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Abstract

We prove unitarity of the vacuum representation of the W3-algebra for all values of
the central charge c ≥ 2. We do it by modifying the free field realization of Fateev and
Zamolodchikov resulting in a representation which, by a nontrivial argument, can be
shown to be unitary on a certain invariant subspace, although it is not unitary on the full
space of the two currents needed for the construction. These vacuum representations
give rise to simple unitary vertex operator algebras. We also construct explicitly unitary
representations for many positive lowest weight values. Taking into account the known
form of the Kac determinants, we then completely clarify the question of unitarity of
the irreducible lowest weight representations of theW3-algebra in the 2 ≤ c ≤ 98 region.
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1 Introduction

TheWN (N = 2, 3, · · · ) algebras are “higher spin” extensions of the Virasoro algebra [Zam85,
FZ87, FL88], withW2 being the Virasoro algebra itself andW3 in some sense the simplest one
without a Lie algebra structure. For general N , theWN -algebra is generated by N − 1 fields,
the first one of which is the Virasoro field. For some discrete values of the central charge
c < N − 1, they have recently realized as a certain coset, showing unitarity of their vacuum
representations (i.e. the irreducible representations with zero lowest weights) as well as many
other representations [ACL19]. In the Virasoro case (N = 2), this is the famous construction
of Goddard, Kent and Olive [GKO86] and the corresponding central charge values are

c = 1− 6

m(m+ 1)
m = 3, 4, 5 . . .

whereas for the W3-algebra, these values are [Miz89, Miz91]

c = 2

(
1− 12

m(m+ 1)

)
m = 4, 5, 6 . . .

and in both cases N = 2, 3 it is known that there are no other unitary representations in
the c < N − 1 region than the ones obtained in this manner. Though this coset realization
is recently generalized [ACL19] to an even wider class of W-algebras, it is not expected to
take us above the central charge value c = N − 1, where rationality cannot hold. Indeed, as
far as we know, unitarity has never been shown for any central charge value c > N − 1 ≥ 2.
Note that unlike in the Virasoro (or in the affine Kac-Moody) case, when N ≥ 3 – because
of the lack of a Lie algebra structure – one cannot simply produce representations of WN

by e.g. taking tensor products of known ones. Because of the difficulty of finding explicitly
unitary constructions, some even expected the WN -algebras to not to have unitary vacuum
representations for c > N − 1 ≥ 2 (see e.g. [AJCH+18]). In this paper, we prove in fact that
the vacuum representation of the W3-algebra is unitary for any value of the central charge
c ≥ 2.

In the Virasoro case, unitarity for c > 1 can be settled using Kac determinants see e.g.
[KR87, Section 8.4]. At any “energy level” (i.e. eigenspace of the conformal Hamiltonian),
the Kac determinant is a polynomial of the central charge c and lowest weight h. Since all
Kac determinants are strictly positive in the region {(c, h) : c > 1, h > 0}, by a continuity
argument, unitarity in a single case inside the that region (which can be easily obtained e.g. by
taking tensor products) implies unitarity for the whole closure {(c, h) : c ≥ 1, h ≥ 0}. In case
of the W3-algebra, the difficulty is twofold. First, one cannot obtain unitary representations
with c > 2 by tensor product. Second, the Kac determinants – which are this time rational
functions of the central charge c and lowest weights h,w and are explicitly worked out in
[Miz89] by Mizoguchi – show that when c > 2, no irreducible lowest weight representation
can be unitary in a neighbourhood of h = w = 0 (apart from the vacuum itself). Hence
the physically most important representation, the vacuum one, cannot be accessed in this
manner from the (h,w) 6= (0, 0) region. With the usual indirect method ruled out, we are
lead to consider unitarity in a more constructive approach.

The explicit construction of unitary vacuum representations in the c > N − 1 region
is not trivial even in the Virasoro (N = 2) case. Buchholz and Schulz-Mirbach [BSM90]
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provided an interesting construction in this regard. They first realized the Virasoro algebra
with central charge c > 1 with the help of the U(1)-current (a field whose Fourier modes
form a representation of the Heisenberg algebra) in a – strictly speaking – non-unitary way.
These representations (which we simply call the BS-M construction) turn out to be “almost
unitary”: the only problem is a singularity at just one point (indeed, they only needed
their construction to be defined on the punctured circle). As observed in [Wei08], the BS-M
construction may be viewed as a non-unitary representation of the Virasoro algebra admitting
an invariant subspace containing the vacuum vector Ω, on which it is unitary. Inspired by
the BS-M construction and the mentioned observation, we start with a pair of commuting
U(1)-currents in their unitary vacuum representation and modify them so that that the
Fateev-Zamolodchikov free field realization of the W3-algebra [FZ87] associated with this
modified representation of the Heisenberg algebra gives a stress-energy field corresponding to
the BS-M one. Similarly to the BS-M case, the obtained new stress-energy and W (z) fields
will not give a unitary representation of theW3-algebra on the full space but they become so
on a subspace generated by Ω. However, the proof of this relies on a rather involved argument
exploiting the degeneracy of the vacuum representation: the same construction with nonzero
lowest weights does not have unitarity on the minimal invariant subspace containing the
lowest weight vector.

Whereas unitarity of the vacuum is difficult to treat, it turns out that some non-vacuum
representations can be shown to be unitary in a relatively simple, constructive manner.
Making another suitable use of the realization of Fateev and Zamolodchikov, we obtain a
manifestly unitary representation of the W3-algebra on a full unitary representation space of
two U(1)-currents. In this way, we produce unitary representations with h ≥ c−2

24
≥ 0 and

w limited in a certain interval depending on c and h. This is similar to the Virasoro case,
where an oscillator representation with a modified Sugawara construction gives manifestly
unitary representations for all h ≥ c−1

12
≥ 0; see e.g. [KR87, Section 3.4].

Having already found some unitary representations, one can use the known form of the
Kac determinant to arrive at even further values of c, h and w. In this way, for 2 ≤ c ≤ 98
we completely clear the question of unitarity. When c > 98, determining the sign of the Kac
determinant becomes harder; our results there remain partial.

This paper is organized as follows. In Section 2 we give a summary of formal series with
operator coefficients on Hermitian vector spaces and on theW3-algebra, the current algebras
and their representations. Apart from self-containment, we use the occasion to fix notations
and conventions. An important tool for unitarity, the Kac determinant, is also introduced.
Our main results are in Section 3, where we prove the unitarity of various representations
of the W3-algebra and completely classify unitary lowest weight representations with central
charge c ∈ [2, 98]. We also briefly explain in a remark how each unitary vacuum representation
gives rise to a simple unitary vertex operator algebra. Finally, in Section 4 we collect possible
future directions and open problems.

The non-constructive part of our work (where we exploit Kac determinants) is based on
the existence of lowest weight representations with invariant forms. Yet, as theW3-algebra is
not a Lie algebra, the existence of lowest weight representations with invariant forms for all
values of lowest weights is not straightforward. Though implicit in the literature, we could
not find a reference suitable for our needs, so we added an Appendix A to our work where
we clarify this issue by a novel, analytic method.

3



2 Preliminaries

2.1 Formal series and fields

Let V be a vector space and An : V → V (n ∈ Z) be a sequence of linear operators acting
on V . We say that the formal series A(z) =

∑
n∈ZAnz

−n is a field on V if for every v ∈ V ,
there is nv such that Anv = 0 whenever n ≥ nv. We shall refer to the operators {An}n∈Z as
the Fourier modes of A(z).

The (formal) derivative of A(z) =
∑

n∈ZAnz
−n is ∂zA(z) =

∑
n∈Z(−n)Anz

−n−1; note that
if A(z) is a field, so is ∂A(z). When A(z), B(ζ) are two formal series, the product A(z)B(ζ)
is a formal series in two variables z, ζ and we shall use the notations ∂ζ , ∂z in the obvious
way. Moreover, we shall also use the notation

A′(z) := iz∂zA(z) =
∑
n∈Z

(−in)Anz
−n, (1)

which we call the “derivative along the circle”.
Although the product of two formal series of the same variables does not make sense

in general, there are some pairs of formal series that can be multiplied. For example, the
product of a formal series in variables z and ζ of the form B(z/ζ) with any other formal series
in either z or ζ (but not in both!) makes sense. In particular, the product δ(z − ζ)A(ζ),
where δ(z − ζ) := z−1

∑
n( ζ

z
)n is the formal delta function, is well-defined; see more at

[Kac98, Section 2.1]. Also, if B(z) =
∑

n∈ZBnz
−n is a field then an infinite sum of the form∑

n≥N

Ak−nBn

(where N, k ∈ Z) becomes finite on every vector and hence gives rise to a well-defined
linear map. In particular, every field can be multiplied with a formal series of the form∑

n≤N cnz
−n (where the coefficients cn may be scalars or themselves linear maps). It then

turns out that if F (z) =
∑

n∈Z F(n)z
−n−1 and G(ζ) are fields, then by setting F+(z) :=∑

n<0 F(n)z
−n−1, F−(z) :=

∑
n≥0 F(n)z

−n−1, the normally ordered product

: F (z)G(ζ) := F+(z)G(ζ) +G(ζ)F−(z)

is well-defined even at z = ζ (i.e. after replacing ζ by z) and the obtained formal series
: F (z)G(z) : is again a field, see e.g. [Kac98, Section 3.1]. If F (z) and G(ζ) commute, so
do F±(z) and G(ζ), therefore, : F (z)G(ζ) : = F (z)G(ζ). Note that in general the normal
product of fields is neither commutative nor associative; in particular, to have an unam-
biguous meaning, we need to specify what we mean by the normal power : F (z)n : . Fol-
lowing the standard conventions, we define the n-th power in a recursive manner by the
formula : F (z)n : = : F (z)( : F (z)n−1 : ) : , and more in general, : F1(z)F2(z) · · ·Fn(z) : =
: F1(z)( : F2(z) · · ·Fn(z) : ) : .

2.2 Formal adjoints of formal series and fields

Let V be a C-linear space equipped with a Hermitian form 〈·, ·〉 (i.e. a self-adjoint sesquilinear
form) and A,B : V → V linear operators. If

〈BΨ1,Ψ2〉 = 〈Ψ1, AΨ2〉, for all Ψ1,Ψ2 ∈ V, (2)
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then we say that A and B are adjoints of each other and with some abuse of notation we
write B = A†. Note however, the following: 1) such an A† might not exist, 2) when 〈·, ·〉
is degenerate, A† may not even be unique. Nevertheless, for any two operators A,B the
statement B = A† is unambiguous: it simply means that they satisfy equation (2). We also
say that A is symmetric1 when A = A†.

We define the adjoint of the formal series A(z) =
∑

n∈ZAnz
−n to be the formal series

A(z)† :=
∑
n∈Z

A†nz
n,

i.e. we treat the variable z as if it were a complex number in S1 := {z ∈ C : |z| = 1}. As a
direct consequence of our definition, A(z) is symmetric – that is, A(z)† = A(z) as formal
series – if and only if A†n = A−n for all n ∈ Z. Moreover, if A(z) is symmetric, then so is its
circle derivative A′(z) of (1): this is exactly why we shall prefer it to ∂zA(z). Note that this
is also the convention found in the paper [BSM90] of Buchholz and Schulz-Mirbach.

If f(z) is a trigonometric polynomial, i.e. a finite series f(z) =
∑
|n|<N cnz

−n, and

A(z) is a symmetric field, then one finds that

(f(z)A(z))† = f(z)A(z) where f(z) :=
∑
|n|<N

c−nz
−n.

In particular, if cn = c−n for all n – or equivalently: if f takes only real values on S1 –
then f(z)A(z) is symmetric. This is not surprising at all; in fact, more in general, one has
that if A(z) and B(z) are commuting symmetric fields, then their product A(z)B(z) is also
a symmetric field. However, in this paper we shall often consider expressions of the type
ρ(z)A(z), ρ′(z)A(z) where ρ(z) = −i z−1

z+1
. In order to give an unambiguous meaning2 to the

expression ρ(z)A(z), we take the expansion around z = 0, where it holds that

ρ(z) = −iz − 1

z + 1
= −i(z − 1)

∑
n≥0

(−1)nzn = i

(
1 + 2

∑
n≥1

(−1)nzn

)
=:
∑
n

ρnz
−n. (3)

Accordingly we regard ρ(z) as a field (note that ρn = 0 for n > 0), and since it is scalar valued,
it commutes with anything and its product with another field A(z) is meaningful without
need of normal ordering: ρ(z)A(z) =

∑
n,k(ρkAn−k)z

−n. Similarly, the product ρ′(z)A(z),
with ρ′(z) given by (1), is defined as a field.

Although ρ(z) is not defined at z = −1 as a function (it has a singularity there), it takes
only real values on the punctured circle S1 \ {−1} and hence so does its circle derivative
ρ′(z). So one might wonder whether ρ(z)A(z) and ρ′(z)A(z) are still symmetric if A(z) is a
symmetric field. A quick check reveals that the answer in general is negative: the problem is
caused by the non-symmetric expansion (3). But if r(z) is a trigonometric polynomial and

1We use “symmetric” instead of “self-adjoint” in order to avoid confusions with the notion of self-adjoint
operator on a Hilbert space in view of a possible Hilbert space completion of the vector space V . This
“symmetry” has nothing to do with symmetric operators with respect to a bilinear (instead of sesquilinear)
form.

2From the point of view of quantum field theory (cf. [BSM90]), ρ should be regarded as a function on
S1 \ {−1} rather than a formal series; depending on the choice of region, it has different expansions.
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r(−1) = 0, then the singularity of r(z)ρ(z) at z = −1 is removable. Actually, it is clear
that in this case r(z) = (z + 1)t(z) where t is another trigonometric polynomial and hence
s(z) = r(z)ρ(z) = −i z−1

z+1
(z + 1)t(z) = −i(z − 1)t(z) is also a trigonometric polynomial for

which s(z) = r(z)ρ(z). Hence in this case

(r(z)ρ(z)A(z))† = r(z)ρ(z)A(z),

as if ρ(z)A(z) were symmetric. If further r′(−1) = 0, then also the singularity of r(z)ρ′(z) will
be removable, resulting in (r(z)ρ′(z)A(z))† = r(z)ρ′(z)A(z). These observation will become
important in the proof of unitarity of vacuum representations.

2.3 The W3-algebra

For our purposes the W3-algebra (see [BS93, Art16] for reviews) at central charge c ∈ C,
c 6= −22

5
, consists of two fields L(z) =

∑
n∈Z Lnz

−n−2 and W (z) =
∑

n∈ZWnz
−n−3 acting on

a C-linear space V such that

[L(z), L(ζ)] = δ(z − ζ)∂ζL(ζ) + 2∂ζδ(z − ζ)L(ζ) +
c

12
∂3ζ δ(z − ζ),

[L(z),W (ζ)] = 3∂ζδ(z − ζ)W (ζ) + δ(z − ζ)∂ζW (ζ),

[W (z),W (ζ)] =
c

3 · 5!
∂5ζ δ(z − ζ) +

1

3
∂3ζ δ(z − ζ)L(ζ) +

1

2
∂2ζ δ(z − ζ)∂L(ζ)

+ ∂ζδ(z − ζ)

(
3

10
∂2ζL(ζ) + 2b2Λ(ζ)

)
+ δ(z − ζ)

(
1

15
∂3ζL(ζ) + b2∂ζΛ(ζ)

)
(4)

where b2 = 16
22+5c

and Λ(z) = : L(z)2 : − 3
10
∂2zL(z). Equivalently, in terms of Fourier modes

the requirements read

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm,Wn] = (2m− n)Wm+n,

[Wm,Wn] =
c

3 · 5!
(m2 − 4)(m2 − 1)nδm+n,0

+ b2(m− n)Λm+n +

[
1

20
(m− n)(2m2 −mn+ 2n2 − 8))

]
Lm+n, (5)

where again b2 = 16
22+5c

and Λn =
∑

k>−2 Ln−kLk +
∑

k≤−2 LkLn−k −
3
10

(n + 2)(n + 3)Ln.
The first of these commutation relations says that the operators {Ln}n∈Z form a representa-
tion of the Virasoro algebra and consequently, we shall say that L(z) is a Virasoro (or
alternatively: a stress-energy) field.

Note that one cannot consider (5) (together with the definitions of b and Λn) as the
defining relations of an associative algebra (as it is sometimes loosely stated in the literature),
since the infinite sum appearing in Λn does not have an a priori meaning: it makes sense if
{Ln} form a field on V . Under the term “W3-algebra”, one studies general properties that
hold for operators {Ln,Wn}n∈Z satisfying the above relations. On the other hand, a concrete
realization on a linear space is referred to as a representation, although we do not define
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here an associative algebra called the W3-algebra. A universal object with these relations
can be defined in the context of vertex operator algebras [DSK05, DSK06]; however, here we
do not wish to follow that way.

We shall say that a Hermitian form 〈·, ·〉 is invariant for a representation of the W3-
algebra, if it makes the fields

T (z) := z2L(z) =
∑
n

Lnz
−n, M(z) := z3W (z) =

∑
n

Wnz
−n

symmetric. Equivalently, in terms of Fourier modes, the requirement of invariance is that
L†n = L−n and W †

n = W−n for all n ∈ Z. A representation together with an inner product
– or as is also called: scalar product – (i.e. a positive definite Hermitian form) is said to be
unitary.

Note that while in papers concerned with vertex operator algebras, the Virasoro field is
typically denoted by L(z) (as in our work), physicists often use T (z) for the same object.
Here we chose to reserve this symbol for the “shifted” field T (z) = z2L(z) in part to follow
the notations of [BSM90] used by Buchholz and Schulz-Mirbach, and in part simply because
being interested by unitarity, we will actually use more the combination z2L(z) than L(z) on
its own.

2.4 The U(1)-current (or Heisenberg) algebra

The U(1)-current (or Heisenberg) algebra is an infinite-dimensional Lie algebra spanned freely
by the elements {an}n∈Z and a central element Z with commutation relations

[am, an] = mδm+n,0Z. (6)

We shall be only interested in representations of this algebra where Z acts as the identity
and the formal series

a(z) =
∑
n∈Z

anz
−n−1

(where, by the usual abuse of notations, we denote the representing operators with the
same symbol as the abstract Lie algebra elements) is a field. Note that in many relevant
works regarding the W3-algebra and published in physics journals, this field appears as “the
derivative of the massless free field” and is denoted by ∂zϕ(z) (e.g. in [FZ87] and in [Miz89]),
although in our sense, in general3 there is no field ϕ(z) whose derivative is a(z). Note also
that the commutation relation (6) with Z := 1 is equivalent to

[a(z), a(ζ)] = ∂ζδ(z − ζ). (7)

Suppose now that we are also given a Hermitian form 〈·, ·〉 on our representation space.
We say that it is invariant for our representation, if it makes

J(z) := za(z) =
∑
n∈Z

anz
−n

3Unless we are in a representation where a0 = 0
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symmetric; this is equivalent to the condition a†n = a−n for all n ∈ Z. A representation
together with an invariant inner product, i.e. an invariant positive definite Hermitian form,
is said to be unitary.

Similarly to what we did for J(z) and a(z), we also introduce in general the “shifted”
normal powers : Jn : (z) = zn : a(z)n :. Again, the reason for working with them (rather
than with the usual powers4) is symmetry: given an invariant Hermitian form, it is this
combination which becomes symmetric. For example, for n = 2 we have

: J2 : (z) = z2 : a(z)2 := za+(z) · za(z) + za(z) · za−(z).

Now za+(z) =
∑

n<0 anz
−n and hence (za+(z))† = za−(z) − a0. Moreover, as a†0 = a0

commutes with all an, putting all together we have that

: J2 : (z)† = za(z) · (za−(z)− a0) + (za−(z) + a0) · za(z) =: J2 : (z).

For higher powers, symmetry of : Jn : (z) is justified in a similar manner.
If a(z) =

∑
n∈Z anz

−n−1 is a field satisfying the commutation relation (7), then its asso-
ciated (or canonical) stress-energy field is

L(z) =
∑
n∈Z

Lnz
−n−2 =

1

2
: a(z)2 : .

Its Fourier modes Ln = 1
2
(
∑

k>−1 an−kak +
∑

k≤−1 akan−k) form a representation of the Vi-
rasoro algebra with central charge c = 1. By elementary computations, [Ln, am] = −man+m
and it then follows that for any η, κ ∈ C, the operators

Ln − iκnan + ηan (n 6= 0), L0 + ηa0 +
κ2 + η2

2
,

also form a representation of the Virasoro algebra with central charge c(η, κ) = 1 + 12κ2; see
e.g. [KR87, Section 3.4]. Using circle derivatives, the corresponding “shifted” stress-energy
field can be written as

1

2
: J2 : (z) + κJ ′(z) + ηJ(z) +

κ2 + η2

2
. (8)

For the formal series J(z) = za(z) =
∑

n∈Z anz
−n where a(z) satisfies (7), a nonzero

vector Ωq is said to be a lowest weight vector with lowest weight q ∈ C if

for all m > 0 : amΩq = 0, a0Ωq = qΩq.

If Ωq is also cyclic, then the whole representation is said to be a lowest weight represen-
tation. It turns out that for every q ∈ C, such a representation exists (up to equivalence)
uniquely; this is the Verma module V U(1)

q . In this representation one has that vectors of the
form

a−n1 · · · a−nkΩq,

where 1 ≤ n1 ≤ . . . ≤ nk, form a basis, the formal series a(z) is a field and further that a0 is
the (multiplication by the) scalar q. Moreover, when q ∈ R, there exists a unique Hermitian
form 〈·, ·〉 on V U(1)

q with normalization 〈Ωq,Ωq〉 = 1, which is invariant for the representation
(the “canonical Hermitian form”). This form is automatically positive definite, making the
representation unitary. For proofs of these statements see e.g. [KR87].

4Note that : Jn : (z) = zn : a(z)n : is different from the n-th normal power : J(z)n :=: (za(z))n :.
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2.5 Lowest weight representations of the W3-algebra

Given a representation of theW3-algebra {Ln,Wn}n∈Z with central charge c, a nonzero vector
Ωc,h,w =: Ω is said to be a lowest weight vector with lowest weight (h,w) ∈ C2, if

for all n > 0 : LnΩ = WnΩ = 0, and L0Ω = hΩ, W0 = wΩ. (9)

In case h = w = 0, Ω is said to be a vacuum vector. In case the lowest weight vector is
cyclic, the whole representation is said to be a lowest weight representation.

Using the W3-algebra relations, it is rather easy (however, the induction should go with
respect to g in Appendix A instead of the number of operators, see e.g. [BMP96]) to show
that for any lowest weight representation, the vectors of the form

L−m1 · · ·L−m`W−n1 · · ·W−nkΩ, (10)

where 1 ≤ m1 ≤ · · · ≤ m`, 1 ≤ n1 ≤ · · · ≤ nk, span the whole representation space. However,
in general, linear independence does not follow. Nevertheless, for each central charge c 6= −22

5

and lowest weight (h,w) ∈ C2 there is indeed a representation, the Verma module V W3
c,h,w,

where these vectors form a basis. It is rather clear that such a representation is essentially
unique; what is less evident, is its existence. For a Lie algebra, Verma modules are constructed
as a quotient of the universal covering algebra, see e.g. [Jac79]. As the W3-algebra is not
a Lie algebra and the commutator [Wm,Wn] contains an infinite sum in L’s, it is actually
nontrivial that Verma modules exist. We show this in a novel, analytic manner in Appendix
A.

Using theW3-algebra relations, it is not difficult to see that the Verma module can admit
at most one invariant Hermitian form 〈·, ·〉 with normalization 〈Ωc,h,w,Ωc,h,w〉 = 1. We will
call this the “canonical” form. It is also rather trivial that if c, h, w are not all real, then such
a Hermitian form cannot exists. Again, what is less evident is the existence for c, h, w ∈ R.
We give a proof of this fact in Appendix A. Since the goal of this paper is to deal with
unitarity, we will focus on the case when c, h, w ∈ R.

Let us now take some c, h, w ∈ R, c 6= −22
5

. Any nontrivial subrepresentation in the
Verma module is included in the kernel

ker〈·, ·〉 = {Ψ ∈ V W3
c,h,w : 〈Ψ,Φ〉 = 0 for all Φ ∈ V W3

c,h,w},

see the arguments of [KR87, Proposition 3.4(c)]. It then turns out that with the given values
of c, h, w, there is (an up-to-isomorphism) unique irreducible lowest weight representation
V W3
c,h,w: namely, the one obtained by taking the quotient of the Verma module with respect

to ker〈·, ·〉. The canonical form on a Verma module is positive semidefinite if and only if the
corresponding irreducible representation admits a invariant inner product, making it unitary.

Actually, standard arguments show that (for given (c, h, w)) any lowest weight repre-
sentation with a non-degenerate, invariant Hermitian form 〈·, ·〉 is isomorphic to the unique
irreducible representation. This is due to the fact that the value of 〈Ψ,Ψ′〉, where Ψ,Ψ′ are
vectors of the form (10), is “universal”: it depends on c, h, w but not on the actual representa-
tion; see Proposition A.1. In particular, for each triplet (c, h, w), there is (up to isomorphism)
at most one lowest weight representation with an invariant inner product; namely, V W3

c,h,w.
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2.6 The Kac determinant

The question of when the canonical form 〈·, ·〉 on the Verma module V W3
c,h,w is degenerate

or positive semidefinite can be studied through the Kac determinant. See [KR87, Chapter
8] for an overview of the methods used here, which are written for infinite-dimensional Lie
algebras, but apply to the W3-algebra as well.

The Hermitian form 〈·, ·〉 vanishes on pairs of vectors of the form (10) when the eigenvalue
N =

∑
jmj +

∑
j nj of L0 are different, hence the question can be studied for each N ≥ 0

separately. There are finite many vectors Ψ
(N)
1 , . . .Ψ

(N)
dN

among (10) for any given N that span

a finite dimensional subspace in V W3
c,h,w and one can consider the Gram matrix MN,c,h,w whose

entries are the product values 〈Ψ(N)
j ,Ψ

(N)
k 〉. Note that these values are real polynomials of

c, 1
22+5c

, h, w (see Appendix A). Evidently, we have the following.

• V W3
c,h,w is irreducible if and only if all of these matrices are nondegenerate.

• The canonical form on V W3
c,h,w is positive (semi)definite if and only if these matrices are

all positive (semi)definite.

However, it is difficult to determine the rank and positive (semi)definiteness of all these
matrices at once. Nevertheless, a rather compact formula can be given for the determinant
det(MN,c,h,w) at level N – called the Kac determinant – of these matrices. We can use it
in the following ways.

• If V W3
c,h,w is reducible, then det(MN,c,h,w) = 0 for some N .

• If the canonical form on V W3
c,h,w is positive-definite, then det(MN,c,h,w) > 0 for all N .

At each level N , det(MN,c,h,w) is a polynomial of c, 1
22+5c

, h, w. Therefore, if one finds a vector

in ker〈·, ·〉 in a Verma module V W3
c,h,w, one can extract a factor from det(MN,c,h,w) for some

N . With sufficiently many such vectors in ker〈·, ·〉, one can determine det(MN,c,h,w) up to a
multiplicative positive constant. According to [Miz89, AJCH+18], the Kac determinant at
level N is

det(MN,c,h,w) ∼
N∏
k=1

∏
mn=k

(fmn(h, c)− w2)P2(N−k),

where “∼” means equality up to a positive multiplicative constant that can depend on N
(but not on c, h, w) and

∞∑
n=0

P2(n)tn =
∞∏
n=1

1

(1− tn)2

and

fmn(h, c) =
64

9(5c+ 22)

[
h+ (4− n2)α2

+ + (4−m2)α2
− − 2 +

mn

2

]
×
[
h− 4((n2 − 1)α2

+ + (m2 − 1)α2
−)− 2(1−mn)

]2
(11)
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with

α2
± =

50− c±
√

(2− c)(98− c)
192

.

We shall exploit the knowledge of the signs of the Kac determinant (given by these explicit
formulas) in two ways:

• Let H ⊂ R3 be a connected set where for any (c, h, w) ∈ H and any N ∈ N it holds
that det(MN,c,h,w) > 0. In this situation, if V W3

c′,h′,w′ = V W3

c′,h′,w′ is unitary for at least one

triple (c′, h′, w′) ∈ H, then it is so for all triples in the closure H.

• If det(MN,c,h,w) < 0 for some N ∈ N, then V W3
c,h,w is not unitary.

By the observation of [AJCH+18, (A.10)], if 2 < c < 98, the contributions from fmn with
m 6= n are non-zero positive because α± in (11) have non-zero imaginary parts, and since

fmm(c, h) =
((c− 2)m2 − c+ 24h+ 2)2(96h+ (c− 2)(m2 − 4))

7776(5c+ 22)

is increasing with respect to m, hence all Kac determinants are positive if

f11(h, c)− w2 =
h2(96h− 3(c− 2))

27(5c+ 22)
− w2 > 0. (12)

Note that regardless of the value of the central charge, f11(h, c) − w2 ≥ 0 is a necessary
condition for unitarity since f11(h, c) − w2 is the first Kac determinant up to a positive
constant.

The case h = 0 is of particular importance, as this is when the lowest weight vector is a
“vacuum vector” for the Virasoro subalgebra. From the observation above, unitarity together
with h = 0 implies w = 0.

3 Unitarity of lowest weight representations

3.1 The free field realization of Fateev and Zamolodchikov

Given a pair of commuting fields a[k](z) =
∑

n∈Z J[k],nz
−n−1 (k = 1, 2), both satisfying the

U(1)-current relation (7), one can construct a family of representations of the W3-algebra
depending on a complex parameter α0. Following Fateev and Zamolodchikov [FZ87], we set

L̃(z;α0) = L[1](z) +
√

2α0∂a[1](z) + L[2](z)

=
1

2
: a[1](z)2 : +

1

2
: a[2](z)2 : +

√
2α0∂a[1](z),

W̃ (z;α0) =
b

12i

[
i2
√

2 : a[2](z)3 : −i6
√

2 : a[1](z)2 : a[2](z)− i6α0∂a[1](z)a[2](z)

− i18α0a[1](z)∂a[2](z)− i6
√

2α2
0∂

2a[2](z)
]
.
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Theorem 3.1 ([FZ87]). Let α0 ∈ C be such that c(α0) := 2 − a20
24
6= −22

5
and b ∈ C such

that b2 = 16
22+5c(α0)

. Then the above defined L̃(z;α0), W̃ (z;α0) fields satisfy the W3-algebra

relations (4) with central charge c(α0).

Remark 3.2. We think it useful to make some comments on the computations justifying the
above theorem. First of all, instead of commutation relations, it is more common to work in
terms of operator product expansions (OPEs). The OPE of two fields F1(z), F2(z) is
usually written in the form

F1(z)F2(ζ) ∼
N∑
j=1

Gj(ζ)

(z − ζ)j
,

where Gj(z), j = 1, · · · , N are some other fields. As formal series, this relation should be

interpreted as (see [Kac98, Theorem 2.3]) [F1(z), F2(ζ)] =
∑N

j=1
1
j!
∂jζδ(z − ζ)Gj(ζ).

It is possible to write the OPE between a field F (z) and a normal product : G(z)H(z) :
in terms of the OPE between F,G,H and the fields appearing in their OPE; again, for
details we refer to [Kac98]. Thus, if the OPE algebra of the basic fields is closed – like in
our case: [a[1](z), a[2](ζ)] = 0 and [a[j](z), a[j](ζ)] = ∂ζδ(z − ζ) (j = 1, 2) – then in principle
the OPE of any pair of normal products can be determined in terms of the basic fields.
Therefore, Theorem 3.1 can be indeed proved only in terms of the commutation relation
(7). Although actual computations of OPE of composite fields can be tedious and painful,
these computations are fortunately very established procedures and can be carried out by
computers, too. The most widely used software for this the Mathematica package5 OPEdefs
[Thi91] by Thielemans (although there are also other packages, e.g. [Eks11]). As is indicated
in the text, the authors of [RSW18] also used this package to make computations with OPEs
related to the free-field realizations of theW-algebras, and this is what we also used6 in part
to have an independent verification and in part to check that our constants (which, due to
differing conventions, slightly differ from the one appearing in [FZ87]) are indeed rightly set.

Since we are interested by unitarity, it is worth rewriting our fields using the circle deriva-
tive F ′(z) = iz∂zF (z) and performing computations with the “shifted fields” we introduced
above. Also, we prefer to make some different choices of variables – e.g. instead of α0 as in
the previous theorem, we will use κ := −i

√
2α0 – so that in the unitary case we will need to

deal with real constants, only. We thought it useful for the reader to summarize our conven-
tions in a table (which are actually mainly the ones used by Buchholz and Schulz-Mirbach in
[BSM90] and hence will be referred as the “B-SM conventions”) and put it in contrast with
the one used by the physicist and the one used by the VOA community.

With : Jn[j] : (z) = zn : a[j](z)n : (j = 1, 2), we find that in the Fateev-Zamolodchikov

construction, the fields T̃ (z;κ) := z2L̃(z;−i
√

2α0) and M̃(z;κ) := z2W̃ (z;−i
√

2α0) can be

5Mathematica scripts can be also executed on the freely download-able Wolfram Script; see more at
https://www.wolfram.com/wolframscript/.

6We thank Simon Wood for providing us his own code he used for the computations in [RSW18].
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Physicist VOA B-SM / ours
ϕ(z) (the massless free field) undefined undefined

i∂zϕ(z)
√

2a(z)
√

2J(z)/z
T (z) L(z) T (z)/z2

W (z) W (z) M(z)/z3

i∂2zϕ(z)
√

2∂za(z) −
√

2(J(z) + iJ ′(z))/z2

i∂3zϕ(z)
√

2∂2za(z) (2
√

2J(z) + i3
√

2J ′(z)−
√

2J ′′(z))/z3

−1
4

: (∂zϕ(z))2 : 1
2

: a(z)2 : : J2 : (z)/(2z2)

: ∂zϕ(z)n : (−i
√

2)n : a(z)n : (−i
√

2/z)n : Jn : (z)√
2α0

√
2α0 iκ

Table 1: Correspondence between fields and constants in various conventions.

written in the following way:

T̃ (z;κ) =
1

2
: J2

[1] : (z)− iκ(J[1](z) + iJ ′[1](z)) +
1

2
: J2

[2] : (z), (13)

M̃(z;κ) =
b

3
√

2
: J3

[2] : (z)− b√
2

(: J2
[1] : (z)− i2κ(J[1](z) + iJ ′[1](z)))J[2](z)

+
3bκ

2
√

2
(J ′[1](z)J[2](z)− J[1](z)J ′[2](z))

+
bκ2

2
√

2
(2J[2](z) + i3J ′[2](z)− J ′′[2](z)). (14)

Assume that J[1](z), J[2](z) have a common lowest weight vector Ωq1,q2 with lowest weights
q1, q2. It is straightforward to check that Ωq1,q2 is annihilated by all positive Fourier modes of
fields like : J3

[2] : (z) or J ′[1](z)J[2](z) and hence also by those of T̃ (z;κ) =
∑

n∈Z L̃κ,nz
−n and

M̃(z;κ) =
∑

n∈Z W̃κ,nz
−n. One also computes that

L̃κ,0Ωq1,q2 =

(
1

2
a2[1],0 +

1

2
a2[2],0 − iκa[1],0

)
Ωq1,q2 ,

W̃κ,0Ωq1,q2 =
b√
2

(
1

3
a3[2],0 − (a2[1],0 − 2iκa[1],0)a[2],0 + κ2a[2],0

)
Ωq1,q2 .

Hence we have the following.

Proposition 3.3. If Ωq1,q2 is a lowest weight vector for the two commuting U(1)-currents
J[1](z), J[2](z) with corresponding lowest weights q1 and q2, respectively, then it is also a lowest
weight vector for the representation of the W3-algebra given by the fields (13) and (14) with
lowest weight (h,w) where

h =
1

2
q21 +

1

2
q22 − iκq1, w =

b√
2

(
1

3
q32 − (q21 − 2iκq1)q2 + κ2q2

)
Now suppose we have an inner product on our representation space making the currents

J[j](z) = za[j](z) (j = 1, 2) symmetric. Then the fields : J2
[1] : (z), J[1](z), J ′[1](z), : J2

[2] : (z) are
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all symmetric, but the linear combination giving T̃ (z;κ) is only symmetric for κ = 0; i.e. for
the central charge c = 2 case (and we have the same situation regarding M(z)).

One possible remedy would be a modification of our inner product; instead of the invariant
form for our currents, we should try to use a “strange” one that does not make J[1](z), J[2](z)
symmetric. Here we will follow a – in some sense – dual approach. Namely, we retain our
original inner product, but instead modify our currents by applying an automorphisms of the
algebra (7).

3.2 New representations by automorphisms of the U(1)-current

Suppose the field J(z) =
∑

n∈Z anz
−n is a U(1)-current and f(z) =

∑
n∈Z cnz

−n is a scalar
valued field (i.e. cn = 0 for n large enough). Then, because scalars commute with everything,
the sum J(z) + f(z) satisfies the same commutation relation of the U(1)-current field. In
terms of Fourier modes, the transformation is an 7→ an + cn. If further cn = 0 for all n > 0
and Ψ is a lowest weight vector for J(z) with weight q (i.e. we have anΨ = 0 for all n > 0
and a0Ψ = qΨ), then Ψ is a lowest weight vector for J(z) + f(z) with lowest weight q + c0.
Representations of this kind play a central role in [BMT88].

Evidently, the map an 7→ an + cn can be interpreted as a composition of a representation
with an automorphism of our Lie algebra. Thus, if we further used our current to construct
something – say a stress-energy field – then by composition with such an automorphism,
we get a “transformed” stress-energy field. As an expression involving only normal powers
and derivatives of J(z)+f(z), it still satisfies the same commutation relations with the same
central charge, because the latter relations are determined by the U(1) commutation relation.

Following the ideas of Buchholz and Schulz-Mirbach [BSM90, (4.6)], we consider the above
transformation with f(z) = κρ(z) + η, where κ, η are scalar constants and ρ(z) = −i z−1

z+1
. As

was explained in Section 2.1, here we interpret ρ(z) as the formal series (3), rather than a
function. Accordingly, ρn = 0 for all n > 0 and in terms of Fourier modes, our transformation
is

an 7−→ ϕκ,η(an) = an + iκ(δn,0 + 2(−1)nχ(−∞,0)(n)) + ηδn,0,

where χ(−∞,0) is the characteristic function of the open interval (−∞, 0).
The reader might wonder what is the reason behind the choice of the function ρ. As we

shall see in the next subsection, what makes ρ(z) important is that it is a solution of the
differential equation

ρ(z)2

2
+

1

2
− ρ′(z) = 0, (15)

where ρ′(z) denotes the derivative along the circle (1).
The transformed U(1)-current field gives rise to a new associated stress-energy field. By

an abuse of notation, we denote (the shifted version of) this by ϕκ,η(T (z)), even though ϕκ,η
does not formally act on T (z). After a straightforward computation, we find that

ϕκ,η(T (z)) :=
1

2
: ϕκ,η(J)2 : (z) = T (z) + (κρ(z) + η)J(z) +

(κρ(z) + η)2

2
,

where T (z) = 1
2

: J2 : (z) is the canonical stress-energy field of the original representation.
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“Almost” symmetric stress-energy tensor with c > 1. Following the work of Buchholz
and Schulz-Mirbach, given a U(1)-current field J(z), apart from the canonical (shifted) stress-
energy field T (z) = 1

2
: J(z)2 :, we shall also consider Tκ(z) =

∑
n∈Z Lκ,nz

−n where

Tκ(z) = T (z) + κ (J ′(z)− ρ(z)J(z)) (16)

and of course the product ρ(z)J(z) is understood in the sense of fields; i.e. its coefficient of
z−n is

∑
m iκ(δm,0 + 2(−1)mχ(−∞,0)(m))Jn−m. Note that T0(z) = T (z); i.e. for κ = 0 the

construction reduces to the canonical one. One can show that the operators {Lκ,n}{n∈Z} form
a representation of the Virasoro algebra with central charge c = 1+12κ2 by a straightforward
computation. However, we will not need that since we see this below in another way.

The representation (16) is different from (8): the construction (8) does not yield a man-
ifestly unitary vacuum representation with central charge c > 1. On the other hand, if
0 6= κ ∈ R then c > 1 and if J(z) is symmetric and Ω is a lowest weight vector for J(z) with
zero lowest weight q = 0 (i.e. if Ω was a vacuum vector for J(z)), then – as is easily checked
– Ω is still a vacuum vector for the representation {Lκ,n}{n∈Z} (Ω is not necessarily cyclic for
{Lκ,n}{n∈Z}, even if it was so for J(z)). Moreover, even if it is not properly symmetric, Tκ(z)
has a certain weakened symmetry property. Since the fields T (z), J(z), J ′(z) appearing in
our formula are symmetric, κ ∈ R and ρ is also real on the unit circle – as was explained at
the end of Section 2 – we have that

(p(z)Tκ(z))† = p(z)Tκ(z)

for any (scalar valued) trigonometric polynomial p(z) =
∑
|n|<N cnz

−n satisfying the addi-

tional property p(−1) = 0.
Although different, this construction is closely related to (8). Indeed, if we apply the

construction (16) to the current ϕκ,η(J(z)) instead of J(z) (i.e. we apply the transformation
ϕκ,η with the same κ) then we obtain the stress-energy field of (8):

ϕκ,η(Tκ(z)) = Tκ(z) + (κρ(z) + η)J(z) +
(κρ(z) + η)2

2
+ κ

(
κρ′(z)− κρ(z)2 − ηρ(z)

)
= Tκ(z) + (κρ(z) + η)J(z) +

κ2 + η2

2

= T0(z) + κJ ′(z) + ηJ(z) +
κ2 + η2

2
, (17)

where we used that ρ(z) satisfies the differential equation (15). This also shows that the
operators {Lκ,n}{n∈Z} indeed satisfy the Virasoro relations with central charge c = 1 + 12κ2,
since the last expression coincides with (8).

Restoring unitarity to the Fateev-Zamolodchikov realization The transformation
ϕ−κ,iκ will be of special interest. Since ρ0 = i, it changes the lowest weight value for J(z) by
−iκ + iκ = 0; i.e. it preserves the lowest weight. Moreover, by substituting η = iκ in (17)
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and taking account of the fact that ϕ−κ,iκ = ϕ−1κ,−iκ, we see that

ϕ−κ,iκ(J(z)) = J(z)− κρ(z) + iκ,

ϕ−κ,iκ(J
′(z)) = J ′(z)− κρ′(z),

ϕ−κ,iκ(T (z)) :=
1

2
: ϕ−κ,iκ(J(z))2 : = T (z) + (−κρ(z) + iκ)J(z) +

(−κρ(z) + iκ)2

2
ϕ−κ,iκ(T (z)− iκ(J(z) + iJ ′(z))) = Tκ(z) (18)

suggesting that by applying ϕ−κ,iκ to the first of our commuting currents appearing in the
Fateev-Zamolodchikov construction, we could turn our “very much non symmetric” fields into
ones that have a discussed weak form of symmetry without changing lowest weight values.

So let us take again two commuting U(1)-current fields J[1](z), J[2](z) and consider them
as a representation of the direct sum of the Heisenberg algebra with itself. Then letting ϕ−κ,iκ
act on the first one while not doing anything with the second one, i.e. the transformation
ϕ̃−κ,iκ defined by

ϕ̃−κ,iκ(J[1](z)) = ϕ−κ,iκ(J[1](z)), ϕ̃−κ,iκ(J[2](z)) = J[2](z)

can be viewed as a composition of our representation with an automorphism. Accord-
ingly, we can apply the Fateev-Zamolodchikov realization (13)(14) to these representations
ϕ̃−κ,iκ(J[1](z)), ϕ̃−κ,iκ(J[2](z)) and obtain a shifted pair of fields, which we denote by T̃ (z;κ)

and M̃(z;κ). Setting T[j],κ(z) = 1
2

: J2
[j] : (z) + κ

(
J ′[j](z)− ρ(z)J[j](z)

)
as in (16) for j = 1, 2,

by a straightforward computation we find that

ϕ̃−κ,iκ(T̃ (z;κ)) = T[1],κ(z) + T[2],0(z),

ϕ̃−κ,iκ(M̃(z;κ)) =
b

3
√

2
: J3

[2] : (z)−
√

2bT[1],κ(z)J[2](z)

+
3bκ

2
√

2
((J ′[1](z)− κρ′(z))J[2](z))− (J[1](z)− κρ(z))J ′[2](z)).

+
bκ2

2
√

2
(2J[2](z)− J ′′[2](z)) (19)

Since we obtained them by a transformation which is in fact a composition with an auto-
morphism of a pair of U(1)-currents, the fields z2ϕ̃−κ,iκ(T̃ (z;κ)), z3ϕ̃−κ,iκ(M̃(z;κ)) must still
result in a representation of the W3-algebra. Moreover, since ϕ̃−κ,iκ transforms our currents
in a manner that leaves every lowest weight vector a lowest weight vector with the same
weight, by Proposition 3.3, we have that if Ωq1,q2 was a common lowest weight vector for
J[1](z) and J[2](z) with lowest weights q1 and q2 respectively, then it will be also a lowest
weight vector for the representation of theW3-algebra given by (19) with lowest weight value
(h,w) given by Proposition 3.3.

Corollary 3.4. Let κ, q1, q2, b ∈ R be such that b2 = 16
22+5c

where c = 2 + 12κ2. Then there
exists a lowest weight representation {(Ln,Wn)}n∈Z of the W3-algebra with central charge
c = 2 + 12κ2 and lowest weight (h,w) = (1

2
q21 + 1

2
q22 − iκq1, b√

2
(1
3
q32 − (q21 − 2iκq1)q2 + κ2q2))
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on an inner product space such that the fields T (z) =
∑

n∈Z Lnz
−n and M(z) =

∑
n∈ZWnz

−n

satisfy the weak symmetry condition

(p(z)T (z))† = p(z)T (z), (r(z)W (z))† = r(z)W (z)

for all trigonometric polynomials p, r with p(−1) = r(−1) = r′(−1) = 0.

Proof. By taking a tensor product of two lowest weight representations, it is clear that we can
construct two commuting symmetric U(1)-current fields J[1](z), J[2](z) on an inner product
space having a common lowest weight vector Ωq1,q2 of lowest weight q1 and q2, respectively.
(Note: this is the point where we use that q1, q2 are real: with a nonzero imaginary part, we
could not have an invariant inner product for our currents). Now consider the representation
z2T (z), z3M(z) of theW3-algebra constructed through (19) with the help of the fields J[1](z)
and J[2](z). Taking account of the symmetry of our currents, the fact that κ, b ∈ R and the
comments at the end of Section 2, we see that T (z) and M(z) indeed satisfy the required
symmetry condition. Moreover, by Proposition 3.3 and the observation above the current
corollary, Ωq1,q2 is a lowest weight vector for this representation with the claimed lowest
weight value. Thus, restricting our representation of the W3-algebra to the cyclic subspace
of Ωq1,q2 gives a lowest weight representation with all the desired properties.

Remark 3.5. One might wonder whether our “weak” symmetry condition in the above corol-
lary actually implies “true” symmetry. It turns out that in the vacuum case this is exactly
what happens – we shall see this in the next section. However, note that in general, the
answer is: “no”. In fact, if q1 6= 0, then h is not real, so we cannot even have an invariant
Hermitian form (let alone an inner product). Actually, by (12), even if we set q1 = 0 (and
hence have real h and w), in general we cannot have unitarity (see Theorem 3.8 for some
values of h,w for which unitarity fails). Indeed, our argument in the next section will use in
a crucial way that h = w = 0. In contrast, in the Virasoro case, the “weak” symmetry can
indeed be turned into “true” one; see Proposition 3.11.

3.3 Proof of unitarity for h = w = 0

In this section we will work in an abstract setting: we suppose that {(Ln,Wn)}{n∈Z} form
a representation of the W3-algebra with central charge c ≥ 2 and that we are also given a
nonzero vector Ω as well as an inner product 〈·, ·〉 satisfying the following requirements:

(i) Ω is a cyclic lowest weight vector for our representation and L0Ω = W0Ω = 0,

(ii) the fields T (z) =
∑

n∈Z Lnz
−n and M(z) =

∑
n∈ZWnz

−n satisfy the condition

(p(z)T (z))† = p(z)T (z), (r(z)M(z))† = r(z)M(z)

for all trigonometric polynomials p, r with p(−1) = r(−1) = r′(−1) = 0 (where the
adjoint is considered w.r.t. the given inner product 〈·, ·〉).

Such a representation and inner product indeed exists; this is clear by considering Corollary

3.4 with q1 = q2 = 0 and κ =
√

c−2
12

. From now on we shall not be interested how these
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objects were explicitly constructed; we will only use to above listed properties. Our aim will
be to conclude that 〈·, ·〉 is in fact an invariant inner product for our representation, making
it unitary. Since we work with Fourier modes rather than fields, we begin with reformulating
property (ii).

Lemma 3.6. Let p(z) =
∑
|n|<N cnz

−n and r(z) =
∑
|n|<N dnz

−n be a trigonometric polyno-

mials satisfying p(−1) = r(−1) = r′(−1) = 0. Then∑
|n|<N

c−nLn

† =
∑
|n|<N

cnL−n and

∑
|n|<N

d−nWn

† =
∑
|n|<N

dnW−n

Proof. This is evident by considering the zero mode of the products appearing in the equalities
of property (ii).

This implies in particular that (Ln1 − (−1)n1−n2Ln2)
† = L−n1 − (−1)n1−n2L−n2 and that

for any n1, n2, n3 ∈ Z with n1 6= n2 6= n3 6= n1, with a unique pair of real numbers u, d ∈ R
satisfying (−1)n1 + (−1)n2u+ (−1)n3d = (−1)n1n1 + (−1)n2n2u+ (−1)n3n3d = 0 (such a pair
exists) we have

(Wn1 + uWn2 + dWn3)
† = W−n1 + uW−n2 + dW−n3 . (20)

The next Lemma follows from Assumption (ii), and the form 〈·, ·〉 is not necessarily the
canonical one for (c, h, w).

Lemma 3.7. L−1Ω = W−1Ω = W−2Ω = 0.

Proof. By now we know that (L−1 + L0)
† = (L1 + L0) =: A; hence

‖L−1Ω‖2 = ‖(L−1 + L0)Ω‖2 = 〈Ω, A(L−1 + L0)Ω〉

However, A = (L1 + L0) annihilates Ω so

A(L−1 + L0)Ω = [A, (L−1 + L0)]Ω = (L1 + 2L0 + L−1)Ω = (A+ A†)Ω = A†Ω,

and ‖L−1Ω‖2 = 〈Ω, A†Ω〉 = 〈AΩ,Ω〉 = 0 showing that L−1Ω = 0. Then to conclude the
proof it is enough to note that W−1 = −1

2
[L−1,W0] and W−2 = −[L−1,W−1].

Theorem 3.8. Let {(Ln,Wn)}{n∈Z} be a representation of the W3-algebra with a scalar prod-
uct 〈·, ·〉 satisfying Assumptions (i),(ii). Then L†n = L−n and W †

n = W−n for all n ∈ Z.
Consequently, the representation is unitary.

Proof. We fist show that L†0 = L0. Each vector of the form (10) is an eigenvector of L0 with a
real eigenvalue and since we are in a lowest weight representation, these vectors – and hence
also the eigenspaces of L0 – span the full space. So to prove that L†0 = L0, it is enough to
check that these vectors are orthogonal to each other whenever the associated eigenvalues of
L0 are not equal. We will do this by performing an induction.
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Induction on gr := 2×(number of L’s) + 3×(number of W ’s). Assume that for some
j ∈ {0, 1, . . .} it holds that whenever `, `′, k, k′ are nonnegative integers of “total grade value”
(see [BMP96] for a similar grading)

gr := 2(`+ `′) + 3(k + k′) ≤ j,

then for any positive integers m1, . . .m`, n1 . . . nk and m′1, . . .m
′
`′ , n

′
1 . . . n

′
k′ , the vectors

Ψ = L−m1 · · ·L−m`W−n1 · · ·W−nkΩ
Ψ′ = L−m′

1
· · ·L−m′

`′
W−n′

1
· · ·W−n′

k′
Ω (21)

are orthogonal unless λ = λ′ where λ = m1 + · · ·m` + n1 + · · ·nkW and λ′ = m′1 + · · ·m′`′ +
n′1 + · · ·n′k′ (i.e. unless they correspond to the same eigenvalue of L0). Note that for gr = 0,
our assumption is trivially true as in that case we have a single possible pair of vectors only:
Ψ = Ψ′ = Ω. We have to show that this remains true for gr = j + 1. We will do this by
considering all possible pairs of vectors Ψ,Ψ′ of the form (21) with gr = 2(`+`′)+3(k+k′) ≤
j + 1 and show that if λ 6= λ′, then 〈Ψ,Ψ′〉 = 0.

Case 1: `+ `′ > 0. If λ = λ′, there is nothing to prove, so assume λ 6= λ′. Since now we
treat the case when the sum of ` and `′ is positive, at least one of them must be nonzero; so
say ` ≥ 1, meaning that Ψ must contain at least one L operator in its defining expression.
Let then ξ be the vector obtained by removing the first L operator from the expression of Ψ,
namely, Ψ = L−m1ξ. The vector ξ is still given by an expression of the same form than Ψ
or Ψ′, but the corresponding eigenvalue of L0 is (λ−m1) and hence Ψ = L−m1ξ = (L−m1 −
(−1)m1L0)ξ + (−1)m1(λ −m1)ξ. By assumption (ii), we know that (L−m1 − (−1)m1L0)

† =
(Lm1 − (−1)m1L0). Putting all this together, we have

〈Ψ,Ψ′〉 = 〈L−m1ξ,Ψ
′〉 = 〈(L−m1 − (−1)m1L0)ξ + (−1)m1(λ−m1)ξ,Ψ〉

= 〈ξ, (Lm1 − (−1)m1L0)Ψ
′〉+ (−1)m1(λ−m1)〈ξ,Ψ′〉

= 〈ξ, Lm1Ψ
′〉+ (−1)m1(λ− λ′ −m1)〈ξ,Ψ′〉

We will argue that both terms in the above sum are separately zero and we begin with the
second term. The total number of L’s in the expression giving ξ and Ψ′ is (`−1) + `′ and the
total number of W ’s is k+ k′. Thus, by the inductive hypothesis, their inner product is zero
unless they correspond to the same eigenvalue of L0, in which case we must have λ−m1 = λ′.
In either case, the product (λ−λ′−m1)〈ξ,Ψ′〉 is zero. Let us treat now the term 〈ξ, Lm1Ψ

′〉.
Since Lm1 annihilates Ω,

Lm1Ψ
′ = Lm1L . . . LW . . .WΩ = [Lm1 , L . . . LW . . .W ]Ω,

where we just symbolically wrote “L . . . LW . . .W” without detailing the indices. Using the
W3-algebra commutation relations, the above vector can be rewritten as a linear combinations
of vectors of the form (21) with the same associated eigenvalue of L0 – i.e. with eigenvalue
λ′ − m1 – but with strictly smaller values of the quantity “2 × the number of L’s + 3 ×
the number of W ’s ”. (E.g. note that when exchanging the two W operators, then, due to
the commutation relations, two “new” L operators can appear – but only on the “cost” of
having two W operators less. This is why we gave more weight to a W operator than an L
operator.) Therefore, again by the inductive hypothesis and λ 6= λ′, we have〈ξ, Lm1Ψ

′〉 = 0
and thus 〈Ψ,Ψ′〉 = 0.
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Case 2: ` = `′ = 0. In this second case we have no L operators at all in the defining
expressions of our two vectors: Ψ = W−n1 . . .W−nkΩ and Ψ′ = W−n1 . . .W−n′

k′
Ω. Again we

may assume that λ 6= λ′, and so in particular we must have at least one W operator in our
expressions (otherwise Ψ = Ψ′ = Ω). So say k ≥ 1 and let ξ be the vector obtain by removing
the last W from the expression of Ψ. Then W−n1ξ = Ψ and L0ξ = (λ− n1)ξ.

By Lemma 3.7, WsΩ = W−sΩ = 0 for s ∈ {0, 1, 2}. Since the index set {0, 1, 2} has
three elements, there must exists at least two different r, s ∈ {0, 1, 2} such that neither
W−rξ nor W−sξ does not correspond to the same eigenvalue of L0 as Ψ′; i.e. that λ′ 6=
(λ− n1 + s), (λ− n1 + r). Then by (20), we have some real numbers u, d such that we have
the adjoint relation (W−n1 + uW−r + dW−s)

† = Wn1 + uWr + dWs =: A holds, hence

〈Ψ,Ψ′〉 = 〈W−n1ξ,Ψ
′〉 = 〈(A† − (uW−r + dW−s))ξ,Ψ

′〉
= 〈ξ, AΨ′〉 − 〈(uW−r + dW−s)ξ,Ψ

′〉.

Since both A = Wn1 +uWr +dWs and B = (uW−r +dW−s) annihilate Ω, one can rewrite the
above expressions using commutators as a linear combination of terms with strictly smaller
total value of the quantity “2 × the number of L’s + 3 × the number of W ’s” than the
original value gr. Moreover, by our choice of s and r, the corresponding eigenvalues of L0 of
the terms on the two sides of the inner product never coincide. So again by the inductive
hypothesis, each of those inner product values are zero and hence Ψ and Ψ′ are orthogonal.

Now we know that L†0 = L0. By Assumption (ii) we have (Ln−(−1)nL0)
† = L−n−(−1)nL0

and that (W−1 +W1−2W0)
† = (W−1 +W1−2W0) =: A. By taking real-linear combinations,

we conclude then that L†n = L−n for all n ∈ Z. Then also B := i[L0, A] = i(W−1 −W1) is
symmetric, and so is C = i[L0, B] = W−1 +W1 and 1

2
(C − A) = W0. We then have

W †
n =

1

2n
[Ln,W0]

† = − 1

2n
[L†n,W

†
0 ] = − 1

2n
[L−n,W0] = W−n.

Corollary 3.9. The irreducible lowest weight representation of the W3-algebra with central
charge c ≥ 2 and lowest weights h = w = 0 is unitary.

Remark 3.10. By the existence theorem [Kac98, Theorem 4.5], any lowest weight represen-
tation where the lowest weight vector Ω satisfies the extra condition L−1Ω = 0, generates a
vertex algebra with translation operator T = L−1. (This condition implies that the lowest
weight must be (h,w) = (0, 0) but not the other way around. Note however that in the
unitary case, h = 0 alone implies L−1Ω = 0.) This vertex algebra evidently has a Virasoro
element ν = L−2Ω whose corresponding field has T as a component, and since the repre-
sentation space is the direct sum of eigenspaces of L0 with non-negative integral eigenvalues
and each eigenspace is finite dimensional as it is spanned by finite many vectors of the form
(10), the resulting structure is actually a vertex operator algebra (VOA). Moreover, if the
representation we started with was unitary, then the obtained VOA is also unitary in the
sense of [CKLW18, Definition 5.2]; see e.g.[CKLW18, Proposition 5.17], which says that uni-
tarity follows if the VOA is generated by a family of Hermitian7 quasi-primary fields. The

7Note that Hermitianity of the fields L(z) and W (z) in the sense of [CKLW18] is precisely equivalent to
the symmetry of T (z) = z2L(z) and M(z) = z3W (z).
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unitary VOAs constructed in this way must coincide with the simple quotients of the freely
generated VOAs defined from the Verma modules for the W3-algebra in [Lin09, Section 5].
The latter can be identified as special cases of the universal VOAs in [DSK05, DSK06], as a
consequence of [DSK06, Theorem 3.14], cf. also [DSK05, Proposition 3.11, Example 3.14].

It is worth noting that with the same induction technique we used in this section, we
can show that if a lowest weight representation of the Virasoro algebra {Ln}n∈Z on an inner
product space satisfies (ii) in the sense that L0− (−1)nLn = (L0− (−1)nL−n)† for all n ∈ Z,
then in fact our inner product is an invariant form for the representation; in this case we do
not need to assume that h = 0.

Proposition 3.11. Let {Ln}{n∈Z} be a lowest weight representation of the Virasoro algebra
with lowest weight h ∈ R and lowest weight vector Ω, and suppose that (L0 − (−1)nL−n)† =
L0 − (−1)nLn for all n ∈ Z with respect to a given Hermitian form 〈·, ·〉 (not necessarily the
canonical one). Then Ln = L†−n for all n ∈ Z.

Proof. As in Theorem 3.8, it is enough to prove that L†0 = L0. Let Vh+n be the eigenspaces
of L0. Assume that Vh, · · · , Vn+h are pairwise orthogonal. (For n = 0 this is trivial.) This
implies that L0 is symmetric when restricted to Vh⊕· · ·⊕Vh+n. Let ξ ∈ Vh+n+1, η ∈ Vk+h, k ≤
n. We have to show that 〈ξ, η〉 = 0. We may assume that ξ = L−jζ, where ζ ∈ Vh+n−j+1,
as the general case is a linear combination. We have (L−j − (−1)jL0)

† = Lj − (−1)jL0 =: A
and L−j = A† + (−1)jL0, Lj = A+ (−1)jL0 so

〈ξ, η〉 = 〈L−jζ, η〉 = 〈(A† + (−1)jL0)ζ, η〉 = 〈ζ, (A+ (−1)jL0)η〉 = 〈ζ, Ljη〉 = 0,

where the 3rd equality holds since L0 is symmetric on V0 ⊕ · · · ⊕ Vh+n, and the last equality
follows from Ljη ∈ Vh ⊕ · · · ⊕ Vh+n−j and the hypothesis of induction.

3.4 More unitary representations

It is also possible to construct unitary representations on the full space of the two com-
muting currents we used. Suppose again that we have two commuting U(1)-current fields
J[j](z) =

∑
n∈Z Jnz

−n = za[j](z) (j = 1, 2) having a common lowest weight vector Ωq1,q2 with
lowest weights q1 and q2, respectively and that we have a fixed inner product on our rep-
resentation space making our currents J[1](z), J[2](z) symmetric. Such currents on an inner
product space indeed exist if q1, q2 ∈ R (e.g. consider the tensor product of two lowest weight
representations). We now perform transformation ϕ̃0,iκ; i.e. while remaining on the same in-
ner product space, we consider the currents ϕ̃0,iκ(J[1](z)) = J[1](z)+ iκ, ϕ̃0,iκ(J[2](z)) = J[2](z)
instead of the original ones J[1](z), J[2](z). The vector Ωq1,q2 is still a common lowest weight
vector for these currents, but this time with lowest weights q̃1 = q1 + iκ and q̃2 = q2. Recall
that the transformation ϕ̃0,iκ can be viewed as a composition of a representation with a Lie
algebra automorphism, and can be further composed with the Fateev-Zamolodchikov realiza-
tion of theW3-algebra. By the usual abuse of notation, we shall denote the fields constructed
from ϕ̃0,iκ(J[1](z)) and ϕ̃0,iκ(J[2](z)) using the formulas (13) and (14) by ϕ̃0,iκ(T̃ (z;κ)) and

ϕ̃0,iκ(M̃(z;κ)). Note that κ appears twice in these expressions: its value effects both the
transformation we perform on the currents and the Fateev-Zamolodchikov construction. In
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other words, we use the same κ value in both cases; this has the effect that ρ(z) vanishes
from the formula: by a straightforward computation one has that

ϕ̃0,iκ(T̃ (z;κ)) = T[1](z) + κJ[1]
′(z) +

κ2

2
+ T[2](z),

ϕ̃0,iκ(M̃(z;κ)) =
b

3
√

2
: J3

[2] : (z)−
√

2b

(
T[1](z) + κJ[1]

′(z) +
κ2

2

)
J[2](z)

+
3bκ

2
√

2
J ′[1](z)J[2](z)− 3bκ

2
√

2
J[1](z)J ′[2](z) +

bκ2√
2
J[2](z)− bκ2

2
√

2
J ′′[2](z).

where of course T[j](z) = 1
2

: J2
[j] : (z) (j = 1, 2).

Note that ϕ̃0,iκ(T̃ (z;κ)) is the sum of the following two stress-energy fields: the canonical
one of the second current, and the modified one (8) – with the constant η = 0 – of the first
current. Note also that both ϕ̃0,iκ(T̃ (z;κ)) and ϕ̃0,iκ(M̃(z;κ)) are manifestly symmetric if κ
is real: so for any κ ∈ R, they give a unitary representation of the W3-algebra with central
charge c = 2 + 12κ2. Moreover, by Proposition 3.3, Ωq1,q2 is a lowest weight vector for this
representation, and the corresponding lowest weight (h,w) can be obtained by replacing q1
by q1 + iκ in the formula of Proposition 3.3. After some simplifications, this gives

h =
q21 + q22 + κ2

2
, w = b

(
q32 − 3q21q2

3
√

2

)
. (22)

Theorem 3.12. Let c ≥ 2. By the above construction, the irreducible lowest weight repre-
sentation of the W3-algebra V W3

c,h,w is unitary for

h ≥ c− 2

24
, |w| ≤

√
8

198 + 45c

(
2h− c− 2

12

) 3
2

(h,w ∈ R).

Proof. For each value of (q1, q2, κ) ∈ R3, we have a unitary representaition with central charge
c = 2 + 12κ2 and (h,w) given by (22). What we need to find out now is the set of (c, h, w)
values that can be realized in this manner.

It is clear that the possible values of (c, h) are c ≥ 2 and h ≥ κ2

2
. We consider them

(hence κ, b and q21 + q22) as given. By varying q1, q2 under q21 + q22 = 2h − c−2
12

=: C2 with
C ≥ 0, the function

q32 − 3q21q2 = 4q32 − 3C2q2

takes a local maximum at q2 = −C
2

, hence the maximum under the condition |q2| ≤ C is
C3 (in both cases q2 = C,−C

2
) and every value between them is possible. Similarly, the

minimum is −C3. This means that |w| ≤
√

8
198+45c

(
2h− c−2

12

) 3
2 .
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For the convenience of the algebra-oriented reader, we show the “unshifted” fields:

ϕ̃0,iκ(L̃(z;α0))

:= L[1](z) +
√

2α0∂a[1](z) +
√

2α0a[1](z)z−1 − α2
0z
−2 + L[2](z)

ϕ̃0,iκ(W̃ (z;α0))

:=
b

3
√

2
: a[2](z)3 : −

√
2b

(
L[1](z) +

√
2α0a[1](z)z−1 +

1

2
√

2
α0∂a[1](z) +

α2
0z
−2

2

)
· a[2](z)

− 3bα0

2
a[1](z) · ∂a[2](z)− bα2

0√
2

(∂2a[2](z) + 3∂a[2](z)z−1).

This results allows us to completely characterize unitarity in the region 2 ≤ c ≤ 98.

Corollary 3.13. Let 2 ≤ c ≤ 98. Then the irreducible lowest weight representation of the

W3-algebra V W3
c,h,w is unitary if and only if f11(h, c)− w2 = h2(96h−3(c−2))

27(5c+22)
− w2 ≥ 0.

Proof. As we already mentioned at (12), the condition f11(h, c) − w2 ≥ 0 is necessary for
unitarity, so we only need to show the “if” part. Consider the open region H and the closed
region R defined by

H = {(c, h, w) ∈ R3 | 2 < c < 98, f11(h, c)− w2 > 0},
R = {(c, h, w) ∈ R3 | 2 ≤ c ≤ 98, f11(h, c)− w2 ≥ 0}.

Our aim is to prove unitarity in the region R. Now one that R = H ∪ {(c, 0, 0)|2 ≤ c ≤ 98}
and Corollary 3.9 tells us that we indeed have unitarity on the line {(c, 0, 0)|2 ≤ c ≤ 98}; so
let us turn our attention to the region H.

It is clear that f11(h, c) is monotonically increasing with respect to h and hence that
(c, h, w) ∈ H if and only if 2 < c < 98, h > c−2

32
, |w| <

√
f11(c, h). In particular, H is

connected. As we already mentioned at (12), in this region all Kac determinants are positive
and hence, as was explained in Section 2.6, unitarity at a single point of H implies unitarity
for the entire closure H. Since e.g. (3, 1

24
, 0) ∈ H, and at c = 3, h = 1

24
, w = 0 unitarity holds

by the previous theorem, therefore, we have unitarity on H.

4 Outlook

The existence of unitary vacuum representations urges us to investigate the conformal field
theories (conformal nets and vertex operator algebras, see e.g. [CKLW18]) related with these
representations. Specifically, we are interested in the following questions.

• Can one always construct a conformal net using the unitary vacuum representations?

• Are all other unitary representations associated with DHR sectors of these conformal
nets? (C.f. [Car04, Wei17] for the similar question regarding the Virasoro algebra.)

• How does the present result generalize to other W-algebras?
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A Lowest weight representations and Verma modules

Since the W3-algebra is not a Lie algebra, the notion and existence of Verma modules with
invariant forms are not evident. In physics literature they are either assumed without any
further explanation [BS93, Art16] or claimed that they can be obtained – in a similar manner
to the Lie algebra case – through the quotient of the “universal covering algebra” [BMP96]
which however cannot be constructed in the same way as in a Lie algebra because the com-
mutation relation contains an infinite sum in terms of the basic fields. The more careful
treatment of infinite sums at [Lin09, Section 5] might lead to a sensible construction, but
the argument as it is written there has the problem8 that the ideal contains only finite sums,
hence infinite sums cannot be reordered). In [DSK05], a Poincaré-Birkhoff-Witt type theo-
rem is shown for W-algebras in general; however, it is in an abstract setting and it is not
evident for us whether it validates the particular form of Verma modules and invariant forms
appearing both in the physicist literature and also in our work. For these reasons, we decided
to provide our own proof of these facts.

Even if these results might be well-known to experts, the argument we give could be
interesting on its own: instead of being algebraic, in some sense it is analytic. We start with
concrete constructions covering only some values of the central charge and lowest weights
and then show that all these objects – e.g. the invariant form – can be continued analytically
to all values of the parameters.

A bilinear form (·, ·) is invariant for a representation {Ln,Wn}{n∈Z} of the W3-algebra,
if (Lnx, y) = (x, L−ny) and (Wnx, y) = (x,W−ny) for all x, y vectors from the representation
space and n ∈ Z. The form is said to be symmetric, if (x, y) = (y, x) for all x, y, and a
symmetric form is nondegenerate, if “(x, y) = 0 for all y” implies that x = 0. Note that
whereas in the main part of article we considered invariant Hermitian forms, to be more
general, here we consider invariant bilinear forms. (It is not difficult to see that the existence
of a nonzero invariant Hermitian form for a lowest weight representation rules out non-real
lowest weights.)

To simplify notations, we set K(X,n) = Ln for X = L and K(X,n) = Wn for X = W and
often write just Kν , with a shorthand notation ν = (X,n). We also set −(X,n) := (X,−n)
and further introduce a level λ and another quantity g by setting, for every r ∈ {0, 1, · · · }

8We contacted the author who indicated some possible remedies that might work; in any case, we shall
not make use of such a universal algebra.
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and and ν1 = (X1, n1), · · · , νr = (Xr, nr) ∈ {L,W} × Z,

λ(ν1, · · · , νr) := n1 + · · ·+ nr

g(ν1, · · · , νr) := d(X1) + · · ·+ d(Xr)

where d(L) = 2 and d(W ) = 3 (see [BMP96] for a similar grading). Note that both g and λ
are completely symmetric in their arguments.

Let {Ln,Wn}n∈Z form a lowest weight representation of theW3-algebra with central charge
c 6= −22

5
, lowest weight (h,w) ∈ C2 and lowest weight vector Ψ. Then, using the W3-algebra

relations (5) and that Ψ is a lowest weight vector, it is straightforward to show that for any
permutation σ, the difference

Kν1 · · ·KνrΨ−Kνσ(1) · · ·Kνσ(r)Ψ

can be written as a linear combination of terms of the form Kν′1
· · ·Kν′sΨ with g(ν ′1, . . . , ν

′
s)

strictly smaller9 than g(ν1, . . . , νs) and coefficients which are real polynomials of c, 1
22+5c

, h
and w. In particular, it follows that the cyclic space obtained from Ψ is spanned by vectors
of the form Kν1 · · ·KνrΨ where r ∈ {0, 1, · · · }, λ(νj) < 0 for each j = 1, · · · r and (ν1, · · · , νr)
is lexicographically ordered (namely, µ = (Xµ,m) ≺ ν = (Xν , n) if Xµ = W,Xν = L, or
Xµ = Yν and m < n). However, this is not the only important conclusion one can draw.

Proposition A.1. For any r, s ∈ {0, 1, · · · } and ν1, · · · νs, µ1, · · ·µr ∈ {L,W} × Z, there
exists a real polynomial p such that whenever {Ln,Wn} is a representation of the W3-algebra
with central charge c 6= −22

5
on a space V with an invariant bilinear form (·, ·) and lowest

weight vector Ψ ∈ V with lowest weights (h,w) and (Ψ,Ψ) = 1, then

(Kν1 · · ·KνrΨ, Kµ1 · · ·KµsΨ) = p(c, 1
22+5c

, h, w).

Proof. We shall inductively construct such polynomials without any particular knowledge
about the actual representation. It is enough to deal with the case s = 0, since by the
invariance of the form, we can put everything on one side:

(Kν1 · · ·KνrΨ, Kµ1 · · ·KµsΨ) = (K−µs · · ·K−µ1Kν1 · · ·KνrΨ, Ψ).

If further r = 0, then the claim is trivially true, while for r = 1, we have the expression
(Kν1Ψ,Ψ) = (Ψ, K−ν1Ψ), showing that it is zero unless λ(ν1) = 0, in which vase it is h when
ν1 = (L, 0) and w when ν1 = (W, 0). Thus the claim is true for g(ν1, · · · , νr) ≤ 3. Now
assume the claim is true for g(ν1, · · · , νr) < n and consider the case g(ν1, · · · , νr) = n > 3.
If λ(ν1) < 0, then the by moving Kν1 to the other side, we see that (Kν1 · · ·KνrΨ,Ψ) = 0.
If λ(ν1) = 0, then by the same argument, the value of the form is h(Kν2 · · ·KνrΨ,Ψ) or
w(Kν2 · · ·KνrΨ,Ψ), depending on whether ν1 = (L, 0) or (W, 0). In both cases we are
done, as by the inductive hypothesis, we already have a polynomial giving the value of
(Kν2 · · ·KνrΨ,Ψ). If finally λ(ν1) > 0, then Kν1 annihilates Ψ and

Kν1Kν2 · · ·KνrΨ = (Kν1Kν2 · · ·Kνr −Kν2 · · ·KνrKν1)Ψ.

9This is exactly why we gave more “weight” to the W operators by setting d(W ) = 3 > 2 = d(L) in the
definition of g. We needed this because, roughly speaking, the commutator between two W operators can
give rise to two L operators. The degree d(·) is defined so that it can be reduced using the commutation
relations.
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which, as was mentioned, can be rewritten as a linear combination of terms of the form
Kν′1
· · ·Kν′sΨ with g(ν ′1, . . . , ν

′
s) strictly smaller than g(ν1, µ1, . . . , νr) and coefficients which

are real polynomials of c, 1
22+5c

, h and w. This concludes the induction.

Corollary A.2. The W3-algebra admits a lowest weight representation with a symmetric,
non-degenerate invariant bilinear form form for every value of the central charge c 6= −22

5

and lowest weight (h,w) ∈ C2. If further c, h, w ∈ R, then the same remains true even if we
replace the words “symmetric bilinear” by “Hermitian”.

Proof. Consider a lowest weight representation with either a non-degenerate, symmetric in-
variant bilinear form (·, ·) or a non-degenerate Hermitian invariant sesquilinear form 〈·, ·〉. If
c, h, w ∈ R, then the arguments used in our previous proof remain valid regardless whether
we apply them for (·, ·) or 〈·, ·〉 and show that the product of elements from the real sub-
space M spanned by vectors of the form Kν1 · · ·KνrΨ is real and hence – because of the
non-degeneracy of the form – that M ∩ iM = {0}. It then follows that starting from either
(·, ·) or from 〈·, ·〉, the equation

〈a+ ib, c+ id〉 = (a− ib, c+ id) (a, b, c, d ∈M)

defines unambiguously the other object with all the desired properties.
By the construction in Section 3.4, there exists a region H ⊂ R3 with nonempty interior

such that for all (c, h, w) ∈ H, there is a lowest weight representation of theW3-algebra with
central charge c and lowest weight (h,w) having an invariant inner product (see Theorem
3.12 for an actual description of the region H). In particular, for these values of c, h and
w we also have the existence of a non-degenerate, symmetric invariant bilinear form. Now
suppose the value of c 6= −22

5
, h and w are arbitrary. Let Ṽ be the linear space freely spanned

by (at the moment formal) expressions of the form Kν1 · · ·KνrΨ where r ∈ {0, 1, · · · }. We
introduce a bilinear form on Ṽ by setting

(Kν1 · · ·KνrΨ, Kµ1 · · ·KµsΨ) = p(c, 1
22+5c

, h, w)

where for each choice of ν1, · · · , νr and µ1, · · · , µs, p is a (possibly different) polynomial as
in Proposition A.1. Note in particular, that the above value given to the form is a rational
function of c, h, w, and thus it is completely determined by its values in H.

To check that the introduced form is symmetric, we need to verify that

(Kν1 · · ·KνrΨ, Kµ1 · · ·KµsΨ) = (Kµ1 · · ·KµsΨ, Kν1 · · ·KνrΨ)

for each choice of ν1, · · · , νr and µ1, · · · , µs. However – though not indicated in notations –
each side of the above expression is a rational function of c, h, w, and when (c, h, w) ∈ H, we
indeed have an equality. But if an equality of rational functions holds in H, then so does for
all of their domain.

Let V be the space obtained by factorizing Ṽ with the set of “null-vectors”, i.e. by the
subspace Ñ := {x ∈ Ṽ : for all y ∈ Ṽ : (x, y) = 0}. On this space, our form is still
well-defined, symmetric, bilinear and by its construction, non-degenerate. We have to show
that the natural action of the K operators on V is well-defined and gives a lowest weight
representation of the W3-algebra on the factorized space V .
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To show well-definedness, we need to check that if x ∈ Ñ , then Kνx ∈ Ñ ; that is,
(Kνx, y) = 0 for all (non-commutative) polynomial y in {Ln,Wn}. We know that the left-
hand side is a rational function of (c, h, w) and that its value is indeed zero in H – and hence
that it is zero on all of its domain. This proves well-definedness. Lastly, to verify that V
gives a lowest weight representations, we only have to repeat the argument: both of the W3

relations and the lowest weight property are written as equalities between rational functions
in c, h, w with only singularity at c = −22

5
, therefore, their validity in H implies their validity

for all (c, h, w), c 6= −22
5

.

Although we do not need Verma modules for our main results, we think it worth explaining
how their existence can be verified using reasoning similar to what we have just employed. In
addition, although we will need Kac determinants and in particular the results of Mizoguchi
in [Miz89], we note that, for the notion of Kac determinant to be well-defined, there is no need
to have a Verma module. Indeed, as was explained, the value of (Kν1 · · ·KνrΨ, Kµ1 · · ·KµsΨ)
is universal : it depends only on the central charge c and lowest weights h,w, but not the
particular representation. Indeed, to obtain his result, Mizoguchi never considers Verma
modules; he works with some concrete representation to find null-vectors. Therefore, our use
in Corollary 3.13 and Proposition A.3 of the Kac determinant computed in [Miz89] does not
involve circular arguments and is justified.

Proposition A.3. For every value of the central charge c 6= −22
5

and lowest weights (h,w) ∈
C2, there exists (an up to isomorphism) unique lowest weight representation of theW3-algebra
with lowest weight vector Ψ in which vectors of the form

Lm1 · · ·LmrWn1 · · ·WnsΨ (23)

where n1 ≤ · · · ≤ ns < 0 and m1 ≤ · · · ≤ mr < 0, form a basis; i.e. a Verma representation.
This representation admits a unique invariant bilinear form (·, ·) with normalization

(Ψ,Ψ) = 1, and this form is automatically symmetric. Moreover, if in addition c, h, w ∈ R,
then everything remains true even if we replace the words “bilinear” by “sesquilinear” and
“symmetric” by “Hermitian”.

Proof. By now we know that for every c 6= −22
5

and (h,w) ∈ C2 there is an irreducible lowest
weight representation. However, in this representation, when (c, h, w) ∈ H, where H is the
set introduced in the proof of Corollary 3.13, the vectors (23) are independent (since in H
all Kac determinants are strictly positive) and thus this representation is the Verma one.

For the rest of values, we consider the abstract space V spanned freely by vectors of the
form (23). By doing so, seemingly we have linear independence for free. However, we have to
check that it carries a corresponding representation! At this point, we use quotation marks
and write symbols such as ”Kν1 · · ·KνrΨ”, as this is indeed a vector of V by construction,
but it is not (yet) the vector Ψ acted on by K. Given a c 6= −22

5
and (h,w) ∈ C2, our task

is then to define, for each ν, an operator Kν acting on V so that they satisfy the following
requirements:

(i) KνΨ = 0 whenever λ(ν) > 0, L0Ψ = hΨ, W0Ψ = wΨ

(ii) if ν, ν1 · · · , νr are lexicographically ordered and `(ν), `(ν1), . . . `(νr) < 0, then the action
of Kν on the (abstract) vector ”Kν1 · · ·KνrΨ” should result in the (abstract) vector
”KνKν1 · · ·KνrΨ”.
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(iii) {Kν}ν∈{L,W}×Z is a representation of the W3-algebra with central charge c.

Let us enumerate our basis vectors of the form (23) and denote them by Ψ0 = Ψ,Ψ1,Ψ2, . . ..
An action of Kν can be defined by fixing its matrix-components; i.e. by choosing scalars
Mν,j,k(c, h, w) ∈ C and setting KνΨj :=

∑
kMν,j,k(c, h, w)Ψk. When (c, h, w) ∈ H, we know

that this can be done in a way so that requirements (i), (ii) and (iii) are met, because for
those values we do have Verma representations. However, it is not difficult to see that again,
the coefficients Mν,j,k(c, h, w) given by those Verma representations which are already known
to exist, are rational expressions of the central charge c and lowest weights (h,w) with real
coefficients and possible singularity only at c = −22

5
. Thus, we can naturally continue them

also outside of H.
We use these analytically continued matrix coefficients define the operators Kν . Again,

since inside H these coefficients satisfy the properties (i), (ii) and (iii) that are expressed in
terms of rational functions of c, h, w with only possible singularity at c = −22

5
. the same

remains true outside. This proves that we obtain a lowest weight representation on V .
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