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(Disclaimer)

| am not an expert of Lean or logic, rather a user with a bit of experience.

| did some tutorials in Lean in 2020, then resumed in 2023, then started to
contribute to mathlib, the main library of Lean, in early 2024.

There are very few people (~ 5) doing things on operator algebras. In
other words, you can get to the frontline very quickly.
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Why Lean, an interactive theorem prover?

In mathematics, we usually write (informal) proofs. Formal proofs are
sequences of statements that can be derived from the axioms and
deduction rules.

Hilbert: “One must be able to say at all times—instead of points, straight
lines, and planes—tables, chairs, and beer mugs” (link)

Mathematical statements can be written in the symbolic language and
processed and verified by computer.

Some current research results are formalized in real time.

In lean we can talk about (very basic) stuff about operator algebras.
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https://math.stackexchange.com/questions/56603/provenance-of-hilbert-quote-on-table-chair-beer-mug

(Why | am interested)

| studied physics in my bachelor’s study. It was OK until Quantum
Mechanics (operator theory).

| dropped out when | had to study (interacting) Quantum Field Theory
and switched to mathematic(al physic)s.

In mathematical physics, we value rigor. We are supposed to define
physical models and prove theorems about them. E.g. conformal nets,
vertex operator algebras...

| gradually learnt that, in the most advanced research, this high standard
is not always kept. Cf. the UV stability of the Yang-Mills model in 4d.
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Lean is a proof assistant, or interactive theorem prover. You write the
statements and (some large part of ) the proofs. Computer gives
suggestions and verifies the proofs.

Not to be confused with computer algebra system (e.g. Mathematica) or
automatic theorem prover (e.g. Alphaproof)
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(Computer algebra system)

Wolfram alpha

FRON THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

% WolframAlpha
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\put
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separable equation
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ODE classffication

first-order linear ordinary differential equation

Differential equation solution Approximate form | [ [ Step-by-step solution

yix) =

Gives correct answers to most of the questions, but sometimes give wrong
answers (link)
Example
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https://math.stackexchange.com/questions/4589778/i-have-a-sum-which-i-can-really-easily-show-to-be-convergent-but-wolfram-alpha
https://www.wolframalpha.com/input?i=sum+from+n%3D1+to+infinity+of+1%2F%28n%5E%282%2B%28cos%28n%29%29%5E2%29%29
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Lean, as a proof assistant
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write the proof, the computer verifies it.
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(Automated theorem prover)

Computer searches for proofs and finds (or fails).

Alphaproof: Al achieves silver-medal standard solving International
Mathematical Olympiad problems

(link)
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https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Why interacting theorem prover (in the past)?

Mathematicans have formalized some part of mathematics (Mizar,
Metamath, HOL, Isabelle, Coq...), but the developments in most cases
had not reached the actual research level until recently.

Theorem provers have been mainly developed by computer scientists, with
real applications to verification of hardware and software. “Mistakes can
be very costly, examples are the destruction of the Ariane 5 rocket (caused
by a simple integer overflow problem that could have been detected by a
formal verification procedure) and the error in the floating point unit of
the Pentium Il processor.” (Bridge, 2010. link)

“The failure resulted in a loss of more than US$370 million.” (Wikipedia
entry about Ariane flight V88)

Lean is developed by people including engineers at Microsoft.
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https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf
https://en.wikipedia.org/wiki/Ariane_flight_V88
https://en.wikipedia.org/wiki/Ariane_flight_V88

What is a proof in mathematics?

Let P, Q be propositions, and assume that P and P — @ are correct
(axioms). Then from P, P — Q we can deduce Q.

Let x a variable in some domain and P(x) be a predicate (a proposition
that depends on x). If we can prove P(x) for x without any other
condition, then it should hold for all x in the domain, that is, ¥x, P(x).
On the other hand, if Vx, P(x) holds, then P(x) holds for any x.
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What is a formal proof~

P P—Q
Q

1example (P Q : Prop) (hP : P) (hPQ : P > Q) : Q := hPQ hP

Vx, P(x)
P(x)

1example (X : Type) (P ¢ X » Prop) (x t X) (h ¢t ¥ x, Px) t Px :=hx
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What is a formal proof in Lean?

Lean uses dependent type theory as its basis. Everything has a type.
o N
o R
o N—-R
@ Prop (propositions, actually there is a hierarchy inside Prop)

@ R — Prop (predicates that depends on a real number)

(cf. First-order logic + the set theory (Mizar, Metamath))
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What is a formal proof in Lean?

In Lean, N is defined as

inductive N where
| zero : N
| succ (n : N) : N

That is, zero (= 0) has type N. succ zero (= 1) has type N. succ
(succ zero) (= 2) has type N...
Only these symbols have type N.
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What is a formal proof in Lean?

We can define a function addone by

def addone : N — N
| zero => succ zero
| succ n => succ succ n

We have addone = succ.

example (n : Nat) : addone n = succ n := by
induction n

case zero => rfl
case succ n ih => rfl

More interestingly, define

def myadd (mn : N) : N :=
match n with
| N.zero =>m

| N.succ n => N.succ (myadd m n)
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What is a formal proof in Lean?

V(n:N),0+n=n+0:Prop.

Proof: If n=0, it is 040 =0+ 0 (axiom).

If n =succm=m+ 1, we have to prove 0 + (m+ 1) = (m+ 1) + 0. RHS
=m+1: LHS=(0+m)+1=m+ 1.

def myadd (mn : N) : N :=
match n with

| N.zero =>m

| N.succ n => N.succ (myadd m n)

example (n : N) : myadd n 0 = myadd O n := by
induction n

case zero => rfl

case succ n ih => rw [myadd, myadd, + ih, myadd]
(link)
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https://live.lean-lang.org/#codez=JYWwDg9gTgLgBAWQIYwBYBtgCMBQOJgCmAdnAHIp4AmhAZnCAJ5JVVwAUIcpAXOSgEo4fCvB4BeHCBQBjVNzgB3YGhwAffjAB0AL0JQIccQD4G6zVoDOAVxkyFJizbscmLNl2IC8hAB5JwdEIOXk0hPjdWBQAGIwZmKNjecTgsRhxgYipbGGAIUmIcGSRLYL0DI1MoWnQikuDne1JgeUcoRTgAbUiqABp4937ABMI4Fv6egF1qOjh3fOCRFDhAJMJNc3LDR0a4DfNt0i3be3Z97xw/ALAgkOEw27niYIO4feEUtIysnLyCutKd/SbKo1P4NI4KFqVODVWpAA

What is a formal proof in Lean?

def myadd (mn : N) : N :=
match n with

| N.zero => m

| N.succ n => N.succ (myadd m n)

example (mn : N) : myadd m n = myadd n m := by
sorry

(link)
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https://live.lean-lang.org/#codez=JYWwDg9gTgLgBAWQIYwBYBtgCMBQOJgCmAdnAHIp4AmhAZnCAJ5JVVwAUIcpAXOSgEo4fCvB4BeHHAYoAxqm5wA7sDRS4AH34wAdAC9CUCNLjiAfA3VbROgM4BXWbMXntdx887NWDbgLyEAB5I4OiEHLxwgKiEQnxMLGykAAymDN5sKbzicFiM6sDEVI4wwBCkxOqySLbhBkamFlC06JXV4Q5OisAKrlBKcADa8awANGkJY4AJhHDdY8NUALoBwaHhnIp8McLjPlyk2fOKXBI5edK20FCMQA

What is a formal proof good for?

correctness
encouraging complete proofs
searchability

collaboration

education
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Correctness

From the code written by human, Lean outputs “proof terms".
The kernel checks that the proof term gives the type of the theorem.
One can write another verifier of the proof terms.

cf. a talk by F.van Doorn

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 19/32


https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/LeanInternals/slides.pdf

Encouraging complete proofs

To write a formal proof, one needs to know a very detailed informal proof.
If it becomes more common to write formal proofs, it will urge people to
give details.

Terence Tao, in an attempt to formalize his proof, he noticed that he had
done a division by zero.

(link)

Gouézel-Shchur found a reversed inequality in a paper, corrected it and
check the proof (in Isabelle/HOL).

(link)
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https://mathstodon.xyz/@tao/111287749336059662
https://arxiv.org/abs/1810.04579

Searchability

mathlib is accompanied with various search engines.
loogle, moogle, leansearch
One can find statements that contain a certain combination of keywords

Loogle!
lrrzsmce,CompactsPace l
Result

Found 97 definitions mentioning CompactSpace and T2Space.

« instTotall; £ Mathlib. Top Basic
{X = Type u_1} [TopologicalSpace X] [T2Space X] [CompactSpace X] [TotallyDisconnectedSpace X] : TotallySeparatedSpace
X

« compact_t2_tot_disc_iff_tot_sep £] Mathlib.Topology.Separation.Basic
{X = Type u_1} [TopologicalSpace X] [T2Space X] [CompactSpace X] : TotallyDisconnectedSpace X « TotallySeparatedSpace
X

+ ConnectedComponents.t2 £l Mathlib. Topology.Separation. Basic
{X : Type u_1} [TopologicalSpace X] [T2Space X] [CompactSpace X] : T2Space (ConnectedComponents X)

« isTopologicalBasis_isClopen ] Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [T2Space X] [CompactSpace X] [TotallyDisconnectedSpace X] :
TopologicalSpace.IsTopologicalBasis {s | IsClopen s}

 Continuous.isClosedMap E) Mathlib.Topology. Separation.Basic
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [CompactSpace X] [T2Space Y] {f : X » Y} (h :
Continuous f) : IsClosedMap f

(link)
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https://loogle.lean-lang.org/
https://www.moogle.ai/
https://leansearch.net/
https://loogle.lean-lang.org/?q=T2Space%2C+CompactSpace

Collaboration

There are some theorems that require very different fields of mathematics.

Anyone can help by filling in auxilliary results needed in a bigger project.
(Fermat Last Theorem blueprint Chapter 2)

FLTFreyPackage ‘WeiertrassCurve Points.map.

(Fermat Last Theorem blueprint Chapter 6)

This extends to is a natural complex Lie algebra action of the complexification of the real Lie algebra, on the smooth complex functions on GL(R).
LaTeX

Lege‘l Definition 6.6

(] > o>

instComplexLicAlgebraAction
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https://imperialcollegelondon.github.io/FLT/blueprint/dep_graph_chapter_2.html
https://imperialcollegelondon.github.io/FLT/blueprint/dep_graph_chapter_2.html

Even with informal proofs, students often get confused with an implication
and its inverse, V and 3, P and P — Q...

After learning informal proofs, by using an interactive theorem prover, a
student may learn which opereations are accepted.

cf. a talk by G. Marasingha

Graduate students can learn advanced materials and try to formalize it,
and in the course obtain more detailed, complete comprehension.
If done well, that can be added to the library to help the current research.
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https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/TeachingWithLean/teaching_proof_with_lean_no_notes.pdf

Formalizing recent research

Definition of a perfectoid space of Peter Scholze, formalized by Buzzard,
Commelin, Massot in 2018
cf. a talk by Buzzard

Liquid tensor experiment (fundamental theorem of “liquid vector spaces”,
Clausen and Scholze 2019), formalized by 18 people in 2022

(There are more elements of number theory in mathlib because several
people have formalized basic stuff)
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https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/FormalisingResearchMathematics/talk.pdf

Formalizing real-time research

The polynomial Freiman—Ruzsa conjecture, proved by Gowers, Green,
Manners and Tao in November 2023.

Formalized in Lean by 25 people three weeks later.

(link)

If the library contains enough prerequisits, one can formalize the current
research in a reasonable time.
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https://teorth.github.io/pfr/

What has been formalized in Lean about operator algebras

and quantum field theory?

Latest developments:
@ weak operator topology
@ continuous functional calculus
@ Riesz-Markov-Kakutani theorem (not yet in mathlib)

@ vertex operators (formal series)
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https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/LocallyConvex/WeakOperatorTopology.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Basic.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Vertex/HVertexOperator.html

Using Lean

Try: Lean playground

Set up: Installation instructions
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https://live.lean-lang.org/
https://leanprover-community.github.io/get_started.html#regular-install

Natural Number Game
Mechanics of proof
Mathematics in Lean

Theorem proving in Lean
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https://adam.math.hhu.de/
https://hrmacbeth.github.io/math2001/
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://leanprover.github.io/theorem_proving_in_lean4/title_page.html

Using Lean

Searching in mathlib documentation

General documentation Classes of Cx-algebras retum to top
‘(ﬂdez . source
oundational types This file defines classes for complex C+-algebras. ital o non-unita, dve) Banach algeb
references psses for complex ¢ rhese ar " nutaty * » Imports
over € i (star w-identity listar x % xI = Il A 2 > Imported by
Library N NonUnitalCStarAlgeb
otes lonUnitalCStarAlgebra
» Aesop fle) NonUnitalCommCStarAlgebra
» Archive (file) These classes are not defined in Mathlib.Analysis.CStarAlgebra.Basic because they require heavier imports. CStarAlgebra
» Batteries (ic) e
CStarAlgebra.toNonUnitalCStarAlgebra
» Counterexamples (file) class NonUnitalCStarAlgebra Source  CommCStarAlgebra.
+ ImportGragh (8 < Ty 12) extens o talhormedRing A, Starking A, Comletespace A, Cstarking , ToNonUntlCominCStrltr
NormedSpace € A, IsScalarTower € A A, SMulComnClass € A A, StarModule € A : StarSubalgebra cstarAlget
» Init (ile) Type ut StarSubalgebra.commCStar
+ Lake (ile) NonUsSirbubalsbrsmorrflCStarigra
“The class of non-unital (complex) C+-algebras. NonUnitalStarSubalgebra
> Lean (fle) P & nonUnitalCommCStarAlgebra
» LeanSearchClient (fl) ot : A s R instCommCStarAlgebraComplex
Vathis (1) AR instNonUnitalCStarAlgebraForall
+ Mathi (flc) A be:n ) 6o instNonUnitalCommCStarAlgebraForall
> add_assoc : ¥ (abctA),a+bec=as(bec i
» AlgebraicGeometry Zero ¢
» AlgebraicTopology R R
« Analysis zero-add 1 ¥ (a1 A), 042 INonUnitaCommCstaralgebrarod
Aralytic addzero : ¥ (at A), 2+ 0 instNonUritalCommCStarlgcbraPro
> Asymptotics nenul s 0> A o A neCommCaratgebraProd
+ Boxntegral nsnul_zero 5 ¥ (x : ), AddMonoid.nsnul © x = 0 .
v CstarAlgebra nsmul_suce : ¥ (n @

T (n + 1) x = AddMonoid.nsnul n x + x

» ContinuousFunctionalCalculus neg
» Module OO
» SpecialFunctions bz A A

‘ApproximateUnit sub_eq_addneg : ¥ (ab:A), a-b=a+-b

Search entries using loogle, moogle, leansearch.
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https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/CStarAlgebra/Classes.html

Using Lean

From Blueprint of FLT project
2.2 Reduction to n > 5 and prime

Lemma 2.1. v/

If there is a counterexample to Fermat's Last Theorem, then there is a counterexample
a? + b = & with p an odd prime.

Proof v

Note: this proof is in mathlib alrea

; we run through it for completeness’ sake.

Say a” + b" = ¢" is a counterexample to Fermat’s Last Theorem. Every positive integer is
either a power of 2 or has an odd prime factor. If n = kp has an odd prime factor p then
(a¥)P + (b*)F = (c*)? is the counterexample we seek. It remains to deal with the case
where n is a power of 2, so let’s assume this. We have 3 < n by assumption, so n = 4k
must be a multiple of 4, and thus (a*)* = (b*)* = (c*)*, giving us a counterexample to
Fermat’s Last Theorem for n = 4. However an old result of Fermat himself (proved as
fermatlastTheorenFour in mathlib) says that z* + * = 2 has no nontrivial solutions.
Euler proved Fermat's Last Theorem for p = 3; at the time of writing this is not in mathlib.
Lemma 2.2. /
There are no solutions in positive integers to a®+ b = ¢*.

Proof v

A proof has been formalised in Lean in the FLT-regular project here. Another proof has
been formalised in Lean in the FLT3 project here by a team from the Lean For the
Curious Mathematician conference held in Luminy in March 2024 (its dependency graph
can be visualised here).

Corollary 2.3. /

If there is a counterexample to Fermat's Last Theorem, then there is a counterexample
@+ = & with p prime and p > 5.

Proof v
‘ Follows from the previous two lemmas.
2.3 Frey packages

For convenience we make the following definition.
Definition 2.4. v/
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Lean community

Zulip chat

(an introductory talk by F. Nuccio)
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https://leanprover-community.github.io/
https://leanprover.zulipchat.com/
https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/ConversationWithLean/Colloquium.pdf

(Personal) outlook

Spectral theorem for bounded self-adjoint operators on a Hilber space.
What is done:

o Hilbert spaces
@ Bounded operators, adjoint
@ Definition of C*-algebras
@ Continuous functional calculus in a C*-algebra
@ Weak and strong operator topologies
@ Measure theory
@ Riesz-Markov-Kakutani representation theorem
Todo:
e Definition of resolution of unity (projection-valued measure)
@ Continuity results of functional calculus

@ Riesz-Markov-Kakutani theorem for bounded complex functionals

(Correspondence between sesquilinear forms and operators)
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