Examples of Wightman fields and algebraic quantum field theory

Yoh Tanimoto

University of Rome "Tor Vergata"

Intermediate IQSA 2025 conference, Tropea 01 July 2025

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨー

Mathematical Quantum Field Theory

- Quantum mechanics: Hilbert space, $[Q_j, P_k] = i\hbar \delta_{j,k}$. $\mathcal{H} = \mathcal{L}^2(\mathbb{R}^n), Q_j$: multiplication by $x_j, P_k = -i\partial_k$. Hamiltonian e.g. $\mathcal{H} = \frac{m}{2}P^2 + \frac{1}{2}Q^2 + \frac{1}{4}Q^4$.
- Quantum field theory (QFT): $[\phi(x), \Pi(y)] = i\hbar\delta(x y)...$ What is $\phi(x)$?
- Axiomatic approaches: **Wightman**, Osterwalder-Schrader, **Araki-Haag-Kastler**.
- Examples: free fields, $\mathcal{P}(\phi)_2$ models (and more "(super)renormalizable" models), some gauge theories in d = 1 + 1, ϕ_3^4 model, conformal field theories (CFT) in d = 1 + 1, integrable models in d = 1 + 1.
- No known interacting example in d = 3 + 1 (cf. triviality of ϕ_4^4). Constructing the Yang-Mills theory is a Millenium problem. QED is even more difficult.
- Research topics: Constructing examples, studying representations, calculating entanglement measures, curved spacetime...

Yoh Tanimoto (Tor Vergata)

Examples of mathematical QFT

What is a quantum field?

- A (scalar) classical field φ is a function on the Minkowski space. Together with its momentum Π, it satisfies a certain equation of motion.
- A **quantum** field should be an **operator-valued** object on the Minkowski space, acting on a certain Hilbert space, satisfying the "same" equation of motion.
- In the simplest case, they should also satisfy the equal time canonical commutation relations (CCR)

$$[\phi(x),\Pi(y)] = i\hbar\delta(x-y)$$

so they must be operator-valued **distributions**. For a test function f, $\phi(f)$ is an (unbounded) operator.

- Hamiltonian (of the free field) $\mathcal{H} = \frac{1}{2}\Pi(0, x)^2 + \frac{1}{2}\nabla\phi(0, x)^2 + m^2\phi(0, x)^2$
- $\phi(x)^n$ do not make sense directly (\implies renormalization)

- A **Wightman field theory** on a Hilbert space \mathcal{H} consists of a (family of) operator-valued distribution(s) ϕ on a dense common invariant domain \mathcal{D} , a unitary representation U of the Poincaré group and a vacuum $\Omega \in \mathcal{H}$ satisfying
 - Locality: $[\phi(f), \phi(g)] = 0$ if f, g have spacelike separated supports.
 - Covariance: $U(g)\phi(x)U(g)^* = \phi(g \cdot x)$.
 - Positive energy: The spectrum of $U|_{\mathbb{R}^{d+1}}$ is contained in the future lightcone.
 - Vacuum: Ω is unique s.t. $U(g)\Omega = \Omega$ and $\phi(f_1) \cdots \phi(f_n)\Omega$ span \mathcal{H} .

Examples from Constructive QFT:

- free fields in all d
- $\mathcal{P}(\phi)_2$ models, $\mathcal{H} = \frac{1}{2}\Pi(0, x)^2 + \frac{1}{2}\nabla\phi(0, x)^2 + m^2\phi(0, x)^2 + \mathcal{P}(\phi(0, x))$
- ϕ_3^4 model
- Yukawa model d = 2, 3
- some gauge fields d = 2

Some of these examples were first constructed on the **Euclidean space** and then analitically continued to the Minkowski space (the **Osterwalder-Schrader** reconstruction).

5/16

An **Araki-Haag-Kastler net** consists of a family of von Neumann algebras $\{\mathcal{A}(O)\}$, a unitary representation U of the Poincaré group and a vacuum $\Omega \in \mathcal{H}$ satisfying

- Isotony: If $\mathcal{O}_1 \subset \mathcal{O}_2$, then $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$.
- Locality: If O_1 and O_2 are spacelike separated, then $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}.$
- Covariance: $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(g \cdot O).$
- Positive energy: The spectrum of $U|_{\mathbb{R}^{d+1}}$ is contained in the future lightcone.
- Vacuum: Ω is unique s.t. $U(g)\Omega = \Omega$ and $\bigcup_O \mathcal{A}(O)\Omega$ span \mathcal{H} .

Araki-Haag-Kastler axioms

Assume that a Wightman field $\phi(x)$ satisfies a technical condition (linear energy bounds). For spacetime regions O, define

 $\mathcal{A}(O) = \{ \mathrm{e}^{\mathrm{i}\phi(f)} : \mathrm{supp}\, f \subset O \}'',$

the smallest von Neumann algebra containing $\{e^{i\phi(f)}, \operatorname{supp} f \subset O\}$.

Here, for a set M of bounded operators, M' is called the **commutant** of M and it is the set of all bounded operators on \mathcal{H} commuting with all elements of M. M'' is the double commutant. Then \mathcal{A}, U, Ω satisfy the AHK axioms.

For an AHK net one can consider

- states as normalized positive functionals
- representations for states (charged, thermal)
- the Tomita-Takesaki theory (modular operator, relative entropy)

Two-dimensional chiral conformal field theory

- Models with a large symmetry could be more tractable.
- A relativistic QFT has the Poincaré symmetry, which preserves the Lorentz metric.
- We may consider two-dimensional models (one space and one time dimensions) having Diff(ℝ) × Diff(ℝ)-symmetry, acting on the lightrays x₀ ± x₁ = 0.
- Diff(ℝ) × Diff(ℝ) is the conformal group (transformations of ℝ² which preserve the metric up to a function). Such models are called conformal field theory (CFT).
- There are some observables invariant under $\operatorname{Diff}(\mathbb{R}) \times \iota$ or $\iota \times \operatorname{Diff}(\mathbb{R})$ (chiral observables). These \mathcal{A}_{\pm} can be considered as QFT on \mathbb{R} .
- The full CFT \mathcal{A} is a certain extension of a pair of chiral components $\mathcal{A}_+\otimes \mathcal{A}_-$.

< □ > < □ > < □ > < □ > < □ > < □ >

Figure: The lightray decomposition of \mathbb{R}^{1+1} , the stereographic projection of $S^1\subset\mathbb{C}$ to \mathbb{R} ,

- A full 2d CFT contains a left and a right chiral components, \mathcal{A}_{\pm} .
- A full theory is an **extension** $\mathcal{A}_+ \otimes \mathcal{A}_- \subset \mathcal{A}$.
- Consider the case where $\mathcal{A}_+ = \mathcal{A}_-$. Take a family Δ of irreducible representation that is closed under fusion and decomposition. In a nice situation, \mathcal{A} should be constructed in such a way that the extension is given on

$$\mathcal{H} = \bigoplus_{\lambda \in \Delta} \mathcal{H}_{\lambda} \otimes \mathcal{H}_{\bar{\lambda}},$$

where $\lambda, \bar{\lambda}$ are "representations" of \mathcal{A} .

Examples: the U(1)-current

- The derivative of the 2d massless scalar field decomposes into the left and right chiral components: the U(1)-current.
 [J(x), J(y)] = iδ'(x − y), or [J_m, J_n] = mδ_{m+n}, m, n ∈ ℤ. An infinite-dimensional Lie algebra.
- This algebra has the **vacuum representation** \mathcal{H}_0 (Bosonic Fock space):
 - the vacuum $\Omega \in \mathcal{H}_0$
 - $J_n\Omega = 0$ for all $n \ge 0$
 - \mathcal{H}_0 is spanned by $J_{-k_1} \cdots J_{-k_n} \Omega$, $k_j > 0$.
 - a scalar product with $J_n^* = J_{-n}$.
- In the vacuum representation, $J(z) = \sum_n z^{-n-1} J_n$, $z \in S^1 \cong \mathbb{R} \cup \{\infty\}$, or $J(f) = \sum_n f_n J_n$, $f \in C^{\infty}(S^1)$ defines a Wightman field on S^1 (operator-valued distribution).
- There is a Virasoro field (stress-energy tensor) L(z) = ∑_n L_nz⁻²⁻ⁿ, L_n = ½∑_k : J_{n-k}J_k :, satisfying [L_m, L_n] = (m + n)L_{m+n} + ½m(m² − 1)δ_{m,-n}.
 ⇒ Diff(S¹)-covariance.

Examples: extensions of the U(1)-current

- The U(1)-current admits a family of representations H_α parametrized by α ∈ ℝ, where J₀ = α.
- Consider $\hat{\mathcal{H}} := \bigoplus_{\alpha} \mathcal{H}_{\alpha}$. $\hat{J}_n := \bigoplus_{\alpha} J_n$, $\hat{L}_n := \bigoplus_{\alpha} L_n$.
- For $\beta \in \mathbb{R}$, there is a **non-local** field $Y_{\beta}(z)$ acting on $\bigoplus_{\alpha} \mathcal{H}_{\alpha}$, where $Y_{\beta}(z) : \mathcal{H}_{\alpha}^{fin} \mapsto \mathcal{H}_{\alpha+\beta}^{fin}$.
- $E^{\pm}(\beta, z) = \exp\left(\mp \sum_{n>0} \frac{\beta \hat{J}_{\pm n}}{n} z^{\mp n}\right)$, $Y_{\beta}(z) = c_{\beta} E^{-}(z) E^{+}(z) z^{\beta J_{0}}$, where c_{β} is the unitary shift $\mathcal{H}_{\beta} \to \mathcal{H}_{\alpha+\beta}$, $c_{\beta} \Omega_{\alpha} = \Omega_{\alpha+\beta}$. βJ_{0} on \mathcal{H}_{α} gives $\alpha \cdot \beta$, fields on $S^{1} \setminus \{-1\} \cong \mathbb{R}$
- On $\hat{\mathcal{H}}\otimes\hat{\mathcal{H}}$, we consider the product field

$$ilde{Y}_{eta}(z,w) = Y_{eta}(z) \otimes Y_{eta}(w).$$

Restricts to $\bigoplus_{\alpha \in \mathbb{R}} \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha}$.

• $\tilde{Y}_{\beta}(z, w)$ is a two-dimensional conformal **Wightman field**, generates a conformal Araki-Haag-Kastler net. (Adamo-Giorgetti-T. CMP 2023, more construction arXiv:2506.01008)

- Relations between conformal Araki-Haag-Kastler nets and Vertex
 Operator Algebras (VOA). Carpi-Kawahigashi-Longo-Weiner, Gui,
 Tener... Many examples of chiral fields.
- Relations between CFT and subfactors, classification of some classes of CFT. Böckenhauer, Evans, Doplicher, Fredenhagen, Haag, Kawahigashi, Longo, Müger, Rehren, Roberts, Schroer, Wassermann, Xu...
- From full VOA to **Osterwalder-Schrader axioms**. Adamo-Moriwaki-T. arXiv:2407.18222.

(Alazzawi, Bostelmann, Buchholz, Cadamuro, Lechner, Schroer, T., based on the form factor programme (Babujian, Karowski, Smirnov...))

- Some massive 2d QFT (sine/sinh-Gordon, Gross-Neveu, Thirring...) are believed to be integrable, and the S-matrix *S* is conjectured.
- One can construct the Fock space **twisted by** S, creation and annhilation operators z^{\dagger}, z .
- non-local field: $\phi(f) = z^{\dagger}(f^+) + z(f^+)$.
- $\mathcal{A}(W_{\mathrm{R}}) = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}$ algebra for wedges.
- Prove that $\mathcal{A}(\mathcal{O}) = \mathcal{A}(\mathcal{W}_{\mathrm{R}} + a) \cap \mathcal{A}(\mathcal{W}_{\mathrm{L}} + b)$ is large.
- For nice S (including those conjectured for the sinh-Gordon model), *A*(O) is a Araki-Haag-Kastler net (Lechner CMP 2008).
- (more algebraic construction T. FoM Sigma 2013).
- For most S, no corresponding Wightman fields are known.

14 / 16

< □ > < 凸

Standard wedge and double cone

• Construct the standard model?

• Construct 4d Yang-Mills? The methods of Bałaban-Dimock?

э