
Introduction to Lean theorem prover

Yoh Tanimoto

University of Rome “Tor Vergata”

Tokyo operator algebras seminar
10 December 2024

(Disclaimer)

I am not an expert of Lean or logic, rather a user with a bit of experience.

I did some tutorials in Lean in 2020, then resumed in 2023, then started to
contribute to mathlib, the main library of Lean, in early 2024.

There are very few people (∼ 5) doing things on operator algebras. In
other words, you can get to the frontline very quickly.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 2 / 32

Why Lean, an interactive theorem prover?

In mathematics, we usually write (informal) proofs. Formal proofs are
sequences of statements that can be derived from the axioms and
deduction rules.

Hilbert: “One must be able to say at all times–instead of points, straight
lines, and planes–tables, chairs, and beer mugs” (link)

Mathematical statements can be written in the symbolic language and
processed and verified by computer.

Some current research results are formalized in real time.

In lean we can talk about (very basic) stuff about operator algebras.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 3 / 32

https://math.stackexchange.com/questions/56603/provenance-of-hilbert-quote-on-table-chair-beer-mug

(Why I am interested)

I studied physics in my bachelor’s study. It was OK until Quantum
Mechanics (operator theory).

I dropped out when I had to study (interacting) Quantum Field Theory
and switched to mathematic(al physic)s.

In mathematical physics, we value rigor. We are supposed to define
physical models and prove theorems about them. E.g. conformal nets,
vertex operator algebras...

I gradually learnt that, in the most advanced research, this high standard
is not always kept. Cf. the UV stability of the Yang-Mills model in 4d.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 4 / 32

What is Lean?

Lean is a proof assistant, or interactive theorem prover. You write the
statements and (some large part of) the proofs. Computer gives
suggestions and verifies the proofs.

Not to be confused with computer algebra system (e.g. Mathematica) or
automatic theorem prover (e.g. Alphaproof)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 5 / 32

(Computer algebra system)

Wolfram alpha

Gives correct answers to most of the questions, but sometimes give wrong
answers (link)
Example

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 6 / 32

https://math.stackexchange.com/questions/4589778/i-have-a-sum-which-i-can-really-easily-show-to-be-convergent-but-wolfram-alpha
https://www.wolframalpha.com/input?i=sum+from+n%3D1+to+infinity+of+1%2F%28n%5E%282%2B%28cos%28n%29%29%5E2%29%29

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 7 / 32

Lean, as a proof assistant

You write the proof, the computer verifies it.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 8 / 32

(Automated theorem prover)

Computer searches for proofs and finds (or fails).

Alphaproof: AI achieves silver-medal standard solving International
Mathematical Olympiad problems

(link)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 9 / 32

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Why interacting theorem prover (in the past)?

Mathematicans have formalized some part of mathematics (Mizar,
Metamath, HOL, Isabelle, Coq...), but the developments in most cases
had not reached the actual research level until recently.

Theorem provers have been mainly developed by computer scientists, with
real applications to verification of hardware and software. “Mistakes can
be very costly, examples are the destruction of the Ariane 5 rocket (caused
by a simple integer overflow problem that could have been detected by a
formal verification procedure) and the error in the floating point unit of
the Pentium II processor.” (Bridge, 2010. link)

“The failure resulted in a loss of more than US$370 million.” (Wikipedia
entry about Ariane flight V88)

Lean is developed by people including engineers at Microsoft.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 10 / 32

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf
https://en.wikipedia.org/wiki/Ariane_flight_V88
https://en.wikipedia.org/wiki/Ariane_flight_V88

What is a proof in mathematics?

Let P, Q be propositions, and assume that P and P → Q are correct
(axioms). Then from P, P → Q we can deduce Q.

Let x a variable in some domain and P(x) be a predicate (a proposition
that depends on x). If we can prove P(x) for x without any other
condition, then it should hold for all x in the domain, that is, ∀x , P(x).
On the other hand, if ∀x , P(x) holds, then P(x) holds for any x .

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 11 / 32

What is a formal proof?

P P → Q
Q

∀x , P(x)
P(x)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 12 / 32

What is a formal proof in Lean?

Lean uses dependent type theory as its basis. Everything has a type.
N
R
N → R
Prop (propositions, actually there is a hierarchy inside Prop)
R → Prop (predicates that depends on a real number)

(cf. First-order logic + the set theory (Mizar, Metamath))

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 13 / 32

What is a formal proof in Lean?

In Lean, N is defined as

inductive N where
| zero : N
| succ (n : N) : N

That is, zero (= 0) has type N. succ zero (= 1) has type N. succ
(succ zero) (= 2) has type N...
Only these symbols have type N.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 14 / 32

What is a formal proof in Lean?
We can define a function addone by

def addone : N → N
| zero => succ zero
| succ n => succ succ n

We have addone = succ.
example (n : Nat) : addone n = succ n := by
induction n
case zero => rfl
case succ n ih => rfl

More interestingly, define

def myadd (m n : N) : N :=
match n with
| N.zero => m
| N.succ n => N.succ (myadd m n)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 15 / 32

What is a formal proof in Lean?

∀(n : N), 0 + n = n + 0 : Prop.
Proof: If n = 0, it is 0 + 0 = 0 + 0 (axiom).
If n = succ m = m + 1, we have to prove 0 + (m + 1) = (m + 1) + 0. RHS
= m + 1: LHS = (0 + m) + 1 = m + 1.

def myadd (m n : N) : N :=
match n with
| N.zero => m
| N.succ n => N.succ (myadd m n)

example (n : N) : myadd n 0 = myadd 0 n := by
induction n

case zero => rfl
case succ n ih => rw [myadd, myadd, ← ih, myadd]

(link)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 16 / 32

https://live.lean-lang.org/#codez=JYWwDg9gTgLgBAWQIYwBYBtgCMBQOJgCmAdnAHIp4AmhAZnCAJ5JVVwAUIcpAXOSgEo4fCvB4BeHCBQBjVNzgB3YGhwAffjAB0AL0JQIccQD4G6zVoDOAVxkyFJizbscmLNl2IC8hAB5JwdEIOXk0hPjdWBQAGIwZmKNjecTgsRhxgYipbGGAIUmIcGSRLYL0DI1MoWnQikuDne1JgeUcoRTgAbUiqABp4937ABMI4Fv6egF1qOjh3fOCRFDhAJMJNc3LDR0a4DfNt0i3be3Z97xw/ALAgkOEw27niYIO4feEUtIysnLyCutKd/SbKo1P4NI4KFqVODVWpAA

What is a formal proof in Lean?

def myadd (m n : N) : N :=
match n with
| N.zero => m
| N.succ n => N.succ (myadd m n)

example (m n : N) : myadd m n = myadd n m := by
sorry

(link)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 17 / 32

https://live.lean-lang.org/#codez=JYWwDg9gTgLgBAWQIYwBYBtgCMBQOJgCmAdnAHIp4AmhAZnCAJ5JVVwAUIcpAXOSgEo4fCvB4BeHHAYoAxqm5wA7sDRS4AH34wAdAC9CUCNLjiAfA3VbROgM4BXWbMXntdx887NWDbgLyEAB5I4OiEHLxwgKiEQnxMLGykAAymDN5sKbzicFiM6sDEVI4wwBCkxOqySLbhBkamFlC06JXV4Q5OisAKrlBKcADa8awANGkJY4AJhHDdY8NUALoBwaHhnIp8McLjPlyk2fOKXBI5edK20FCMQA

What is a formal proof good for?

correctness
encouraging complete proofs
searchability
collaboration
education

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 18 / 32

Correctness

From the code written by human, Lean outputs “proof terms”.

The kernel checks that the proof term gives the type of the theorem.

One can write another verifier of the proof terms.

cf. a talk by F. van Doorn

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 19 / 32

https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/LeanInternals/slides.pdf

Encouraging complete proofs

To write a formal proof, one needs to know a very detailed informal proof.
If it becomes more common to write formal proofs, it will urge people to
give details.

Terence Tao, in an attempt to formalize his proof, he noticed that he had
done a division by zero.
(link)

Gouëzel–Shchur found a reversed inequality in a paper, corrected it and
check the proof (in Isabelle/HOL).
(link)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 20 / 32

https://mathstodon.xyz/@tao/111287749336059662
https://arxiv.org/abs/1810.04579

Searchability

mathlib is accompanied with various search engines.
loogle, moogle, leansearch
One can find statements that contain a certain combination of keywords

(link)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 21 / 32

https://loogle.lean-lang.org/
https://www.moogle.ai/
https://leansearch.net/
https://loogle.lean-lang.org/?q=T2Space%2C+CompactSpace

Collaboration

There are some theorems that require very different fields of mathematics.
Anyone can help by filling in auxilliary results needed in a bigger project.
(Fermat Last Theorem blueprint Chapter 2)

(Fermat Last Theorem blueprint Chapter 6)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 22 / 32

https://imperialcollegelondon.github.io/FLT/blueprint/dep_graph_chapter_2.html
https://imperialcollegelondon.github.io/FLT/blueprint/dep_graph_chapter_2.html

Education

Even with informal proofs, students often get confused with an implication
and its inverse, ∀ and ∃, P and P → Q...
After learning informal proofs, by using an interactive theorem prover, a
student may learn which opereations are accepted.
cf. a talk by G. Marasingha

Graduate students can learn advanced materials and try to formalize it,
and in the course obtain more detailed, complete comprehension.
If done well, that can be added to the library to help the current research.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 23 / 32

https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/TeachingWithLean/teaching_proof_with_lean_no_notes.pdf

Formalizing recent research

Definition of a perfectoid space of Peter Scholze, formalized by Buzzard,
Commelin, Massot in 2018
cf. a talk by Buzzard

Liquid tensor experiment (fundamental theorem of “liquid vector spaces”,
Clausen and Scholze 2019), formalized by 18 people in 2022

(There are more elements of number theory in mathlib because several
people have formalized basic stuff)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 24 / 32

https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/FormalisingResearchMathematics/talk.pdf

Formalizing real-time research

The polynomial Freiman–Ruzsa conjecture, proved by Gowers, Green,
Manners and Tao in November 2023.

Formalized in Lean by 25 people three weeks later.
(link)

If the library contains enough prerequisits, one can formalize the current
research in a reasonable time.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 25 / 32

https://teorth.github.io/pfr/

What has been formalized in Lean about operator algebras
and quantum field theory?

Latest developments:
weak operator topology
continuous functional calculus
Riesz-Markov-Kakutani theorem (not yet in mathlib)
vertex operators (formal series)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 26 / 32

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/LocallyConvex/WeakOperatorTopology.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Basic.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Vertex/HVertexOperator.html

Using Lean

Try: Lean playground

Set up: Installation instructions

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 27 / 32

https://live.lean-lang.org/
https://leanprover-community.github.io/get_started.html#regular-install

Learning Lean

Natural Number Game

Mechanics of proof

Mathematics in Lean

Theorem proving in Lean

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 28 / 32

https://adam.math.hhu.de/
https://hrmacbeth.github.io/math2001/
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://leanprover.github.io/theorem_proving_in_lean4/title_page.html

Using Lean

Searching in mathlib documentation

Search entries using loogle, moogle, leansearch.

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 29 / 32

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/CStarAlgebra/Classes.html

Using Lean
From Blueprint of FLT project

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 30 / 32

Using Lean

Lean community

Zulip chat

(an introductory talk by F. Nuccio)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 31 / 32

https://leanprover-community.github.io/
https://leanprover.zulipchat.com/
https://github.com/fpvandoorn/LeanInRome/blob/master/Colloquia/ConversationWithLean/Colloquium.pdf

(Personal) outlook
Spectral theorem for bounded self-adjoint operators on a Hilber space.
What is done:

Hilbert spaces
Bounded operators, adjoint
Definition of C∗-algebras
Continuous functional calculus in a C∗-algebra
Weak and strong operator topologies
Measure theory
Riesz-Markov-Kakutani representation theorem

Todo:
Definition of resolution of unity (projection-valued measure)
Continuity results of functional calculus
Riesz-Markov-Kakutani theorem for bounded complex functionals
(Correspondence between sesquilinear forms and operators)

Yoh Tanimoto (Tor Vergata) Introduction to Lean Tokyo, 10/12/2024 32 / 32

