈GHκ(g)
κ ⊃ HK .

The representation of the element
⊗

κ xκ on this space is denoted by K̂(
⊗

κ xκ). We

have K̂(
⊗

κ xκ)|HK
= K(

⊗
κ xκ).

• The vacuum vector of the net we are defining AK will be ΩK :=
⊗

κ Ωκ ∈
⊗

κ H
κ(ι)
κ ,

the ι-th component of HK .

• The covariance is given by UK(γ) :=
⊕

g∈G
⊗

κ U
κ(g)
κ (γ), which is a unitary multiplier

representation of Diff+(S1). By the condition that
∑

κ h
κ(g)
κ ∈ Z, UK satisfies the

assumptions of Proposition 2.1 and is a unitary multiplier representation of Diff+(S1).
Thus by ignoring the phase, it is a unitary projective representation of Diff+(S1). This
also extends naturally to ÛK on ĤK .

• For each element g ∈ G, we introduce the charged field operator ψg
K as follows. Our

Hilbert space HK =
⊕

g∈G
⊗

κH
κ(g)
κ is a “diagonal” subspace of the auxiliary Hilbert

space ĤK =
⊗

κ Ĥκ =
⊗

κ

⊕
g∈GHκ(g)

κ in a natural way, where recall that Ĥκ was
defined and used in Section 2.2.3. Let

ψg
K :=

⊗
κ

ψg
κ,

where ψg
κ are charged fields acting as in Section 2.2.3 on Ĥκ, hence ψ

g
K acts on

⊗
κ Ĥκ

but preserves HK . Now, for the ψg
κ we make the choice of the V g,h leading to the

conclusions of Proposition 2.3 and comments thereafter. Namely, we choose charged
fields such that ψg

κψ
h
κ = ψh

κψ
g
κ and (ψg

κ)
∗ψh

κ = ψh
κ(ψ

g
κ)

∗ for every g, h ∈ G.

• From the charged intertwiner property (2.1), it follows that

ψg
KK̂(

⊗
κ

xκ) = K̂

(⊗
κ

κ(g)(xκ)

)
ψg
K , (3.1)

(ψg
K)

∗K̂(
⊗
κ

xκ) = K̂

(⊗
κ

κ(g)−1(xκ)

)
(ψg

K)
∗. (3.2)

• The local algebras are given as follows. For the interval I fixed above, we set

AK(I) := K̂

(⊗
κ

Aκ(I)

)
∨ {ψg

K , (ψ
g
K)

∗}g∈G.

For any other interval γ · I ⊂ R given by the action of a diffeomorphism γ, we set
AK(γ · I) := AdUK(γ)(AK(I)). We will show below that this net is well-defined,
diffeomorphism covariant, local, and it extends to S1.
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Theorem 3.1. Let {(Aκ, Uκ,Ωκ)}κ∈K as above and assume that {∆κ}κ∈K, their braiding and
h
κ(g)
κ satisfy the conditions stated at the beginning of this section. Then the net (AK , UK ,ΩK)

satisfies (1dCN1)–(1dCN5) and the condition of Proposition 2.1, hence provides a conformal
net on S1, extending the chiral tensor product net

⊗
κAκ.

Proof. Although the calculations will be similar to those of [MTW18, Section 6], the setting
is different because we construct a chiral net on S1, instead of two-dimensional on E . Let us
present the proofs to exhibit why this works for |K| tensor products.

Let us first compute on the auxiliary Hilbert space
⊗

κ Ĥκ with ÛK(γ) :=
⊗

κ Ûκ(γ),

where Ûκ(γ) =
⊕

h∈G U
κ(h)
κ (γ) was defined and used in Section 2.2.3. Using the covariance

property of charged fields (2.2) (i.e., the formula for the adjoint action of Ûκ(γ) on ψ
g
κ acting

on each Ĥκ), we get

Ad ÛK(γ)(ψ
g
K) = K̂

(⊗
κ

zκ(g)(γ)

)
ψg
K ,

Ad ÛK(γ)((ψ
g
K)

∗) = K̂

(⊗
κ

zκ(g)−1(γ)

)
(ψg

K)
∗.

Furthermore, we also have ψg
Kψ

h
K = ψh

Kψ
g
K , (ψ

g
K)

∗ψh
K = ψh

K(ψ
g
K)

∗ by the commutation con-
dition we imposed on the charged fields ψg

κ, ψ
h
κ, and (ψg

κ)
∗.

We have to make sure that AK(γ ·I) is well-defined, that is, the definition does not depend
on the choice of γ. This question reduces to whether AdUK(γ)(AK(I)) = AK(I) if γ · I = I.
This is true because we can check the inclusion for γ with compact support and generating
elements of AK(I):

AdUK(γ)

(
K

(⊗
κ

xκ

))
= K

(⊗
κ

AdUκ(γ)(x)

)
∈ AK(I),

Ad ÛK(γ)(ψ
g
K) = K̂

(⊗
κ

zκ(g)(γ)

)
ψg
K ∈ AK(I),

Ad ÛK(γ)((ψ
g
K)

∗) = K̂

(⊗
κ

zκ(g)−1(γ)

)
(ψg

K)
∗ ∈ AK(I).

because zκ(g)(γ) ∈ Aκ(I). As a general γ can be written as a product of diffeomorphisms
with compact supports, this gives the inclusion AdUK(γ)(AK(I)) ⊂ AK(I), and the converse
inclusion is obtained by applying this to γ−1.

With this well-definedness, the first part of covariance (1dCN3) follows by definition.
Concerning the second part, if supp γ is disjoint from I, then UK(γ) commutes both with
K̂ (
⊗

κ Aκ(I)) by covariance of Aκ. Furthermore, UK(γ) commutes with ψg
K because com-

ponentwise ψg
K is a product of the shift and an element in

⊗
κAκ(I), while UK(γ) ∈

K̂ (
⊗

κ Aκ(I
′)) and this commutes with the shift because the κ(g) are localized in I.

Positivity of energy (1dCN4) follows because UK is a direct sum of positive-energy rep-
resentations. The vacuum ΩK is invariant under UK |Möb because it is the tensor product of
the vacuum vectors of Aκ. It is cyclic for AK(I1), where I1 ⊂ I ′, because AK(I1)ΩK spans
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⊗
κHκ due to the cyclicity of the vacua of Aκ, and the whole HK , since AK(I1) contains the

shifts K̂(zg(γ))ψ
g
K (up to a unitary on the left). From the assumption

∑
κ h

κ(g)
κ ∈ Z for each

g ∈ G, we can apply Proposition 2.1.
As for locality, we take γ such that γ ·I is disjoint from I. We have to show that generating

elements K̂(
⊗

κ xκ), ψ
g1
K of AK(I) and AdUK(γ)

(
K̂(
⊗

κ yκ)
)
, AdUK(γ) (ψ

g2
K ) of AK(γ · I)

commute. This is easy except the one involving ψg1
K and AdUK(γ)(ψ

g2
K ). As we have seen,

AdUK(γ)(ψ
g
K) = K̂

(⊗
κ zκ(g)(γ)

)
ψg
K . Therefore, to compute the commutator,

ψg1
K AdUK(γ)(ψ

g2
K ) = ψg1

K K̂

(⊗
κ

zκ(g2)(γ)

)
ψg2
K

= K̂

(⊗
κ

κ(g1)(zκ(g2)(γ))

)
ψg1
Kψ

g2
K ,

and

AdUK(γ)(ψ
g2
K )ψg1

K = K̂

(⊗
κ

zκ(g2)(γ)

)
ψg2
Kψ

g1
K .

Now observe that zκ(g2)(γ)
∗κ(g1)(zκ(g2)(γ)) = ϵ±κ(g1),κ(g2) (the DHR braiding, a scalar in the

case of automorphisms κ(g1) and κ(g2)) where the ± sign depends only on whether γ moves
I to the left or to the right, and the choice of ± is common for all κ). Hence the two left
hand sides above are equal if and only if

∏
κ ϵ

±
κ(g1),κ(g2)

= 1 and ψg1
Kψ

g2
K = ψg2

Kψ
g1
K for every

g1, g2 ∈ G. The commutation between (ψg1
K )∗ and AdUK(γ)(ψ

g2
K ) follows too by replacing

κ(g1) by κ(g1)
−1 and using the condition

∏
κ ϵ

±
κ(g1)−1,κ(g2)

= 1 and (ψg1
K )∗ψg2

K = ψg2
K (ψg1

K )∗.
Locality for general intervals follows from the previous paragraph and covariance.

If all Aκ are strongly additive, that is, Aκ(I3) = Aκ(I1) ∨ Aκ(I2) where I1, I2 is obtained
by removing one point from I3, then AK is strongly additive, too. This can be seen by taking
I1 = I, then AK(I3) is generated by the same ψg

K ∈ AK(I) and K(
⊗

κ xκ), xκ ∈ Aκ(I3) =
Aκ(I) ∨ Aκ(I2).

This construction can be carried out even if there is only one index κ, if the the condition
ϵ±κ(g1),κ(g2) = 1 is satisfied. When applied to the U(1)-current net, this gives the extensions

considered in [BMT88], cf. Section 6, where G = Z, the map κ is a group isomorphism, and
κ(g1), κ(g1) are powers of the same fixed automorphism κ(h) having ϵ±κ(h),κ(h) = 1 (bosonic

automorphism).

4 Two-dimensional conformal field theory arising from

braiding-cancelling map

With an idea similar to that of Section 3, we construct conformal nets on R1+1. Here we
start with left and right chiral components, take their tensor product as a two-dimensional
conformal net, then find extensions of it.
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4.1 Extensions with pointed tensor category

Let us start with a pair of conformal nets AL,AR on S1. We fix an interval I ⊂ S1. As
in Section 3, we assume that AL and AR admit, respectively, a family ∆L,∆R (finite or
infinite) of mutually inequivalent and commuting automorphisms localized in I, containing
the trivial automorphism idL, idR, and whose fusion rules (up to unitary equivalence) are
isomorphic to the same abelian group G, cf. Section 2.2.3. This group G should be either
finitely generated, or we assume that we can choose elements in ∆L,∆R and charged fields
ψg
L, ψ

g
R with the commuting property as in the conclusions of Proposition 2.3 (for κ = R,L)

and comments thereafter. We assume that

• ∆L and ∆R contain the trivial automorphisms idL, idR of AL and AR.

• Denote by L,R the bijections from G to ∆L,∆R, respectively, corresponding to the
choice of automorphisms, with abuse of notations. Let L(ι) := idL, R(ι) := idR.

• For every g1, g2 ∈ G, it holds that ϵ±L(g1),L(g2) = ϵ∓R(g1),R(g2)
and ϵ±L(g1),L(g2)−1 = ϵ∓R(g1),R(g2)−1

(braiding cancellation), and hL(g) = hR(g) for every g ∈ G.

In this section, we denote by the same symbol ϵ±L(g1),L(g2) the phase multiple of 1 (the

trivial intertwiner between L(g1)L(g2) = L(g2)L(g1) and itself) associated with the
braiding of L(g1) and L(g2). Similarly for R(g1) and R(g2).

Remark 4.1. Let AL = AR. If G is cyclic, then the braiding cancellation is automatic if
we take ∆L = ∆R and L(g) = R(g)−1 for every g ∈ G. Indeed, in general, for commuting

automorphisms, it holds that ϵ±L(g1),L(g2) = ϵ∓L(g2)−1,L(g1)−1 . Now, for automorphisms L(g1),

L(g2) that are powers of the same L(h), namely L(g1) = L(h)n, L(g2) = L(h)m for n,m ∈ Z,
it holds ϵ±L(g1),L(g2) = (ϵ±L(h),L(h))

nm = ϵ±L(g2),L(g1) (namely, the nm-th power of the statistical

phase of L(h)). Hence g1 and g2 can be exchanged and we have braiding cancellation.

With this input, we construct a conformal net Ã on R1+1 as follows.

• The full Hilbert space is H̃ :=
⊕

g∈G HL(g)
L ⊗ HR(g)

R . On H̃, any operator of the form
xL ⊗ xR ∈ AL(IL)⊗AR(IR) acts as

⊕
g∈G L(g)(xL)⊗ R(g)(xR) (see the footnote 2 for

this notation). Denote this representation by τ̃ .

• The vacuum vector of Ã is ΩL ⊗ ΩR ∈ HL(ι)
L ⊗HR(ι)

R .

• The covariance is given by Ũ(γL × γR) :=
⊕

g∈G U
L(g)
L (γL) ⊗ U

R(g)
R (γR), which is a

unitary projective representation of Diff+(S1) × Diff+(S1). By the assumption that

hL(g) = hR(g), Ũ satisfies the condition of Proposition 2.5.

• Note that H̃ can be seen as a subspace of ĤL ⊗ĤR :=
(⊕

g∈G HL(g)
L

)
⊗
(⊕

g∈GHR(g)
R

)
in a natural way. We denote L̂ :=

⊕
g∈G L(g), R̂ :=

⊕
g∈GR(g).

• Let ψg
L, ψ

g
R be as in Section 2.2.3, with the V g,h chosen as in Proposition 2.3. For each

g ∈ G, we introduce the charge operator ψ̃g as follows

ψ̃g := ψg
L ⊗ ψg

R ∈ B(ĤL)⊗ B(ĤR). (4.1)
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It is then clear that ψ̃g preserves H̃.

From this definition and by (2.1), it follows that

ψ̃gL̂(xL)⊗ R̂(xR) = L̂(L(g)(xL))⊗ R̂(R(g)(xR))ψ̃
g, (4.2)

just as in (3.1).

• The local algebras of Ã are given as follows: For the diamond I× I, we set Ã(I× I) :=

τ(AL(I) ⊗ AR(I)) ∨ {ψ̃g, (ψ̃g)∗}g∈G. For any other diamond γL · I × γR · I, we set

Ã(γL · I × γR · I) := Ad Ũ(γL × γR)(Ã(I × I)).

Theorem 4.2. The net (Ã, Ũ , Ω̃) satisfies (2dCN1)–(2dCN5) and the condition of Proposi-
tion 2.5, hence provides a conformal net on E, extending the two-dimensional conformal net
AL ⊗AR.

Proof. The most of the properties, well-definedness of Ã, (2dCN1)–(2dCN5) except for
(2dCN2) and the condition of Proposition 2.5 can be verified as in [MTW18, Section 6],
using the assumption hL(g) = hR(g). As for locality, in the proof of [MTW18, Section 6], it is

only important that ϵ±L(g1),L(g2) = ϵ∓R(g1),R(g2)
as scalars, which we assume. The commutation

between (ψ̃g1)∗ and AdU(γL × γR)(ψ̃
g2) follows from ϵ±L(g1)−1,L(g2)

= ϵ∓R(g1)−1,R(g2)
. Therefore,

the proof of locality (2dCN2) works as well.

4.2 Comparison with Longo–Rehren extensions

In this section, we review the so-called Longo–Rehren extensions introduced in [LR95, Propo-
sition 4.10], see also [Mas00], [KLM01, Appendix A], [BKLR15, Section 3.3] and references
therein, and we interpret them as “generalized shift constructions”. Later, we shall relate
them to the extensions presented in the previous sections.

Let N be an infinite factor (e.g., N = Aκ(I) a local algebra of a conformal net on S1).
Let C be a unitary fusion category (not necessarily braided, for the moment) realized
as a full subcategory of End(N ), the set of normal injective unital *-endomorphisms of N .
For the preliminaries on unitary fusion categories (realized, without loss of generality, as
endomorphisms of von Neumann algebras) we refer, e.g., to [BKLR15], [EGNO15]. We use
the notation HomC(ρ, σ) for the spaces of intertwiners V ∈ N between ρ and σ objects in C,
namely V ρ(x) = σ(x)V for every x ∈ N , the arrows in our subcategory of endomorphism.

For every unitary equivalence class of irreducible objects in C, choose one representative
ρi, i = 0, . . . , n, with ρ0 = id, and denote ∆ := {ρ0, . . . , ρn}. Note that, if C,D ⊂ End(N ) are
two unitary fusion categories, then the Deligne tensor product C⊠D [BK01, Definition 1.1.15]
can be realized in End(N⊗̄N ), where N⊗̄N is the spatial tensor product3 von Neumann
algebra. Next, let J : N → N φ be an antilinear isomorphism of von Neumann algebras,
where N J := J (N ), e.g., the natural involution J : x 7→ x∗, where N J ∼= N opp. Consider
the unitary fusion category CJ ⊂ End(N J ) with objects ρJ := J ◦ ρ ◦ J −1 ∈ End(N J ),
where ρ is an object in C, and with arrows tJ := J (t), where t is an arrow in C.

3In this section, we denote by ⊗̄ the spatial tensor product of operators, in order to distinguish it from
the categorical tensor product functor ⊗, which we shall employ below on intertwiners.
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The Longo–Rehren extension of the spatial tensor product von Neumann algebra
N⊗̄N J (an irreducible finite index unital inclusion of factors N⊗̄N J ⊂ M) is specified by
the irreducible Q-system (ΘLR,WLR, XLR) in C⊠ CJ ⊂ End(N⊗̄N J ) defined as follows. Let

ΘLR :=
⊕

i=0,...,n

ρi⊗̄ρJi ∈ End(N⊗̄N J ).

The direct sum is defined by choosing a family of n+1 isometries Ti,i ∈ N⊗̄N J , i = 0, . . . , n,
“mutually orthogonal” in the sense that T ∗

i,iTi′,i′ = δi,i′1, and “complete” in the sense that∑
i=0,...,n Ti,iT

∗
i,i = 1, and letting ΘLR(x) :=

∑
i=0,...,n Ti,iρi⊗̄ρ

J
i (x)T

∗
i,i for every x ∈ N⊗̄N .

Hence, by definition, Ti,i ∈ HomC⊠CJ (ρi⊗̄ρJi ,ΘLR) for every i = 0, . . . , n. Note that neither
the endomorphism ΘLR nor the isometries Ti,i are “simple tensors” in C ⊠ CJ , unless n = 0.

Let WLR := T0,0 ∈ HomC⊠CJ (id ⊗̄ id,ΘLR) be the unit of the Q-system and let

XLR :=
∑

i,j,k=0,...,n

√
d(ρi)d(ρj)

d(ρk)
(Ti,i ⊗ Tj,j)(

∑
V

V ⊗̄V J )T ∗
k,k ∈ HomC⊠CJ (ΘLR,Θ

2
LR)

be the comultiplication of the Q-system, where V ∈ N runs in a chosen orthonormal basis of
Nk

i,j(= the multiplicity of ρk in ρiρj, possibly 0) isometries of HomC(ρk, ρiρj) (whose dimen-
sion indeed equals Nk

i,j) for every fixed i, j, k = 0, . . . , n, with respect to the inner product
t∗t′ = δt,t′1. The definition of XLR is independent of this choice because J is antilinear.
Note that Ti,i ⊗ Tj,j denotes the tensor product of arrows in the category of endomorphisms,
and that both XLR and WLR belong to N⊗̄N J . The normalizations read W ∗

LRWLR = 1 and
X∗

LRXLR = (
∑

i d(ρi)
2)1. Being (ΘLR,WLR, XLR) a Q-system, see [LR95, Proposition 4.10]

for the proof and cf. [BKLR15, Definition 3.8], [BKLR15, Proposition 3.19], then by [Lon94]
ΘLR ∈ End(N⊗̄N J ) is a dual canonical endomorphism of an irreducible finite index unital
extension N⊗̄N J ⊂ M realized on the Hilbert space H⊗̄HJ if N and N J are respectively
realized on H and HJ . The beginning of the Jones/canonical tunnel, see [LR95, Section 2.5],
reads

M−2 ⊂ M−1 ⊂ N⊗̄N J ⊂ M,

where M−2 := ΘLR(N⊗̄N J ) is the image of ΘLR, and M−1 := ⟨ΘLR(N⊗̄N J ), XLR⟩ is
the von Neumann algebra generated together with XLR. The two subfactors M−2 ⊂ M−1

and N⊗̄N J ⊂ M are spatially isomorphic. The Q-system (ΘLR,WLR, XLR) also specifies a
(unique, by irreducibility, normal faithful) conditional expectation E from M onto N⊗̄N J

with Jones projection e ∈ M1 (the Jones extension of M with respect to E), or equivalently
E−2(·) := ΘLR(W

∗
LR ·WLR) from M−1 onto M−2 with Jones projection e−2 := WLRW

∗
LR.

Remark 4.3. Choosing a state ω on N⊗̄N J (e.g., the vacuum state in the QFT context) and
working in the GNS Hilbert space of (M, ω ◦E) yields the more common description in QFT
of the extension N⊗̄N J ⊂ M with a vacuum vector Ω (cyclic and separating for M and
inducing an E-invariant state) such that e = [N⊗̄N JΩ], cf. the proof of [LR95, Theorem
4.9].

Let ψj,j := ΘLR(T
∗
j,j)XLR ∈ M−1, for every j = 0, . . . , n. Each ψj,j has the “charged field

intertwiner” property on M−2 ⊂ M−1 in the sense of Doplicher–Roberts [DR72], i.e.,

ψj,jΘLR(x) = ΘLR(ρj⊗̄ρJj (x))ψj,j, x ∈ N⊗̄N J .
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We refer to the ψj,j as the charged fields of the Longo–Rehren Q-system (ΘLR,WLR, XLR).
Such charged fields can be defined for every other Q-system of endomorphisms.

As XLR =
∑

j=0,...,n ΘLR(Tj,j)ψj,j, because
∑

j=0,...,n Tj,jT
∗
j,j = 1, it holds

M−1 = ⟨M−2, ψ0,0, . . . , ψn,n⟩.

Note that ψ0,0 = ΘLR(T
∗
0,0)XLR = ΘLR(W

∗
LR)XLR = 1.

Setting Hj,j := Tj,jT
∗
j,jH⊗̄HJ , for every j = 0, . . . , n, yields an orthogonal decomposition

H⊗̄HJ =
⊕

j=0,...,n

Hj,j. (4.3)

Note that H0,0 is the range of the Jones projection e−2 = T0,0T
∗
0,0 = WLRW

∗
LR.

Moreover, by definition of XLR and Ti,i ⊗ Tj,j = ΘLR(Tj,j)Ti,i, it follows

ψj,j =
∑

i,k=0,...,n

√
d(ρi)d(ρj)

d(ρk)
Ti,i(

∑
V

V ⊗̄V J )T ∗
k,k,

where the first sum runs over all i, k such that Hom(ρk, ρiρj) ̸= ⟨0⟩ for fixed j, and the second
sum runs over V in the chosen orthonormal basis of isometries in HomC(ρk, ρiρj). Note that,
while M−2 acts diagonally on H⊗̄HJ by the very definition of ΘLR, the charged fields ψj,j’s
mix different components.

Remark 4.4. In the special case of pointed unitary fusion categories C (in particular, d(ρi) =
d(ρj) = d(ρk) = 1 and the fusion ring is a finite group), then all vector spaces HomC(ρk, ρiρj)
have either dimension 1 or 0. In this case each ψj,j operates as a “right j−1 shift operator”
on the grading of H⊗̄HJ , mapping each subspace Hk,k, k = 0, . . . , n, to the subspace Hi,i

such that [ρk] = [ρiρj], i.e., [ρkρ
−1
j ] = [ρi]. Moreover, for every j, j′ = 0, . . . , n,

ψj,jψj′,j′ =
∑

i,k=0,...,n

Ti,i(V ⊗̄V J )T ∗
k,k

∑
i′,k′=0,...,n

Ti′,i′(V
′⊗̄V ′J )T ∗

k′,k′

where i, k, i′, k′ are such that dim(HomC(ρk, ρiρj)) = 1 and dim(HomC(ρk′ , ρi′ρj′)) = 1. Note
that, as ∆ is fixed, the V , V ′ are both unique up to a phase factor, and J is antilinear,
hence the irrelevance of their choice is immediately evident in the pointed case. If we could
choose ∆ to be a group (or closed under multiplication), then using T ∗

k,kTi′,i′ = δk,i′1 and
V V ′ ∈ Hom(ρk′ , ρiρjρj′) = Hom(ρk′ , ρiρh) for some ρh ∈ ∆ such that ρjρj′ = ρh, then it
would follow that ψj,jψj′,j′ = ψh,h. If we chose the inverse (i.e., a conjugate in the case of
automorphisms) of some ρj to be some ρl ∈ ∆, together with ρ0 = id, then ψ∗

j,j = ψl,l.

If C is in addition braided, not necessarily pointed, then the Longo–Rehren Q-system
is commutative. See the discussion following the proof of [LR95, Proposition 4.10] and cf.
[BKLR15, Proposition 4.21]. Let ϵ±ρi,ρj be the braiding in C and its opposite, then the com-

mutativity condition reads ϵ±ΘLR,ΘLR
XLR = XLR, i.e., for every i, j = 0, . . . , n,

ϵ±ρi,ρj⊗̄ ϵ±,J
ρi,ρj

ψi,iψj,j = ψj,jψi,i, (4.4)

where ϵ±ρi,ρj⊗̄ ϵ±,J
ρi,ρj

is the braiding between ρi⊗̄ρJi and ρj⊗̄ρJj in C ⊠ CJ , the irreducible
summands of ΘLR.
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Remark 4.5. If C is braided and pointed, then each braiding ϵ±ρi,ρj is a phase multiple of any
fixed unitary intertwiner U ∈ HomC(ρiρj, ρjρi) (both ρiρj and ρjρi are automorphisms hence
irreducible). Thus ϵ±ρi,ρi⊗̄ ϵ±,J

ρi,ρi
= 1⊗̄1 for i = j, by taking U = 1 and by the antilinearity of

J . Equivalently, the statistical phase of each ρi⊗̄ρJi is +1 (all bosonic automorphisms in C⊠
CJ ) being equal to the (phase associated with the) self-braiding in the case of automorphisms.
If, in addition, ρiρj = ρjρi for every i ̸= j as automorphisms of N (e.g., by spacelike
localization in the case of DHR automorphisms and N = Aκ(I), or if ρi and ρj are different
powers of the same automorphism as for cyclic groups), then one can take U = 1 as well, and
ϵ±ρi,ρj⊗̄ ϵ±,J

ρi,ρj
= 1⊗̄1 for every i, j = 0, . . . , n. In the latter case of commuting automorphisms,

the commutativity of the Longo–Rehren Q-system for braided pointed fusion categories reads

ψi,iψj,j = ψj,jψi,i.

If we take C to be the representation category of a (completely) rational conformal net
on R or S1, then C is necessarily unitary fusion (finitely many sectors) and braided (also
modular, see, e.g., [BK01]), equipped with the DHR braiding, by a result of [KLM01]. Then
the Longo–Rehren Q-system provides an irreducible finite index local (by the commutativity
property (4.4)) and “diagonal” extension ÃLR of the tensor product conformal netAκ⊗̄AJ

κ on
R1+1 (with equal left and right chiral components), by choosing N⊗̄N J = Aκ(I)⊗̄Aκ(I)

J ,
where I is an interval on R symmetric around the origin, and J the modular conjugation
with respect to Aκ(R+),Ωκ (with this choice, ρJi

∼= ρ̄i, hence in particular ρJi
∼= ρ−1

i in the
pointed case). See [LR95, Theorem 4.9], cf. [DG18, Theorem 6.8], for the general construction
of extensions from arbitrary Q-systems in the representation category of a local net, and the
comments after the proof of [LR95, Proposition 4.10] for the Longo–Rehren Q-system.

5 Conformal Wightman fields from charged primary

fields

5.1 Conformal Wightman axioms

Here we show that to some of the extensions we discussed in Sections 3 and 4 we can associate
conformal Wightman fields, as we define below. It is natural to expect that such Wightman
fields on R1+1 also extend to E as conformal nets do, and hence we formulate Wightman
fields on E .

For simplicity, let us start with chiral fields on S1. Let us see S1 ⊂ C and the counter-
clockwise direction as the lightlike direction when S1 is seen as the one-point compactification
of R as in Section 2.1.

A conformal Wightman field on S1 with conformal dimension D is a quantum field

that transforms as the tensor field f d
dθ

⊗D−1
under diffeomorphisms as (1dW2) below, and

such a field is called a primary field: For D ∈ N, γ ∈ Diff+(S
1) and f ∈ C∞(S1), we set

(cf. [RTT22])

Xγ(e
iθ) := −i d

dθ
log(γ(eiθ)),

(βD(γ)f)(z) := (Xγ(γ
−1(z)))D−1f(γ−1(z)).
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Note that γ is orientation-preserving, hence X is strictly positive and (Xγ(γ
−1(z)))D−1 is

bounded by some positive number for a fixed γ.
A conformal Wightman field theory on S1 is a family of operator-valued distributions

{ϕκ,j} (κ is a fixed label, while j indexes the family) on S1, closed under the conjugate (ϕ†
κ,j

is also in the family), with corresponding conformal dimensions {Dκ,j} defined on a common
invariant dense domain D ⊂ Hκ, a unitary projective representation Uκ of Diff+(S

1) and a
vector Ωκ ∈ Hκ such that

(1dW1) Locality: for f, g ∈ C∞(S1) with disjoint supports, [ϕκ,j1(f), ϕκ,j2(g)] = 0 on D .

(1dW2) Diffeomorphism covariance: Uκ(γ) preserves D and it holds that

AdUκ(γ)(ϕκ,j(f)) = ϕκ,j(βDκ,j
(γ)f), for γ ∈ Diff+(S

1).

(1dW3) Positivity of energy: the spectrum of rotations of Uκ is contained in N ∪ {0}.

(1dW4) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a
phase) vector Ωκ ∈ Hκ such that Uκ(γ)Ωκ = Ωκ for γ ∈ Möb and vectors of the
form ϕκ,j1(f1) · · ·ϕκ,jℓ(fℓ)Ωκ, where f1, · · · , fℓ ∈ C∞(S1), are dense in Hκ.

As fields ϕκ,j are operator-valued distributions, they can be smeared with functions
en(θ) = einθ to give their Fourier components ϕκ,j,n = ϕκ,j(en). Let Lκ,0 be the generator of
Uκ(Rt), where Rt ∈ Möb are rotations. We assume that D = C∞(Lκ,0) :=

⋂
ℓ∈NDom(Lℓ

κ,0).
Furthermore,

(1dW5) Polynomial energy bounds: there are rj, sj, C > 0 such that, for Ψ ∈ C∞(Lκ,0),

∥ϕκ,j,nΨ∥ ≤ C(1 + |n|)rj∥(Lκ,0 + 1)sjΨ∥

According to [CKLW18, Section 6], polynomial energy bounds allow one to define the
smeared fields. For f ∈ C∞(S1) whose Fourier components are fn = 1

2π

∫ π

−π
f(e−inθ)dθ, we

define

ϕκ,j(f) :=
∑
n∈Z

fnϕκ,j,n.

This is convergent on any vector Ψ ∈ C∞(Lκ,0) and ϕκ,j(f) preserves the domain C∞(Lκ,0).
We know from (the proofs of) [CKLW18, Proposition 6.4, Theorem 8.3] the following:

Lemma 5.1. Let {ϕκ,j} satisfy polynomial energy bounds with pj ≤ 1. Then it holds that
AdU(γ)(ϕκ,j(f)) = ϕκ,j(βDκ,j

(γ)(f)) and ϕκ,j1(f) and ϕκ,j2(g) commute strongly for f, g with
disjoint supports.

A general two-dimensional conformal field is not chiral and depends on both lightlike
variables. There are fields called primary fields and they are characterized by the confor-
mal weights (DL, DR), where DL, DR > 0 and can be non-integer. We set βDL,DR

(γ) =

βDL
(γL)βDR

(γR) for γ = γL × γR ∈ Diff+(S1) × Diff+(S1). This can be extended to C if
DL −DR ∈ Z, which we always assume. Let H be the generator of {Rt × Rt : t ∈ R} in U ,
which plays a similar role to that of L0 in chiral fields.
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A conformal Wightman field theory on E is a family of operator-valued distri-
butions {ψ̃j} on E , closed under conjugation, with corresponding conformal dimensions
{(DL,j, DR,j)} defined on a common invariant domain D ⊂ H consisting of vectors of the

form ψ̃j1(f1) · · · ψ̃jn(fn)Ω, a unitary multiplier representation U of C and a vector Ω ∈ H
such that

(2dW1) Locality: for f, g ∈ C∞(E) with spacelike separated supports, [ψ̃j1(f), ψ̃j2(g)] = 0.

(2dW2) Diffeomorphism covariance: U(γ) preserves D and it holds that

AdU(γ)(ψ̃j(f)) = ψ̃j(βDL,j ,DR,j
(γ)f), for γ ∈ C

(2dW3) Positivity of energy: the joint spectrum of the translation subgroup of R1+1 in
U is contained in the closed forward light cone V+ = {(a0, a1) ∈ R1+1 : a20 − a21 ≥
0, a0 ≥ 0}.

(2dW4) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a
phase) vector Ω ∈ H such that U(γ)Ω = Ω for γ ∈ Möb×Möb/R and H is spanned

by vectors of the form ψ̃j1(f1) · · · ψ̃jk(fk)Ω.

(2dW5) Polynomial energy bounds: D = C∞(H) and there are sj, C > 0 such that, for
Ψ ∈ C∞(H),

∥ψj(f)Ψ∥ ≤ Cf∥HsjΨ∥,
where Cf depends only of f .

As is well-known, linear energy bounds (sj = 1) assure that the conformal Wightman
fields commute strongly.

Lemma 5.2. Let {ψ̃j} satisfy the bound ∥ψ̃j(f)Ψ∥ ≤ Cf,j∥HΨ∥. Then ψ̃j1(f) and ψ̃j2(g)
commute strongly for f, g with spacelike supports.

Proof. As H is the generator of the one-parameter group Rt × Rt in Möb × Möb, we have
[H, ψ̃j(f)] = iψ̃j(f

′) as in [CDVIT21, (3.7)], where f ′ is the derivative of f with respect to

translations Rt × Rt of the cylinder E . Furthermore, we have ∥[H, ψ̃j(f)]Ψ∥ = ∥ψ̃j(f
′)Ψ∥ ≤

Cf ′,j∥HΨ∥. By applying commutator with H, ∥δk(ψ̃j(f))Ψ∥ = ∥ψ̃j(f
(k))Ψ∥ ≤ Cf (k),j∥HΨ∥,

k = 2, 3, where δ(A) = i[H,A]. Therefore, ψ̃1(f) and ψ̃2(g) satisfy the asspumption of
Theorem A.2 with H as the reference operator and they strongly commute.

5.2 Formal series of operators

Let As be a family of operators parametrized by s ∈ R. By a formal series we mean a
symbol of the form

∑
sAsz

s, where the summation actually has no meaning. We refer to
As as Fourier components of a formal series. One can consider sums and scalar multiples
of such formal series:

∑
sAsz

s +
∑

sBsz
s =

∑
s(As + Bs)z

s, c
∑

sAsz
s =

∑
s cAsz

s. The
product of two formal series is not always defined, but in some cases there is a natural
product. We define the product of

∑
sAsz

s and
∑

sBsz
s as the formal series

∑
sCsz

s with
the coefficient Cs =

∑
t∈RAs−tBt, whenever these sums make sense.
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Similarly, we consider formal series in two or more variables. If we have two formal series
in two different variables z, w, the product

∑
sAsz

s
∑

tBtw
t =

∑
s,tAsBtz

swt makes always
sense. A product of such formal series in two variables is defined similarly as above.

A typical case we use in this paper is when the vector spaces are graded as V j =⊕
t∈N+hj

V j
t , where j = 1, 2, hj ∈ R and As are operators V 1

t → V 2
t−s and they are nonzero

only for s ∈ Z+D for some D ∈ R and t− s ∈ N+ h2. We also consider the situation where
V =

⊕
j V

j and
∑

sAs is a formal series on V , that has the form for each pair V j1 , V j2 as
above (and Dj1,j2 may depend on j1, j2).

Let
∑

sAsz
s,
∑

sBsz
s such two formal series with [As1 , Bs2 ] = 0 for all s1, s2 ∈ R. In

the situation of the previous paragraph, we can define the product
∑

sAsz
s
∑

tBsz
s =∑

s z
s
∑

tAs−tBt (this is a special case of normal product, see [CTW19, Section 2.1]): indeed,
for each vector Ψ ∈ V the sum over t is finite because either As−tΨ or BtΨ vanishes for large
|t|. Therefore, the sum

∑
tAs−tBt defines an operator on V and this is a formal series on V .

5.3 Charged primary fields

We continue studying a single chiral component, but we omit κ from certain parameters that
do not appear later.

We assume that a conformal net (Aκ, Uκ,Ωκ) on S
1 is generated by conformal Wightman

fields {ϕκ,j} which commute strongly when smeared with test functions with disjoint supports.
Unitary operators eiϕκ,j(f) with compactly supported f are represented in a representation ρ
as a unitary operator, and the question arises whether the operator ρ(ϕκ,j(f)) makes sense
and whether it is the generator of ρ(eiϕκ,j(f)). This property is called strong integrability, and
veryfing it in examples is a non-trivial problem (although it holds in interesting examples
[CWX, Gui20]). Furthermore, we can also consider localized unbounded intertwiners between
representations and there is the problem whether the commutation relations between them
hold strongly [Gui20], see also [Ten19b, Ten19a].

We avoid these problems by assuming necessary properties in general discussions, and by
taking explicit examples where these properties can be checked. Let κ(g) be an automorphism
of the conformal net Aκ for g ∈ G as in Section 2.2. We consider the Fourier components of
chiral fields and that they have corresponding operators ϕ

κ(g)
κ,j (n) on the representation spaces

Hκ(g),fin
κ , where Vfin denotes the linear span of eigenspaces Vt = ker(Lκ,0−t) of Lκ,0, where Lκ,0

is represented on V as an unbounded operator. We denote the algebraic direct sum of ϕ
κ(g)
κ,j (n)

by ϕ̂κ,j(n) defined on the (algebraic) linear span
⊕alg

g∈GHκ(g),fin
κ in

⊕
g∈G Hκ(g),fin

κ . Similarly,

we denote L̂κ,n =
⊕

g∈G L
κ(g)
κ,n , where L

κ(g)
κ,n is a representation of the Virasoro algebra on

Hκ(g),fin
κ .
Let (Aκ, Uκ,Ωκ) be a conformal net on S1 generated by fields {ϕκ,j} with conformal

dimensions {Dj} (with an abuse of notation, Dξ (with index ξ ∈ Ξ) are the conformal di-
mensions of ψh

κ(ξ, ·), while Dj are the conformal dimensions of ϕj) as above and a group
of automorphisms ∆κ to which there is a homomorphism κ from a group G. A charged
primary field ψh

κ associated with h ∈ G is a family of operators {ψh
κ(ξ, s)}s∈R,ξ∈Ξ on the do-

main
⊕alg

g∈GHκ(g),fin
κ with the associated formal series ψh

κ(ξ, z) =
∑

s∈R ψ
h
κ(ξ, s)z

−s−Dξ , closed
under conjugate, such that
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• ψh
κ(ξ, s) maps Hκ(g),fin

κ to Hκ(hg),fin
κ , and there is ℓh,g ∈ R such that ψh

κ(ξ, s) ̸= 0 only for
s ∈ ℓh,g + Z.

• (primarity) [L̂κ,m, ψ
h
κ(ξ, s)] = ((Dξ − 1)m− s)ψh

κ(ξ,m+ s).

• (relative locality) [ϕ̂κ,j(m), ψh
κ(ξ, s)] =

∑
ξ′ X

ξ
j,ξ′ψ

h
κ(ξ

′,m+ s), where Xξ
j,ξ′ ∈ C.

• As formal series, the braiding relation holds:

(1− z
w
)α(h1,h2)wα(h1,h2)ψh1

κ (ξ1, w)ψ
h2
κ (ξ2, z) = (1− w

z
)α(h1,h2)zα(h1,h2)ψh2

κ (ξ1, z)ψ
h1
κ (ξ2, w)

where α(h1, h2) ∈ R and
(
β
n

)
= β(β−1)···(β−n+1)

n!
, and as a formal series (1 − u)β =∑

n≥0

(
β
n

)
(−u)n.

We further assume polynomial energy bounds:

• for each h, there are rξ, pξ, Cξ > 0 such that ∥ψh
κ(ξ, s)Ψ∥ ≤ Cξ(1+ |s|)rξ∥(Lκ,0+1)pξΨ∥

for Ψ ∈ C∞(Lκ,0).

This allows us to define smeared fields of charged fields: For f ∈ C∞(S1 \ {1}), we put
fs =

1
2π

∫ π

−π
f(eiθ)e−isθdθ and

ψh
κ(ξ, f) :=

∑
s∈R

fsψ
h
κ(ξ, s),

and this defines operators on C∞(L̂κ,0) (the sum makes sense because ψh
κ(ξ, s) = 0 except for

countable s on each Hκ(g)
κ,t ).

Let ϵ+h1,h2
:= limℑζ>0,ζ→−1 ζ

α(h1,h2), where ℑζ is the imaginary part of ζ, wα(h1,h2) =

eα(h1,h2) logw and we take the branch of logw on C \ (−∞, 0] such that logw ∈ R on (0,∞).

Lemma 5.3. Let f, g ∈ C∞(S1 \{1}) with disjoint support, and supp g is ahead of supp f in
S1 \ {1} in the counterclockwise order. Then ψh1

κ (ξ1, f)ψ
h2
κ (ξ2, g) = ϵ+h1,h2

ψh2(ξ2, g)ψ
h1
κ (ξ1, f).

Proof. Let z0 ∈ S1, z0 ̸= −1 such that arg supp f < arg z0 < arg supp g, and I+ be the
interval on S1 from z0 to −1 (counterclockwise) while I− be the interval on S1 from −1 to
z0, hence we have supp f ⊂ I−, supp g ⊂ I+ (see Figure 2). and put fs =

1
2π

∫ π

−π
f(eiθ)e−isθdθ,

gt =
1
2π

∫ π

−π
g(eiθ)e−itθdθ. As f, g are smooth, these coefficients are rapidly decaying.

The product ψh1
κ (ξ1, w)ψ

h2
κ (ξ2, z) is a formal series in w, z. When we take the scalar prod-

uct with finite-energy vectors Ψ1,Ψ2 in some Hκ(g1),fin
κ ,Hκ(g2),fin

κ , ⟨Ψ1, ψ
h1
κ (ξ1, w)ψ

h2
κ (ξ2, z)Ψ2⟩

can be considered as a formal series in w, z with coefficients in C, and these coefficients of wszt

vanish for s large and t small, because each Hκ(gj),fin
κ is a positive-energy representation of

the Virasoro algebra. By polynomial energy bounds, it can be seen as a distribution in w, z.
Let us denote this distribution by φ1(w, z). Then it holds that φ1(f, g) =

∑
φ1(s, t)fsgt,

where φ1(s, t) is the coefficient of the formal series φ1(w, z) of w
szt (with a slight abuse of

notation).
Let a < 1 and b > 1. This time we see the formal series as actual series with w, z ∈ C.

Then φa,b
1 (z, w) = ⟨Ψ1, ψ

h1
κ (ξ1, bw)ψ

h2
κ (ξ2, az)Ψ2⟩ has only finitely terms with negative powers
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in z and those with positive powers in w, therefore, it is a convergent series for |z| = |w| = 1
again by the polynomial energy bounds. Now it can be seen as a function on I− × I+, thus
defines a distribution and φa,b

1 (f, g) =
∑
φa,b
1 (s, t)fsgt, in the sense above. Furthermore, as

a→ 1, b→ 1, this converges to φ1(f, g).
The formal series (1− z

w
)α(h1,h2) has only negative powers in w and positive powers in z,

therefore, the product

⟨Ψ1, (1− z
w
)α(h1,h2)ψh1

κ (ξ1, w)ψ
h2
κ (ξ2, z)Ψ2⟩

makes sense again as a formal series (see the remark on formal series above). Again by
polynomial energy bounds, these coefficients grow only polynomially in s, t. Therefore, it
can be seen as a distribution with two variables w ∈ I−, z ∈ I+, which we denote by φ2(w, z).
Define also φa,b

2 (w, z) = φ2(bw, az). As a→ 1, b→ 1, each coefficients converge, and φa,b
2 (f, g)

converge as distributions to φ2(f, g) by polynomial energy bounds.
Note that the expansion (1 − u)β =

∑
n≥0

(
β
n

)
(−u)n converges for |u| < 1, and can be

analytically continued to C \ [1,∞). This expansion coincides with the definition (1− u)β =
eβ log(1−u) as an analytic function in u ∈ C \ [1,∞), where logw is defined on C \ (−∞, 0]
and logw ∈ R when w ∈ (0,∞) (the last condition fixes a branch of logw uniquely). We
use the same continuation for logw when wβ = eβ logw is considered as a function. If we
consider (1 − w

z
)α(h1,h2) as a function in w, z, we can multiply it to the above distribution

φ1 and obtain a distribution in I− × I+, which we denote by φ3(w, z). We also introduce
φa,b
3 (w, z) = φ3(bw, az). Then φa,b

3 (f, g) converges to φ3(f, g) as a → 1, b → 1 because both
φa,b
1 (w, z) and (1 − bw

az
)α(h1,h2) converge as distributions and smooth functions on I− × I+,

respectively.
This shows that φ2(f, g) = φ3(f, g). That is, (1 − z

w
)α(h1,h2)ψh1

κ (ξ1, w)ψ
h2
κ (ξ2, z) can be

seen as the operator-valued distribution multiplied by a smooth function (1 − z
w
)α(h1,h2) on

I− × I+.

−1
z0

supp f

w

supp g

z

Figure 2: The circle, the point of infinity (−1) and two functions with disjoint supports.

Similarly, (1−w
z
)α(h1,h2)ψh2

κ (ξ1, z)ψ
h1
κ (ξ2, w) can be seen as an operator-valued distribution.

Therefore, by the braiding relation of the primary fields, we have the equality

(1− z
w
)α(h1,h2)wα(h1,h2)ψh1

κ (ξ1, w)ψ
h2
κ (ξ2, z) = (1− w

z
)α(h1,h2)zα(h1,h2)ψh2

κ (ξ1, z)ψ
h1
κ (ξ2, w)
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in the sense of operator-valued distributions, under the restriction on the supports of f and
g. Seen as functions, the quotient of (1− w

z
)α(h1,h2)zα(h1,h2) by (1− z

w
)α(h1,h2)wα(h1,h2) is exactly

limℑζ>0,ζ→−1 ζ
α(h1,h2). Therefore, by dividing the equation by the former factor, we obtain

ψh1
κ (ξ1, w)ψ

h2
κ (ξ2, z) = ϵ+h1,h2

ψh2
κ (ξ1, z)ψ

h1
κ (ξ2, w)

as desired, as operator-valued distributions.

The following is essentially due to [CKL08, Section 6.3], where the case D = 1
2
is treated,

see also [CKLW18, Proposition 6.4], [TL99].

Lemma 5.4. Assume that a charged primary field ψh
κ has conformal dimension D and sat-

isfies polynomial energy bounds as above (we omit the dependence on ξ). Then it is dif-
feomorphism covariant, that is, with Ûκ the projective unitary representation of Diff+(S1),
Ad Ûκ(γ)(ψ

h
κ(f)) = ψh

κ(βD(γ)(f)).

Proof. Let us sketch the arguments of [CKL08, Section 6.3]. Note that L̂κ,n is a repre-

sentation of the Virasoro algebra on the dense domain Ĥfin
κ in the Hilbert space Ĥκ. By

polynomial energy bounds they extend to C∞(L̂κ,0). Furthermore, on this domain we have
the commutation relations

i[L̂κ(f1), ψ
h
κ(f2)] = ψh

κ(Df
′
1f2 − f1f

′
2).

From this, the following relation follows:

d

dt
ψh
κ(βD(exp(tf1))f1)|t=0 = i[L̂κ(f1), ψ

h
κ(f2)].

Again by energy bounds for L̂κ,n, it holds that Uκ(exp(tf)) preserves the domain C∞(Lκ,0).

For Ψ ∈ C∞(L̂κ,0), we can consider two vector-valued funtions of t ∈ R

Ψ1(t) = ψh
κ(βD(exp(tf1)f2)Ûκ(exp(tf1))Ψ,

Ψ2(t) = Ûκ(exp(tf1))ψ
h
κ(f2)Ψ,

and they both satisfy the differential equation Ψ′(t) = iL̂κ(f)Ψ(t). As they satisfy the
same initial condition Ψ1(0) = Ψ2(0) = ψh

κ(f2)Ψ, they must coincide. Therefore, we have
Ad Ûκ(exp(tf1))(ψ(f2)) = ψh

κ(βD(exp(tf1))f2).
Recall that Diff+(S

1) is algebraically simple [Thu74] while the subgroup generated by
one-parameter groups is a normal subgroup of Diff+(S

1). Therefore, they must coincide.
This implies that any element in Diff+(S1) is a product of elements in some one-parameter
groups and an element in the center {R2πn}.

Now the relation holds for all γ ∈ Diff+(S1) which is a product of elements in one-
parameter groups, and it is straightforward to verify it for R2π, therefore, we have the desired
covariance.
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5.4 One-dimensional Wightman fields arising from vanishing total
braiding

Let us first assume that there are two conformal nets A1,A2 on S1 and charged primary
fields ψ1, ψ2 of these nets (here we omit the dependence on h ∈ G and ξ).

Lemma 5.5. Let ψ1(z)⊗1,1⊗ψ2(z) be charged primary fields satisfying polynomial energy
bounds with respect to an operator L̂0 ⊗ 1+ 1⊗ L̂0. Then ψ1(z)⊗ ψ2(z) satisfies polynomial
energy bounds.

Proof. Let us assume polynomial energy bounds: there are rj, pj > 0, for j = 1, 2 such that

∥ψj(s)Ψ∥ ≤ C(1 + |s|)rj∥(L̂0 + 1)pjΨ∥

for Ψ ∈ C∞(L̂0). Note that

(L̂0 + 1)ψ2(t− s) = [L̂0, ψ2(t− s)] + ψ2(t− s)L̂0 + ψ2(t− s)

= (s− t+ 1)ψ2(t− s) + ψ2(t− s)L̂0

= ψ2(t− s)(L̂0 + (s− t+ 1)),

hence (L̂0 +1)qψ2(t− s) = ψ2(t− s)(L̂0 +(s− t+1)1)q. Then, for a fixed s and Ψ such that
HΨ = ℓΨ where H = L̂0 ⊗ 1+ 1⊗ L̂0,

∥
∑
t

ψ1(s− t)⊗ ψ2(t)Ψ∥ ≤
∑
t

C(1 + |s− t|)r1∥(H + 1)p1(1⊗ ψ2(t))Ψ∥

≤
∑
t

C(1 + |s− t|)r1∥(H + 1)⌈p1⌉(1⊗ ψ2(t))Ψ∥

≤
∑
t

C(1 + |s− t|)r1∥(1⊗ ψ2(t))(H + (t+ 1)1)⌈p1⌉Ψ∥

=
∑
t

C(1 + |s− t|)r1(ℓ+ (t+ 1))⌈p1⌉∥(1⊗ ψ2(t))Ψ∥

≤
∑
t

C2(1 + |s− t|)r1(1 + |t|)r2(ℓ+ (t+ 1))⌈p1⌉∥(H + 1)p2Ψ∥

≤ C2(1 + |s|)2r1+r2+⌈p1⌉∥(H + 1)r1+r2+2⌈p1⌉+p2Ψ∥,

where ⌈p⌉ is the smallest integer larger or equal to p, in the last line we estimated 1+ |s−t| ≤
1+ |s|+ ℓ ≤ (1+ |s|)(1+ ℓ) because (ψ1(s− t)⊗1)Ψ = 0 when t < −s− ℓ or (1⊗ψ2(t))Ψ = 0
when t > ℓ.

For a general Ψ =
∑

ℓ Ψℓ,
∑

t ψ1(s− t)⊗ψ2(t)Ψℓ are orthogonal for different ℓ. Therefore,
a polynomial energy bound follows from for ψ1(z)⊗ ψ2(z).

Clearly, this estimate is not optimal. It can happen, as we will see with concrete examples,
that a product of two charged primary fields whose Fourier components are bounded ∥ψ(s)∥ ≤
C has again bounded Fourier components.
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Lemma 5.6. Let ψ1(z), ψ2(z) be charged primary fields for nets (A1, U1,Ω1), (A2, U2,Ω2)
with polynomial energy bounds. Then ψ1(z)⊗ψ2(z) is diffeomorphism covariant with respect

to Ũ1 ⊗ Ũ2.

Proof. By Lemma 5.5, ψ1(z) ⊗ ψ2(z) satisfies polynomial energy bounds with respect to
H = L̂1,0 ⊗ 1+ 1⊗ L̂2,0. Then the diffemorphism covariance follows from Lemma 5.4.

As in Section 3, let {(Aκ, Uκ,Ωκ)}κ∈K be a finite family of conformal nets on S1 generated
by fields {ϕκ,j}κ∈K , with a collection ∆κ of localized automorphisms in some interval, with a
common (finitely generated) abelian group structure G and a family of bijections κ : G→ ∆κ

for every index κ ∈ K. Let {ψh
κ(ξ, z)}κ∈K,h∈G,ξ∈Ξκ be a family of charged primary fields

satisfying the conditions of Section 5.3.
We assume that

∏
κ ϵ

+
κ(h1),κ(h2)

= 1 for all pairs h1, h2 ∈ G, as in Section 3. Let us pick ξκ
for each κ. Then we consider the formal series ψh

K(z) :=
⊗

κ ψ
h
κ(ξκ, z) acting on the auxiliary

space
⊗

κ Ĥκ. This is a (normal) product of two commuting formal series, hence this makes
sense as a formal series, see Section 5.2. It follows from Lemma 5.5 that it makes sense as
an operator-valued distribution if each of the fields satisfies polynomial energy bounds.

Theorem 5.7. The fields ψh
K, h ∈ G, together with chiral fields ϕκ,j, is a conformal Wight-

man field theory acting on the Hilbert space HK =
⊕

g∈G
⊗

κH
κ(g)
κ . If, in addition, ψh

K

satisfies linear energy bounds with respect to
∑

κ 1⊗ · · ·⊗1⊗ L̂0
κ-th

⊗1⊗ · · ·⊗1 for all h ∈ G,

then {ψh
K : h ∈ G} generates a conformal net on S1.

Proof. The formal series ψh
K is defined on the Hilbert space

⊗
κ Ĥκ. It generates vectors in

HK =
⊕

g∈G
⊗

κ H
κ(g)
κ from the vacuum. Then the ϕκ,j(f) generate a dense set of vectors in

each of these summands. On the other hand, no other vector is generated from ψh
K and ϕκ,j

acting on the vacuum.
Let us prove locality. For two test functions f1, f2 with supp f1 ahead of supp f2, we have

by Lemma 5.3

ψh1
K (f1)ψ

h2
K (f2) =

∏
κ

ϵ+κ(h1),κ(h2)
ψh2
K (f2)ψ

h1
K (f1)

= ψh2
K (f2)ψ

h1
K (f1),

giving locality as operator-valued distributions. The fields ψh
K and ϕκ,j are relatively local.

The representation UK is a tensor product of positive-energy representations, therefore it has
itself positive energy.

If we assume linear energy bounds, then the fields strongly commutes and generate a
conformal net on S1 by Theorem A.2.

Remark 5.8. We expect that the conformal net on S1 in Theorem 5.7 generated by the
conformal Wightman field is unitarily equivalent to the net extension AK constructed in
Theorem 3.1. This should follow by a similar argument as in [KL04b, Section 4, Example
4.5] using the absence of symmetric 2-cocycles for a finite abelian group G. See the proof of
Theorem 5.9.
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5.5 Two-dimensional Wightman fields through braiding-cancelling
map

From a pair of charged primary fields with the braiding satisfying certain conditions, we
can construct a two-dimensional conformal Wightman field. This is in particular the case
if we take two copies of the same conformal net AL = AR, with a pointed braided fusion
subcategory of automorphisms whose fusion ring is isomorphic to a finite abelian group G,
and we combine the left charged fields ψh

L and ψh−1

L , where h ∈ G, similarly to (4.1), namely

ψ̃h := ψh
L ⊗ ψh−1

L acting on HL ⊗HL.

If we assume that the braidings cancel in the sense4 that ϵ+L(g),L(h) = ϵ−R(g),R(h), we can

prove locality of the combined Wightman field. We show that this corresponds to a (finite
index) Longo–Rehren extension with respect to a pointed braided fusion category, [LR95],
see Section 4.2.

Let {(AL/R, UL/R,ΩL/R)} be a pair of conformal nets on S1 generated by fields {ϕL/R,j},
with a collection ∆L/R of (mutually commuting inequivalent) localized automorphisms in
some interval (and closed under composition and inverses up to unitary equivalence), as in
Section 4, with a common finite abelian group structure G and bijections L/R : G → ∆L/R.
Let {ψh

L/R(ξ, z)}h∈G,ξ∈ΞL/R
be a family of primary fields satisfying the conditions of Section

5.3. Denote ϵ+ := ϵ+L(g),L(h) and ϵ− := ϵ−R(g),R(h), for short. Then our braiding cancellation

assumption reads ϵ+ = ϵ−. For z, w ∈ S1 \ {−1}, argw1 < argw2,

ψg
L(ξL, w1)ψ

h
L(ξL, w2) = ϵ+ψh

L(ξL, w2)ψ
g
L(ξL, w1),

ψg
R(ξR, w2)ψ

h
R(ξR, w1) = ϵ−R(g),R(h)ψ

h
R(ξR, w1)ψ

g
R(ξR, w2)

= ϵ+ψh
R(ξR, w1)ψ

g
R(ξR, w2).

Let us introduce a two-dimensional formal power series by

ψ̃h(w, z) := ψh
L(ξL, w)⊗ ψh

R(ξR, z),

acting on HL ⊗HR (we omitted the dependence on kL, kR).

Theorem 5.9. The field ψ̃h is a two-dimensional conformal Wightman field on the Hilbert
space H̃ =

⊕
h∈G HL(h)

L ⊗ HR(h)
R . If the field satisfies a linear energy bound with respect to

L̂0 ⊗ 1 + 1 ⊗ L̂0, then it generates a two-dimensional conformal net. If G is finite, the net
coincides with Ã (up to unitary equivalence) constructed in Theorem 4.2 in the case AL = AR.

Proof. The field ψ̃h satisfies two-dimensional locality: the point (w1, z1) is spacelike to (w2, z2)
if argw1 < argw2 and arg z1 > arg z2 (or the reversed relations, and in this case, with
ϵ+ = ϵ+L(h),L(g)),

ψ̃h(w1, z1)ψ̃
g(w2, z2) = ψh

L(ξL, w1)⊗ ψh
R(ξR, z1) · ψ

g
L(ξL, w2)⊗ ψg

R(ξR, z2)

= ϵ+ϵ+ψg
L(ξL, w2)⊗ ψg

R(ξR, z2) · ψ
h
L(ξL, w1)⊗ ψh

R(ξR, z2)

4Here, instead of assuming additionally that ϵ+L(g)−1,L(h) = ϵ−R(g)−1,R(h) as we did in Section 4, we assume

that the set of charged primary fields is closed under conjugate and each of them satisfies the braiding relation.
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= ψg
L(ξL, w2)⊗ ψg

R(ξR, z2) · ψ
h
L(ξL, w1)⊗ ψh

R(ξR, z2)

= ψ̃h2(w2, z2)ψ̃
h1(w1, z1).

It is a two-dimensional operator-valued distribution because it is a tensor product of two
one-dimensional operator-valued distributions. Other axioms, positivity of energy, diffeo-
morphism covariance, the cyclicity of vacuum in H̃, can be proven as in Theorem 5.7. If we
assume linear energy bounds, strong commutativity of smeared fields follows.

Let G be finite. As the decomposition of the vacuum representation H̃ =
⊕

h∈GHL(h)
L ⊗

HR(h)
R with respect to the action of AL⊗AR is the same as the decomposition of the vacuum

representation of the Longo–Rehren extension ÃLR (4.3), and the former determines the dual
canonical endomorphism of the extension we constructed, by [LR95, Proposition 3.4], the
latter endomorphism must be unitarily equivalent to the Longo–Rehren endomorphism ΘLR

As we are in the braided pointed fusion case with finite abelian group G, the uniqueness
of the associated Longo–Rehren extension (among finite index local extensions) provided by
[KL04b, Section 4, Example 4.5] proves the last claim.

6 Examples: the U(1)-current

We construct examples of a conformal net on S1, collections of sectors and charged primary
fields associated with the U(1)-current.

Here we use the symbols H,A, U,Ω, Ln, Jn, Yα,n for a chiral component, differently from
the previous sections where we used the index κ. .

6.1 The field and the net

In literature, several constructions of the U(1)-current appeared. One can use the lowest
weight representation with the lowest weight 1 of PSL(2,R), and the associated net stan-
dard subspaces, then by second quantization the local algebras of the U(1)-current net are
generated by the Weyl operators, cf. [BGL93].

The construction of the U(1)-current that we illustrate here relies on the so-called current
algebra, namely the complex Lie algebra generated as C-linear space by the family of symbols
{Jn : Jn : n ∈ Z} and a central element c that verify [Jm, Jn] = mδn+mc. The vacuum
representation of the current algebra is given as a Verma module (with the lowest weight 0,
hence J0Ω = 0), which is the linear span of the symbols

J−i1 . . . J−imΩ, 0 < i1 ≤ i2 ≤ . . . ≤ im ∈ N,m ∈ N

where, by abuse of notation, Jn are interpreted as operators with the Lie brackets given for
an associative algebra, JkΩ = 0 for k ≥ 0 and one defines the actions of Jn for n ∈ Z by
using the commutation relations. There is a unique inner product satisfying J∗

n = J−n and

⟨J−i1 . . . J−imΩ, J−l1 . . . J−lsΩ⟩ := ⟨Ω, Jim . . . Ji1J−l1 . . . J−lsΩ⟩, (6.1)

and we extend it by linearity. Its completion is isomorphic to the Bosonic Fock space with
the one-particle space spanned by {J−nΩ : n ∈ N}, see e.g. [KR87, Proposition 2.1].
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Using Sugawara’s formula to define new generators Ln as

Ln :=
1

2

∑
k∈Z

: Jk+nJn :, n ∈ Z

where : · : is the Wick product, one defines a projective unitary representation of the Virasoro
algebra with the central charge c = 1. In particular, the conformal Hamiltonian L0 acts
as

L0J−i1 . . . J−imΩ = (i1 + . . .+ im)J−i1 . . . J−imΩ,

for 0 ≤ i1 ≤ . . . ≤ im ∈ N. Therefore, L0 extends to a positive self-adjoint operator.
Moreover, as Jn can be regarded as an annihilation operator for n > 0, we have the following
bound: for every n ∈ Z and every Ψ in the Verma module

∥JnΨ∥ ≤ (n+ 1)∥(L0 + 1)
1
2Ψ∥,

∥LnΨ∥ ≤
√

13

12
(1 + |n|

3
2 )∥(L0 + 1)Ψ∥.

From this, the representation {Ln} of the Virasoro algebra integrates to a projective unitary
representation U of Diff+(S1).

Moreover, the current

J(f) :=
∑
n∈Z

fnJn,

for a test function f ∈ C∞(S1) is an essentially self-adjoint operator on Dom(L0). Therefore,
J(f) for f ∈ C∞(S1) is well-defined on the dense Verma module and J(f)ξ ∈ D(L0). We
have

∥[L0, J(f)]ξ∥ = ∥J(f ′)ξ∥ ≤ αf ′∥(L0 + 1)
1
2Ψ∥,

so by Theorem A.2 is essentially self-adjoint and it can defined on D(L0). In this way, if
f, g ∈ C∞(S1), then the commutator [J(f), J(g)] is well-defined on D(L0) and

[J(f), J(g)]ξ =

∫
S1

f ′(t)g(t)dt ·Ψ, Ψ ∈ D(L0).

Moreover, by Theorem A.2, if the support of f and g is disjoint, then J(f) and J(g) commute
strongly, i.e., [eitJ(f), eitJ(g)] = 0. One can also show that AdU(φ)(eiJ(f)) = eiJ(f◦φ

−1).
For any λ ∈ R, and denoting the lowest weight vector by Ωλ, one can construct a Verma

module such that the representation Jλ
n is of the form explained above, except that Jλ

0Ωλ =
λΩλ. The same commutation relations and similar estimates holds for λ ∈ R.

To every non-empty non-dense open interval I ⊂ S1, one associates the following von
Neumann algebra

AU(1)(I) := {eiJ(f) : suppf ⊂ I}′′.

The triple (AU(1), U,Ω) is a conformal net on the circle S1, see [BMT88].
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6.2 Representations of the U(1)-current

Let us fix an open non-empty non-dense interval I ⊂ S1 and a function h ∈ C∞(S1) with
supph ⊂ I. Then, we define a map on the Weyl operators W (f) := eiJ(f) for f ∈ C∞(S1)
supported in I in the following way

σh,I(W (f)) := ei
∫
S1 f(t)h(t)dtW (f).

The map σh,I can be extended to a representation of the local algebra AU(1)(I) on the
Fock space. Indeed, for every interval I1 and a function g ∈ C∞(S1), σh,I1 is implemented

by AdW (H), where H ′ = h on I1 and supported on another interval Ĩ1. Therefore, σH,I1

extends to a representation of the local algebra AU(1)(I1). If I2 ⊂ S1 is another interval such

that I1 ⊂ I2, then a function H supported in an interval Ĩ2 ⊃ I2 such that H ′ = h on I2
and σh,I1(W (f)) = AdW (H)(W (f)). Therefore, one can define a representation σh of the
net AU(1) as the family {σh,I1}I1 for I1 ⊂ S1 as above, verifying the compatibility condition
σh,I2|AU(1)(I1) = σg,I1 whenever I1 ⊂ I2 are two non-empty non-dense open intervals of S1.

The unitary equivalence class of the representations is determined by the value
∫
S1 h(t)dt.

In particular, when
∫
S1 h(t)dt = 0, then σh is unitary equivalent to the vacuum representation.

Let α =
∫
S1 h(t)dt. Although the representation σh is defined on the vacuum Hilbert space,

we denote it Hα in order to distinguish the representation. Analogously, the lowest weight
vector in Hα is denoted by Ωα. See [BMT88] for these results.

6.3 Fusion relations and braiding

Let h1, h2 ∈ C∞(S1). Then the maps σh1 , σh2 are automorphisms of the U(1)-current net
AU(1). Let I0 ∈ I and consider the local algebra AU(1)(I0). Then, σh1,I0 , σh2,I0 are represen-
tations of the local algebra AU(1)(I0) such that σh1,I0 ◦ σh2,I0 = σh1+h2,I0 . Since the interval
I0 is arbitrary, we have

σh1 ◦ σh2 = σh1+h2 .

Let I ∈ I be fixed. Consider two functions h1, h2 ∈ C∞(S1) with supp(h1), supp(h2) ⊂ I
and let σh1 and σh2 be two automorphisms of the net AU(1). Next, let I0 ∈ I such that I ⊂ I0
and choose I1, I2 ⊂ I0 in I such that I2 stays in the future of I1, and I1, I2, I are pairwise
disjoint.

Let i = 1, 2 be fixed, and let gi ∈ C∞(S1) such that supp gi ⊂ Ii and
∫
S1 gi(t)dt =∫

S1 hi(t)dt. Then there exist Hi ∈ C∞(S1) supported in I0 such that AdW (Hi)σhi
= σgi .

Moreover, for the mutual position of I1 and I2, H1 and H2 have to be of the form H ′
1 = −h1,

H ′
2 = −h2 on I, H ′

i = gi on Ii and a constant elsewhere. As the conditions on hi, gi show, Hi

are constant in the union of intervals (I∪Ii)c∩I0 (see Figure 3). In particular, if the intervals
are between Ic0 and I or between Ic0 and Ic, then Hi is defined as 0, since Hi is continuous.
On the rest, and for the same reason, Hi =

∫
I
hi(t)dt =

∫
Ii
gi(t)dt := αi, where αi is the so

called charge.
The braiding is given by the following formula

ϵ(σh1 , σh2) := ϵσh1
,σh2

= σh2,I0(W (H1)
∗)W (H2)

∗W (H1)σh1,I0(W (H2)).
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−1

I1

I

I0

I2

Figure 3: An example configuration for the intervals I, I0, I1 and I0. The choice of “future”
and “past” is fixed by considering the point −1 as the point of infinity for the lightray, and
choosing I0 that does not contain it.

Therefore, we have

ϵ(σh1 , σh2) = σh2,I0(W (H1)
∗)W (H2)

∗W (H1)σh1,I0(W (H2))

= e−i
∫
S1 H1(t)h2(t)dtW (H1)

∗W (H2)
∗W (H1)e

i
∫
S1 h1(t)H2(t)dtW (H2)

= e−i
∫
I H1(t)h2(t)dtW (H1)

∗W (H2)
∗W (H1)e

i
∫
I h1(t)H2(t)dtW (H2)

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dtW (H1)

∗W (H2)
∗W (H1)W (H2)

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dte−

i
2
Im⟨H1,H2⟩W (−H1 −H2)e

− i
2
Im⟨H1,H2⟩W (H1 +H2)

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dtei Im⟨H1,H2⟩.

If one recalls that Im⟨H1, H2⟩ =
∫
S1 H1(t)H

′
2(t)dt, then∫

S1

H1(t)H
′
2(t)dt = α1

∫
I2

g2(t)dt+

∫
I

H1(t)h2(t)dt = α1α2 +

∫
I∪I1

h1(t)H2(t)dt.

Therefore, the braiding is

ϵ(σh1 , σh2) = ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dtei Im⟨H1,H2⟩

= ei
∫
I [h1(t)H2(t)−H1(t)h2(t)]dte

α1α2+
∫
I∪I1

h1(t)H2(t)dt

= ei
∫
I h1(t)H2(t)dteiα1α2 .

If we take hi = αih for a single function h such that
∫
S1 h(t)dt = 1, then H2 is proportional

to a function H on I such that H ′ = −h on I. Therefore, by integration by parts,∫
I

h1(t)H2(t)dt = α1α2

∫
I

h(t)H(t)dt = α1α2

([
−H2

]
I
−
∫
I

h(t)H(t)dt

)
implying ∫

I

h1(t)H2(t)dt = −α1α2

2
.
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Hence we conclude that in this case

ϵ(σα1h, σα2h) = ei
α1α2

2 ,

with the configuration above. In particular, it holds that ϵ(σα1h, σα2h) = ϵ(σα2h, σα1h).

6.4 The charged field

The U(1)-current net has charged primary fields in the sense of Section 2.2.3. We equip R
with the scalar product ⟨α, β⟩ = αβ. They are the formal series Yα(z) =

∑
s∈R Yα,sz

−s−D,
where D = ⟨α, α⟩/2 and each coefficient Yα,s is a map Hfin

β → Hfin
β+α (on each Hfin

β , β ∈ R,
only Yα,s with s ∈ Z+ ⟨α, β⟩−D are non-zero). Explicitly, let cα be the unitary charge shift
operator Hfin

β → Hfin
β+α defined by cαJ−n1 · · · J−nk

Ωβ = J−n1 · · · J−nk
Ωβ+α, nj > 0. Following

[TZ12] (α(n) there is identified with αJn in our notation, cf. [TL97, Chapter V (3.2.1)]), we
define, as formal series,

E±(α, z) = exp

(
∓
∑
n>0

αJ±n

n
z∓n

)
,

Yα(z) = cαE
−(α, z)E+(α, z)zαJ0 , (6.2)

where αJ0 = ⟨α, β⟩ is a scalar on each Hβ. The formal series of the exponential in E±(α, z)
is defined without problems, because, when expanding it into a Taylor series the coefficients
of zn are finite sums of operators on Hfin

0 . As for Yα(z), the coefficients of the product
E−(α, z)E+(α, z) are infinite sums, but they still make sense as operators. Indeed, for each
n, the coefficient E+

α,n of z−n in E+(α, z) is a linear combination of Jk1 · · · Jkj such that∑j
m=1 km = n, km > 0, and there are only finitely many such combinations. The series

E−(α, z) has a similar structure. As any vector Ψ in Hfin
0 has finite energy M and Jm

lowers the energy by m, Ψ is annihilated by any product Jk1 · · · Jkj if
∑

m km > M , that
is, Ψ is annihilated by E+

α,n if n > M . The coefficient of zn in E−(α, z)E+(α, z) is the sum∑
j∈Z+

E−
α,n−jE

+
α,j. Therefore, on each Ψ only finitely many terms contribute, and this sum

defines an operator on Hfin
0 . Its restriction Yα(z)|Hβ

has the form

Yα(z)|Hβ
=
∑
n∈Z

Yα,n+αβ−D|Hβ
z−n−D.

Braiding By [TL97, Chapter VI (1.2.2)], it holds that(
1− z

w

)−⟨α,β⟩
E+(α,w)E−(β, z) = E−(β, z)E+(α,w)

where (1 − u)a =
∑

n≥0

(
a
n

)
(−u)n. Note that the left-hand side makes sense, because (1 −

z
w
)−⟨α,β⟩ has positive powers in z and negative powers in w, while E−(β, z) has positive powers

in z and E+(α,w) has negative powers in w. Similarly,

E−(α,w)E+(β, z) =
(
1− w

z

)−⟨α,β⟩
E+(β, z)E−(α,w).
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Therefore, if we introduce the pre-vertex operators Yα(z) = E−(α, z)E+(α, z)zαJ0 (it is Yα(z)
without cα), and using that E±(α, z) and E±(β, w) commute (when ± coincide), we obtain(

1− z

w

)−⟨α,β⟩
Yα(w)Yβ(z) =

(
1− w

z

)−⟨α,β⟩
Yβ(z)Yα(w) . (6.3)

Here again, the equality is understood as the equality between the coefficients of znζm on
each fixed vector Ψ ∈ Hfin

0 .
Now we take

⊕
λ∈R Hfin

λ (algebraic direct sum). Using cλ1z
λ2J0 = z−⟨λ1,λ2⟩+λ2J0cλ1 , and

the fact that cλ1 commute with E+(α, z), E−(α,w), we obtain(
1− z

w

)−⟨α,β⟩
w−⟨α,β⟩Yα(w)Yβ(z) =

(
1− w

z

)−⟨α,β⟩
z−⟨α,β⟩Yβ(z)Yα(w) . (6.4)

Relative locality Here again we consider Yα(z) as a formal series on
⊕

λ∈R Hfin
λ . On each

of these summands, Lm and Jm act naturally as a representation. We denote their direct
sum on

⊕
λ∈R Hfin

λ by L̂m, Ĵm, respectively.

The commutation relation [Ĵm, Yα(z)] = αYα(z)z
m can be checked easily from the defini-

tion of Yα(z). This is equivalent to [Ĵm, Yα,s] = αYα,m+s.

Primarity As we will see, the conformal weight of Yα should be D = α2

2
. Note that

∂Yα(z) = z−1Yα(z)αĴ0 +
∑
j<0

z−j−1αYα(z)Ĵj +
∑
j>0

z−j−1αĴjYα(z)

On the other hand, Yα being primary is equivalent to [L̂m, Yα(z)] = ∂Yα(z)z
m+1 + D(m +

1)Yα(z). Therefore, we need to show

[L̂m, Yα(z)]

= (z−1Yα(z)αĴ0 +
∑
j<0

z−j−1αYα(z)Ĵj +
∑
j>0

z−j−1αĴjYα(z))z
m+1 +D(m+ 1)Yα(z)z

m .

(6.5)

It holds that Ĵjcα = cα(Ĵj + αδj). From the Sugawara formula L̂m = 1
2

∑
k : ĴkĴm−k :, we

have L̂mcα = cα(L̂m + αĴm) for m ̸= 0 and L̂0cα = cα(L̂0 + αĴ0 +
α2

2
).

We want to verify directly that Yα(z) is primary in the sense above. To do this, recall
the commutation relations

[L̂m, Ĵj] = −jĴj+m.

In the definition of E±, the order of product does not matter, hence

E+(α, z) =
∏
j>0

exp
(
−αĴj

j
z−j
)
, E−(α, z) =

∏
j<0

exp
(
−αĴj

j
z−j
)
.

Using the formula [A,BC] = [A,B]C +B[A,C], we calculate

[L̂m, Yα(z)] = [L̂m, cα]E
−(α, z)E+(α, z)zαĴ0 (6.6)
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+ cα[L̂m, E
−(α, z)]E+(α, z)zαĴ0 + cαE

−(α, z)[L̂m, E
+(α, z)]zαĴ0 .

Let us consider the three cases separately. We illustrate our strategy for the simpler case
of m = 0.

• m = 0. In this case, (6.5) becomes the following and thus we have to show

[L̂0, Yα(z)] = (z−1Yα(z)αĴ0 +
∑
j>0

z−j−1αĴjYα(z) +
∑
j<0

z−j−1αYα(z)Ĵj)z +DYα(z)

= Yα(z)αĴ0 +
∑
j>0

z−jαĴjYα(z) +
∑
j<0

z−jαYα(z)Ĵj +DYα(z), . (6.7)

As [L̂0, cα] = cα(D + Ĵ0), the first and the last terms in (6.7) are obtained. By noting
[L̂0, Ĵj] = −jĴj, it is straightforward that[

L̂0, exp
(
−αĴj

j
z−j
)]

= αĴjz
−j exp

(
−αĴj

j
z−j
)

and hence [L̂0, E
±(α, z)] =

∑
±j>0 z

−jαĴjE
±(α, z). Inserting them in (6.6), they yield

the second and the third terms of (6.7).

• m > 0, odd. In this case, there is no j such that −2j = m. Using [L̂m, Ĵj] = −jĴm+j,
we have [

L̂m, exp
(
−αĴj

j
z−j
)]

=
∞∑
k=0

1
k!

[
L̂m,

(
−αĴj

j
z−j
)k]

=
∞∑
k=1

1
k!

kjαĴm+j

j
z−j

(
−αĴj

j
z−j
)k−1

= αĴm+jz
−j

∞∑
k=1

1
(k−1)!

(
−αĴj

j
z−j
)k−1

= αĴm+jz
−j exp

(
−αĴj

j
z−j
)

and hence [L̂m, E
±(α, z)] =

∑
±j>0 z

−jαĴm+jE
±(α, z). The contribution from the case

j = −m in (6.6) gives exactly the term z−1Yα(z)αĴ0z
m+1 in (6.5).

If m + j < −j, we need to bring the factor Ĵm+j past exp
(
−αĴ−m−j

−m−j
zm+j

)
. Recalling

that [Ĵj, Ĵ−j] = j, and hence [exp(cĴj), Ĵ−j] =
∑

k≥0
1
k!
ck[Ĵk

j , Ĵ−j] = cj exp(cĴj), we

get a contribution α2zmYα(z) for each such j. There are m−1
2

such cases and it is

(m− 1)α
2

2
zmYα(z).

Finally, from [L̂m, cα]E
−(α, z)E+(α, z)zαĴ0 = αĴmYα(z) = z−m−1αĴmYα(z)z

m+1. As
m > 0, we need to bring the factor Ĵm through E−(α, z), from which there is an
additional contribution α2zmYα(z). Altogether, we obtain a contribution of (m +
1)α

2

2
zmYα(z) which is the last term of (6.5) and the term corresponding to j = m.

This completes the proof of the case m > 0 odd.
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• m > 0, even. In this case, there is j such that −2j = m. We calculate the commutator[
L̂−2j, exp

(
−αĴj

j
z−j
)]

slightly modifying the argument above for m > 0 odd

[
L̂−2j, exp

(
−αĴj

j
z−j
)]

=
∞∑
k=0

1
k!

[
L̂−2j,

(
−αĴj

j
z−j
)k]

= −αz−j

j
[L̂−2j, Jj] +

∞∑
k=2

1
k!

[
L̂−2j,

(
−αĴj

j
z−j
)k]

= αz−jJ−j +
∞∑
k=2

1
k!

(−1)kαkz−jk

jk
j2k(k−1)

2
Jk−2
j

−
∞∑
k=2

1
k!

(−1)kαkz−jk

jk
kjJk−1

j J−j

= αz−jJ−j +
α2

2
z−2j

∞∑
k=2

1
(k−2)!

(−1)kαk−2z−j(k−2)

jk−2 Jk−2
j

−
∞∑
k=2

1
k!

(−1)kαkz−jk

jk
kjJk−1

j J−j

= α2

2
z−2j exp

(
−αĴj

j
z−j
)
+

∞∑
k=1

1
(k−1)!

(−1)k−1αk−1z−j(k−1)

jk−1 Jk−1
j J−j

= α2

2
z−2j exp

(
−αĴj

j
z−j
)
+ exp

(
−αĴj

j
z−j
)
J−j

and then moving Ĵj+m = Ĵ−j, we obtain an additional term of

α2

2
z−2j exp

(
−αĴj

j
z−j
)
= α2

2
zm exp

(
−αĴj

j
z−j
)

and this gives the contribution α2

2
zmYα(z).

From j with m + j < −j, we get a contribution in (6.5) α2zmYα(z) for each such j as
before, and as m is even there are m−2

2
such cases, and together with the contribution

from the previous paragraph we obtain m−1
2
α2zmYα(z) as before.

The rest is the same as in the case where m is odd.

• The case m < 0 is obtained by taking the conjugate and substituting α by −α.

Energy bounds By [TL97, Proposition VI.1.2.1], ∥Yα(n)∥ ≤ 1 if ⟨α, α⟩ ≤ 1. In particular,
Yα satisfies the linear energy bound for such α. It is also shown that for any α, Yα(z) satisfies
a polynomial energy bound.

Wightman fields Let G be a subgroup of R. Then, for a fixed function h with supph ⊂ I,
we can choose a family of automorphisms σα parametrized by α ∈ G such that, by omitting
the dependence on h, σα ◦ σβ = σα+β. Their braidings satisfy ϵ±(σα, σβ) = ϵ±(σβ, σα) =
ϵ±(σ−α, σ−β). Therefore, if we take κL(α) = σα, κR(α) = σ−α, they objects satisfy the
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conditions of Section 4. We can also take κL(α) = σα, κR(α) = σ±
√
α2+4πℓ for any ℓ ∈ Z such

that α2 + 4πℓ > 0.
Instead, let G = Z and K = {1, 2, · · · |K|} be a finite set. For j ∈ K, we take αj such that∑

j∈K α
2
j/2 = 1, then κj(n) = σnαj

satisfy the conditions of Section 3, obtaining extensions

of (AU(1))
⊗j as conformal nets on S1.

On the other hand, we have checked that the charged primary fields Yα satisfy the con-
ditions of Section 5.3 (without the index ξ). Moreover, if there is α ∈ G,α ≤ 1, then Yα,s
are bounded, and hence the two-dimensional Wightman field as constructed in Section 5.5
satisfies a linear energy bound, and generate the conformal net on E . If G is a subgroup
without such α, the extension given by G can be embedded with a larger net, where the
field satisfy a linear energy bound. From this, it follows that the fields for α > 1 strongly
commute when smeared with spacelike separated test functions by an analogue of [CTW21,
Lemma 3.6].

7 Outlook

This construction should apply also to loop group nets at level 1 [Was98], [TL97]. The bosonic
construction of charged primary fields of [TL97] should give two-dimensional Wightman fields
by our construction.

There are a few works on two-dimensional extension of CFT in a language similar to
that of vertex operator algebras, e.g. [HK07], [CKM22], [Mor21]. We plan to investigate the
construction problems of Wightman fields with more generality, in particular, for loop group
nets with higher levels and for Virasoro nets [KL04b].

In principle, our fields should be Wick-rotated to an Euclidean theory, that should corre-
spond to the works above. It would be interesting to understand these Euclidean models in
terms of Hilbert spaces and operators, cf. [FFK89].
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A On strong locality

Let us prove a simple criterion for strong commutativity of operators satisfying linear energy
bounds which follows from [GJ87, Theorem 19.4.4]. The arguments here are due to Sebastiano
Carpi.

Let H be a positive self-adjoint operator, A a symmetric operator on Dom(H) and assume
that, ∥AΨ∥ ≤ C∥Hψ∥, ∥[H,A]Ψ∥ ≤ C∥Hψ∥. R(λ) = (H + (λ + 1)1)−1, R = R(0) =
(H + 1)−1, δ(A) = i[H,A], δk(A) = δ(δ(· · · (δ(A) · · · )))︸ ︷︷ ︸

k-times

. By the proof of [GJ87, Theorem

19.4.1], we have

R
1
2 =

1

π

∫ ∞

0

R(λ)λ−
1
2 dλ,

[A,R
1
2 ] =

1

π

∫ ∞

0

R(λ)((H + (λ+ 1)1)A− (H + (λ+ 1)1)A)R(λ)λ−
1
2 dλ

= − i

π

∫ ∞

0

R(λ)δ(A)R(λ)λ−
1
2 dλ.

Note also that ∥(H + 1)R(λ)∥ = ∥R(λ)(H + 1)∥ ≤ 1, ∥R(λ)∥ ≤ 1
1+λ

and ∥R−1R(λ)∥ =

∥ H+1
H+(λ+1)1

∥ ≤ 1
λ+1

≤ 1. Therefore, we find that

∥[A,R
1
2 ]∥ ≤ 1

π

∫ ∞

0

λ
1
2

1 + λ
∥δ(A)R(λ)∥ dλ

≤ 1

π

∫ ∞

0

λ
1
2

1 + λ
∥δ(A)R∥ dλ

= ∥δ(A)R∥.

This implies that

∥AR−R
1
2AR

1
2∥ ≤ ∥[A,R

1
2 ]∥ · ∥R

1
2∥ ≤ ∥δ(A)R∥.

In particular, if ∥AR∥ is bounded, it follows that ∥R 1
2AR

1
2∥ ≤ ∥AR∥+∥δ(A)R∥. If we apply

this to δ(A) and δ2(A) = −[H, [H,A]] instead of A, we obtain ∥R 1
2 δ(A)R

1
2∥ ≤ ∥δ(A)R∥ +

∥δ2(A)R∥ and ∥R 1
2 δ2(A)R

1
2∥ ≤ ∥δ2(A)R∥+ ∥δ3(A)R∥, respectively.

Let us cite [GJ87, Theorem 19.4.3] with n = 1 and [GJ87, Theorem 19.4.4]:

Theorem A.1. The following hold.

• Let H,A,R as above, and suppose that R
1
2 δ(A)R

1
2 and AR are bounded. Then A is

essentially self-adjoint on any core of H.

• Let H,A,B,R as above, and suppose that R
1
2 δ(A)R

1
2 , R

1
2 δ(B)R

1
2 , AR,BR, R

1
2 δ2(A)R

1
2 ,

R
1
2 δ2(B)R

1
2 , δ(A)R, δ(B)R are bounded. Suppose furthermore that AB,BA are defined

on Dom(H) and AB = BA. Then A,B are essentially self-adjoint on any core of H
and their closures commute strongly.
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Combining these observations, we have the following result.

Theorem A.2. The following hold.

• Let H,A as above, and suppose that the operators ∥AΨ∥ ≤ C∥(H +1)Ψ∥, ∥[H,A]Ψ∥ ≤
C∥(H + 1)Ψ∥, ∥[H, [H,A]]Ψ∥ ≤ C∥(H + 1)Ψ∥. Then A is essentially self-adjoint on
any core of H.

• Let H,A,B,R as above, and suppose that the operators

– A, δ(A) = i[H,A], δ2(A) = −[H, [H,A]], δ3(A) = −i[H, [H, [H,A]]]
– B, δ(B) = i[H,B], δ2(B) = −[H, [H,B]], δ3(B) = −i[H, [H, [H,B]]]

are defined on Dom(H) and

– ∥AΨ∥ ≤ C∥(H + 1)Ψ∥, ∥δk(A)Ψ∥ ≤ C∥(H + 1)Ψ∥, k = 1, 2, 3

– ∥BΨ∥ ≤ C∥(H + 1)Ψ∥, ∥δk(B)Ψ∥ ≤ C∥(H + 1)Ψ∥, k = 1, 2, 3

Suppose furthermore that AB,BA are defined on Dom(H) and AB = BA. Then A,B
are essentially self-adjoint on any core of H and their closures commute strongly.

Proof. By the hypothesis ∥AΨ∥ ≤ C∥(H + 1)Ψ∥, ∥δ(A)Ψ∥ ≤ C∥(H + 1)Ψ∥, we have that

∥AR∥ ≤ C, ∥δ(A)R∥ ≤ C, therefore, by the observation above, ∥R 1
2AR

1
2∥ ≤ 2C. Applying

the same argument to δ(A) with the hypothesis ∥δ2(A)Ψ∥ ≤ C∥(H + 1)Ψ∥, we obtain

∥R 1
2 δ(A)R

1
2∥ ≤ 2C. This and the first assertion of Theorem A.1 (with C replaced by 2C)

complete the proof of the first assertion.
As for the second assertion, we use ∥δ3(A)R∥ ≤ C to infer that the boundedness of

R
1
2 δ2(A)R

1
2 , which is in the assumption of the second assertion of Theorem A.1. We have

analogously the bounds for operators involving B, therefore, the second assertion of Theorem
A.1 applies.

This should be compared with some other formulations of the commutator theorem, e.g.,
[RS75, Theorem X.37] which assumes that ∥Aψ∥ ≤ C∥Hψ∥ and |⟨ψ, [H,A]ψ⟩| ≤ C⟨ψ,Hψ⟩
(these assumptions are very similar to that of Theorem A.1, the first assertion) and proves
that A is essentially self-adjoint on any core of H. In general, for a closable operator B,
∥Bψ∥ ≤ C∥Hψ∥ for all ψ does not imply5 |⟨ψ,Bψ⟩| ≤ C⟨ψ, Tψ⟩, therefore, we cannot infer
the essential self-adjointness of A from just from ∥AΨ∥ ≤ C∥HΨ∥, ∥[H,A]Ψ∥ ≤ C∥(H +
1)Ψ∥, but we need a bound on the higher commutators.

It is also possibile to have weaker assumptions on the commutators, for example assuming
bounds as quadratic forms [DF77], but then one must be careful with the domains, see [Tan16,
Appendix C].

5A counterexample on C2 is H =

(
1 0
0 4

)
, B = 1√

2

(
1 4
−1 4

)
= 1√

2

(
1 1
−1 1

)
H,ψ =

(
1
1

)
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