Construction of Haag-Kastler nets for factorizing S-matrices with poles

Yoh Tanimoto

(joint with H. Bostelmann and D. Cadamuro) University of Rome "Tor Vergata"

9 November 2021, Tokyo-Kyoto online seminar

- A classical field is a function on the spacetime \mathbb{R}^{d+1} (or a section in a principal bundle...)
- A quantum field is an operator-valued distribution $\Phi(x)$: for a test function f, $\Phi(f)$ gives an (unbounded) operator.
- For spacetime region O, let A(O) = {e^{iΦ(f)} : supp f ⊂ O}". ⇒ Haag-Kastler net.
- The "vaccum" state \Rightarrow the geometric modular action
- DHR representation of a net \Rightarrow subfactor
- Entropy \Rightarrow relative modular objects

Constructive QFT: old and new

- Constructing examples is hard. Cf. groups, von Neumann algebras.
- (Glimm, Jaffe... '70~) Start with the free field, take the interacting Hamiltonian, define the new dynamics and take a new representation of local algebras.
- 2d conformal field theory (Buchholz-Mach-Todorov '88~).
- (Lechner '08) Start with the (factorizing) S-matrix, twist the Fock space, construct first observables in wedge regions. The existence of local observables follow from the split property.
- The class of (the two-particle elastic) S-matrices treated by Lechner is analytic in the strip $\mathbb{R} + i(0, \pi)$.
- We extend the programme to certain meromorphic S-matrices. Poles should correspond to bound states.
- Unbounded operators, analytic functions, modular theory, quantum group symmetry?

In relativistic theory, we equip $\mathbb{R}^2 \ni (x_0, x_1)$ with the indefinite metric $(x - y, x - y) = (x_0 - y_0)^2 - (x_1 - y_1)^2$.

The group of transformations of \mathbb{R}^2 that preserve this metric is called the Poincaré group. In the case of \mathbb{R}^2 , its connected component of the unit element \mathcal{P}^{\uparrow}_+ is $\mathbb{R}^2 \rtimes \mathbb{R}$, where \mathbb{R}^2 is the group of translations and \mathbb{R} is called the Lorentz boosts.

We say that two points x, y are spacelike separated if (x - y, x - y) < 0. The set $V_+ = \{x \in \mathbb{R}^2 : (x, x) > 0, x_0 > 0\}$ is called the future light cone.

Definition

A Haag-Kastler net on \mathbb{R}^2 is (\mathcal{A}, U, Ω) , where $\{\mathcal{A}(O)\}$ is a family of von Neumann algebras parametrized by open regions in \mathbb{R}^2 such that

- Isotony: $O_1 \subset O_2 \Rightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2).$
- Locality: O_1 and O_2 spacelike separated $\Rightarrow [\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}.$
- Poincaré covariance: U is a unitary representation of the Poincaré group such that $\operatorname{Ad} U(g)(\mathcal{A}(O)) = \mathcal{A}(gO)$.
- Positive energy: the restriction of U to translations has the spectrum contained in \overline{V}_+ .
- Vacuum: there is a unique (up to a scalar) unit vector Ω such that $U(g)\Omega = \Omega$ and cyclic for each $\mathcal{A}(O)$.

< □ > < □ > < □ > < □ > < □ > < □ >

Massive free field

The simplest example of Haag-Kastler net.

Let m > 0 (called the mass). An irreducible representation of the Poincaré group $\mathcal{P}^{\uparrow}_{+}$ is given on $\mathcal{H}_{1} = L^{2}(\mathbb{R}, d\theta)$, for $(a, \tau) \in \mathcal{P}^{\uparrow}_{+}$,

$$(U_m(a,\tau)\Psi)(\theta) = e^{im(a_0\cosh\theta - a_1\sinh\theta)}\Psi(\theta - \tau).$$

 \mathcal{H}_1 is called the one-particle space. The Hilbert space for the free field is the (bosonic) Fock space $\mathcal{F}(\mathcal{H}_1) = \bigoplus_n P_n \mathcal{H}_1^{\otimes n}$, where P_n is the symmetrization

$$(P_n\Psi_n)(\theta_1,\cdots,\theta_n)=\frac{1}{n!}\sum_{\sigma\in\mathfrak{S}_n}\Psi_n(\theta_{\sigma(1)},\cdots,\theta_{\sigma(n)})$$

On the Fock space $\mathcal{F}(\mathcal{H}_1)$, $\psi \in \mathcal{H}_1$, one has the creation and annihilation operators such that for $\Psi = (\Psi_0, \Psi_1, \cdots,)$

$$(a(\psi)^{\dagger}\Psi)_{n+1} = \sqrt{n+1}P_{n+1}(\psi \otimes \Psi_n), a(\psi) = (a(J\psi)^{\dagger})^*,$$

where $J\psi(\theta) = \overline{\psi(\theta)}$.

Massive free field

$$\mathcal{H}_1 = L^2(\mathbb{R}, d\theta), \mathcal{F}(\mathcal{H}_1) = \bigoplus_n P_n \mathcal{H}_1^{\otimes n}.$$

For $f \in \mathscr{S}(\mathbb{R}^2)$, we define $f^+(\theta) = \tilde{f}(m \cosh \theta, m \sinh \theta)$, the restriction of the Fourier transform of f to the mass shell $(m \cosh \theta, m \sinh \theta)$.

The operator $\phi(f) = a^{\dagger}(f^+) + a(f^+)$ is called the free massive field. Together with the second quantization $U(g) = \bigoplus_n U_m(g)^{\otimes n}$ and the vacuum vector $\Omega \in \mathcal{H}_0$, it satisfies, among other things,

- Locality. [φ(f), φ(g)] = 0 (actually they commute strongly) if supp f and supp g are spacelike separated.
- Poincaré covariance. Ad $U(g)(\phi(f)) = \phi(f_g)$, where $f_g(x) = f(g^{-1} \cdot x)$.

One can now construct the Haag-Kastler net, together with U and Ω , by

$$\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}''.$$

Some interacting 2d QFTs (Lechner '08)

Take a certain analytic function $S(\theta)$ called the **two-particle S-matrix**, $S : \mathbb{R} + i(0, \pi) \to \mathbb{C}$, satisfying

$$\overline{\mathcal{S}(\theta)}=\mathcal{S}(\theta)^{-1}=\mathcal{S}(-\theta)=\mathcal{S}(\theta+\pi i), \;\; heta\in\mathbb{R}.$$

Take a different symmetrization $P_n\Psi_n=\Psi_n$ such that

$$\Psi_n(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

We can construct an analogue of Fock space $\mathcal{F}(\mathcal{H}_1)$, creation and annihilation operators z^{\dagger}, z and the field $\phi(f) = z^{\dagger}(f^+) + z(f^+)$. But locality $[\phi(f), \phi(g)]$ is no longer satisfied.

We can introduce another set of creation and annihilation operators z'^{\dagger}, z' by $(z'^{\dagger}(\psi)\Psi)_{n+1} = \sqrt{n+1}P_{n+1}(\Psi \otimes \psi)$. Then, with $\phi'(g) = z'^{\dagger}(g^+) + z'(g^+)$, it holds that $[\phi(f), \phi'(g)] = 0$ if $\operatorname{supp} f$ and $\operatorname{supp} g$ are spacelike separated and f is on the left of g.

z and z' commute because they act from the left and the right. Similarly for z^{\dagger} and $z'^{\dagger}.$

It holds that $Jf^+(\theta) = f^+(\theta + i\pi)$, and as S is analytic,

$$egin{aligned} &[\phi(f),\phi'(g)]\Psi_1(heta_1)=\ &-\int d heta \,(f^+(heta)g^-(heta)S(heta_1- heta)-f^+(heta+\pi i)g^-(heta+\pi i)S(heta_1- heta+\pi i))\ & imes\Psi_1(heta_1) \end{aligned}$$

This vanishes by the Cauchy theorem. It works for general states.

Overview of the strategy

- $W_{\mathrm{R}} := \{ a \in \mathbb{R}^2 : a_1 > |a_0| \}.$
- $\phi(f)$ generate the algebra $\mathcal{A}(W_{\mathrm{L}}), \, \phi'(f)$ generate the algebra $\mathcal{A}(W_{\mathrm{R}}),$
- For a general region $D_{a,b}$ take the intersection

 $\mathcal{A}(D_{a,b}) = U(a)\mathcal{A}(W_{\mathrm{R}})U(a)^* \cap U(b)\mathcal{A}(W_{\mathrm{L}})U(b)^*$

- The Haag-Kastler axioms are automatic, except that Ω is cyclic for *A*(D).
- $\mathcal{A}(D)$ is large enough if modular nuclearity or wedge-splitting holds.
- This has been done if S is analytic, S(0) = -1 and satisfies a certain regularity condition (Lechner '08, Alazzawi-Lechner '15).
- Examples:

$$S_{\varepsilon}(heta) = rac{ anhrac{1}{2}\left(heta - i\epsilon
ight)}{ anhrac{1}{2}\left(heta + i\epsilon
ight)}$$

with $0 < \epsilon < \pi$.

Standard wedge and double cone

Y. Tanimoto (Tor Vergata University)

09/11/2021, Tokyo-Kyoto 1

S-matrix with poles

If S has a pole:

$$egin{aligned} &[\phi(f),\phi'(g)]\Psi_1(heta_1)=\ &-\int d heta \ (f^+(heta)g^-(heta)S(heta_1- heta)-f^+(heta+\pi i)g^-(heta+\pi i)S(heta_1- heta+\pi i))\ & imes\Psi_1(heta_1) \end{aligned}$$

obtains the **residue** of S and does not vanish.

• Example (the Bullough-Dodd model): poles at $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}$, residues -R, R

$$S_{\varepsilon}(\theta) = \frac{\tanh\frac{1}{2}\left(\theta + \frac{2\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta - \frac{2\pi i}{3}\right)} \cdot \frac{\tanh\frac{1}{2}\left(\theta - \frac{(1-\varepsilon)\pi}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{(1-\varepsilon)\pi i}{3}\right)} \frac{\tanh\frac{1}{2}\left(\theta - \frac{(1+\varepsilon)\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{(1+\varepsilon)\pi i}{3}\right)},$$

where
$$0 < \varepsilon < \frac{1}{2}$$
. $S_{\varepsilon}(\theta) = S_{\varepsilon}\left(\theta + \frac{\pi i}{3}\right)S_{\varepsilon}\left(\theta - \frac{\pi i}{3}\right)$.

New wedge-local field?

- $\xi(\zeta)$: analytic in $\mathbb{R} + i(0, \pi)$, $\overline{\xi(\theta + \pi i)} = \xi(\theta)$ ("real").
- $\mathcal{H}_1 = L^2(\mathbb{R})$
- $\mathscr{D}_0 = H^2(-\frac{\pi}{3},0)$: L²-analytic functions in $\mathbb{R} + i(-\frac{\pi}{3},0)$
- $(\chi_1(\xi))\Psi_1(\theta) := \xi(\theta + \frac{\pi i}{3})\Psi_1(\theta \frac{\pi i}{3})$
- $\chi_1(\xi)$ is a symmetric operator.

The bound state operator

- S: two-particle S-matrix, poles $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}, S(\theta) = S\left(\theta + \frac{\pi i}{3}\right)S\left(\theta \frac{\pi i}{3}\right)$
- $P_n: \text{ S-symmetrization, } \mathcal{H} = \bigoplus P_n \mathcal{H}_1^{\otimes n}, \ \mathcal{H}_1 = L^2(\mathbb{R}),$ $\text{Dom}(\chi_1(\xi)): \text{ to be defined}$ $(\chi_1(\xi))\Psi_1(\theta) := \sqrt{2\pi |R|} \xi \left(\theta + \frac{\pi i}{3}\right) \Psi_1 \left(\theta - \frac{\pi i}{3}\right), R = \text{Res}_{\zeta = \frac{2\pi i}{3}} S(\zeta)$

New observables :

$$\begin{split} \chi(\xi) &:= \bigoplus \chi_n(\xi), \qquad \chi_n(\xi) = n P_n \left(\chi_1(\xi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1} \right) P_n, \\ \widetilde{\phi}(\xi) &:= \phi(\xi) + \chi(\xi) \qquad (= z^{\dagger}(\xi) + \chi(\xi) + z(\xi)), \\ \widetilde{\phi}'(\eta) &:= J \widetilde{\phi}(J_1 \eta) J, \qquad \chi'(\eta) = J \chi(J_1 \eta) J. \end{split}$$

Theorem (Cadamuro-T. arXiv:1502.01313)

 $\xi: L^2$ bounded analytic in $\mathbb{R} + i(0, \pi)$ "real", $\eta: L^2$ bounded analytic in $\mathbb{R} + i(-\pi, 0)$ "real", then $\langle \widetilde{\phi}(\xi) \Phi, \widetilde{\phi}'(\eta) \Psi \rangle = \langle \widetilde{\phi}'(\eta) \Phi, \widetilde{\phi}(\xi) \Psi \rangle$ on a dense domain.

But we need that $\tilde{\phi}(\xi)$ and $\tilde{\phi}'(\eta)$ commute strongly $([e^{is\tilde{\phi}(\xi)}, e^{it\tilde{\phi}'(\eta)}] = 0$. Which is the right domain? Which is the right self-adjoint extension?

• $(\chi_1(\xi))\Psi_1(\theta) := \sqrt{2\pi |R|} \xi(\theta + \frac{\pi i}{3})\Psi_1(\theta - \frac{\pi i}{3})$

What are self-adjoint extensions of $\chi_1(\xi)$?

- If ξ has a zero in $\mathbb{R} + i(\frac{\pi i}{3}, \frac{2\pi i}{3})$, we may add to the domain functions with a pole there.
- Many extensions: $n_{\pm}(\chi_1(\xi)) =$ "half of the zeros" of ξ

Which is the right self-adjoint extension of $\chi_1(\xi)$?

• Choose $\xi = \xi_0^2$, no zeros, no singular part (Beurling decomposition). Set $\xi_+(\theta + \frac{\pi i}{3}) = \exp\left(\int d\theta P(\theta + \frac{2\pi i}{3})\log|\xi(\theta + \frac{\pi i}{3})|\right)$, where $P(\theta)$ is the Poisson kernel for $\{\zeta : \frac{\pi}{3} < \operatorname{Re} \zeta < \frac{2\pi}{3}\}$.

 $\chi_1(\xi) := M_{\xi_+}^* \Delta_1^{\frac{1}{6}} M_{\xi_+}$ is positive, self-adjoint and a natural extension of the above, M_{ξ_+} is unitary, $(\Delta_1^{\frac{1}{6}} \Psi_1)(\theta) = \Psi_1(\theta - \frac{\pi i}{3}).$

(cf. Nelson-Glimm-Jaffe "commutator theorem")

Theorem (Driessler-Fröhlich)

Let T be a positive self-adjoint operator, A, B symmetric operators on Dom(T) such that for $\Psi, \Phi \in Dom(T)$

- $\|A\Psi\| \leq C \|T\Psi\|, \|B\Psi\| \leq C \|T\Psi\|$ for $\Psi \in \text{Dom}(T)$.
- $|\langle A\Psi, T\Phi \rangle \langle T\Psi, A\Phi \rangle| \le C ||T\Psi|| ||\Phi||,$ $|\langle B\Psi, T\Phi \rangle - \langle T\Psi, B\Phi \rangle| \le C ||T\Psi|| ||\Phi||.$
- $|\langle A\Psi, T\Phi \rangle \langle T\Psi, A\Phi \rangle| \le C ||T^{\frac{1}{2}}\Psi|| ||T^{\frac{1}{2}}\Phi||,$ $|\langle B\Psi, T\Phi \rangle - \langle T\Psi, B\Phi \rangle| \le C ||T^{\frac{1}{2}}\Psi|| ||T^{\frac{1}{2}}\Phi||.$
- $\langle A\Psi, B\Phi \rangle = \langle B\Psi, A\Phi \rangle$

Then A and B strongly commute.

Towards proof of strong commutativity

Note: $\chi_1(\xi) = M_{\xi_+}^* \Delta_1^{\frac{1}{6}} M_{\xi_+}$ have different domains for different ξ . $\chi(\xi) := \bigoplus \chi_n(\xi), \qquad \chi_n(\xi) = nP_n \left(\chi_1(\xi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}\right) P_n$ $= nM_{\xi_+}^{*\otimes n} P_n \left(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}\right) P_n M_{\xi_+}^{\otimes n}.$

If $\chi(\xi) + \chi'(\eta)$ is self-adjoint, then...

- $\chi(\xi) + \chi'(\eta) + cN$ is self-adjoint.
- $T(\xi, \eta) := \widetilde{\phi}(\xi) + \widetilde{\phi}'(\eta) + cN$ is self-adjoint by Kato-Rellich. (= $\chi(\xi) + \chi'(\eta) + cN + \phi(\xi) + \phi'(\eta)$)
- $[T(\xi,\eta), \widetilde{\phi}(\xi)] = [cN, \widetilde{\phi}(\xi)] = [cN, \phi(\xi)]$ is small, $\|\widetilde{\phi}(\xi)\Psi\| \le \|T(\xi,\eta)\Psi\|.$
- use Driessler-Fröhlich theorem (weak \Rightarrow strong commutativity: $[e^{i\widetilde{\phi}(\xi)}, e^{i\widetilde{\phi}'(\eta)}] = 0$) with $T(\xi, \eta)$ as the reference operator.

We exhibit the proof for

$$\chi_2(\xi) \cong P_2(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1})P_2 \ \subset \ \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + M_S(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_S^* \ \text{ on } \mathcal{H}_1 \otimes \mathcal{H}_1.$$

Domain: L^2 -functions $\Psi(\theta_1, \theta_2)$ analytic in θ_1 in $\mathbb{R} + i(-\frac{\pi i}{3}, 0)$ and s.t. $S(\theta_1 - \theta_2)\Psi(\theta_1, \theta_2)$ analytic in θ_2 in $\mathbb{R} + i(-\frac{\pi i}{3}, 0)$.

Lemma (Kato-Rellich+)

If A, B, A + B are self-adjoint, and assume that there is $\delta > 0$ such that $\operatorname{Re} \langle A\Psi, B\Psi \rangle > (\delta - 1) \|A\Psi\| \|B\Psi\|$ for $\Psi \in \operatorname{Dom}(A + B)$. If T is a symmetric operator such that $\operatorname{Dom}(A) \subset \operatorname{Dom}(T)$ and $\|T\Psi\|^2 < \delta \|A\Psi\|^2$, then A + B + T is self-adjoint.

 $\Delta_1^{\overline{6}} \otimes \mathbb{1} + \mathbb{1} \otimes \Delta_1^{\overline{6}}$ is self-adjoint, Domain: L^2 -functions $\Psi(\theta_1, \theta_2)$ both analytic in θ_1 and in θ_2 .

Start with $\Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + \mathbb{1} \otimes \Delta_1^{\frac{1}{6}}$, self-adjoint on the domain: L^2 -functions $\Psi(\theta_1, \theta_2)$ both analytic in θ_1 and in θ_2 .

Let x be an invertible element in $\mathcal{B}(\mathcal{H})$, A be a self-adjoint operator on \mathcal{H} and assume that Ax^* is densely defined. Then xAx^* is self-adjoint.

 $C(\theta_2 - \theta_1)$: function with the same poles and zeros as S in $0 < \operatorname{Im}(\theta_2 - \theta_1) < \frac{\pi}{3}$, bounded above/below if $-\frac{\pi i}{3} < \operatorname{Im}(\theta_2 - \theta_1) < 0$. $M_C(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + \mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_C^* = M_C(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1})M_C^* + M_C(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_C^*$ is self-adjoint.

Self-adjointness of $\chi_n(\xi) + \chi'_n(\eta)$

 $M_C(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + \mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_C^* = M_C(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1})M_C^* + M_C(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_C^*$ is self-adjoint. If ε (the coupling constant in S) is small enough, and K large enough,

$$\Rightarrow M_C^{\frac{k}{K}}(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1})M_C^{\frac{k}{K}^*} + M_C(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_C^* \text{ is self-adjoint by KR+}.$$

 $\Rightarrow \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + M_C(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_C^* \text{ is self-adjoint by KR+.}$ $\Rightarrow \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + M_C M_C^{\frac{k}{K}}(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_D^{\frac{k}{K}^*}M_C^* \text{ is self-adjoint by KR+, where } C(\theta)O(\theta) = S(\theta).$ $\Rightarrow \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + M_S(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_S^* \text{ is self-adjoint by KR+.}$ $For a fixed <math>\varepsilon$, $\chi_{\varepsilon_2,2}(\xi)$ is a perturbation of $\chi_{\varepsilon_1,2}(\xi)$ if $\varepsilon_2 - \varepsilon_1$ is sufficiently small (by intertwining P_{ε_1} and P_{ε_2}). Similar arguments work for n and $\chi_n(\xi) + \chi'_n(\eta)$ (as long as $\varepsilon_2 < \frac{\pi}{6}$)) (after computations of 30 pages long...).

(sample computations of crossing terms)

$$\begin{split} \left\langle M_{C_{\varepsilon}}^{\frac{k}{K}} (\Delta_{1}^{\frac{1}{6}} \otimes \mathbb{1}) M_{C_{\varepsilon}}^{\frac{k}{K}*} \Psi, \ M_{C_{\varepsilon}} \left(\mathbb{1} \otimes \Delta_{1}^{\frac{1}{6}} \right) M_{C_{\varepsilon}}^{*} \Psi \right\rangle \\ &= \int d\theta \ \overline{C_{\varepsilon} \left(\theta_{2} - \theta_{1}\right)^{\frac{k}{K}}} C_{\varepsilon} \left(\theta_{2} - \theta_{1} - \frac{\pi i}{3}\right)^{\frac{k}{K}} \overline{\Psi \left(\theta_{1} - \frac{\pi i}{3}, \theta_{2}\right)} \\ &\times C_{\varepsilon} \left(\theta_{2} - \theta_{1}\right) \overline{C_{\varepsilon} \left(\theta_{2} - \theta_{1} + \frac{\pi i}{3}\right)} \Psi \left(\theta_{1}, \theta_{2} - \frac{\pi i}{3}\right) \\ &= \int d\theta \ C_{\varepsilon} \left(\theta_{2} - \theta_{1}\right) \overline{\Psi \left(\theta_{1} - \frac{\pi i}{6}, \theta_{2} - \frac{\pi i}{6}\right)} \\ &\times C_{\varepsilon} \left(\theta_{2} - \theta_{1}\right)^{\frac{k}{K}} \overline{C_{\varepsilon} \left(\theta_{2} - \theta_{1} - \frac{\pi i}{3}\right)^{\frac{k}{K}}} C_{\varepsilon} \left(\theta_{2} - \theta_{1} + \frac{\pi i}{3}\right) C_{\varepsilon} \left(\theta_{2} - \theta_{1}\right)^{-1} \\ &\times \overline{C_{\varepsilon} \left(\theta_{2} - \theta_{1}\right)} \Psi \left(\theta_{1} - \frac{\pi i}{6}, \theta_{2} - \frac{\pi i}{6}\right) + \text{residue} \end{split}$$

and the factor in the middle has positive real part, the residue is small if ε is small...

Y. Tanimoto (Tor Vergata University)

Existence of local operators: modular nuclearity

- $\mathcal{N} \subset \mathcal{M}$: inclusion of von Neumann algebras, Ω : cyclic and separating for both, Δ : the modular operator for \mathcal{M} .
- Modular nuclearity (Buchholz-D'Antoni-Longo): if the map

$$\mathcal{N} \ni A \longmapsto \Delta^{\frac{1}{4}} A \Omega \in \mathcal{H}$$

is nuclear, then the inclusion $\mathcal{N} \subset \mathcal{M}$ is split, that is, $N \lor M' \cong N \otimes M'$.

• (sketch of proof) By assumption, the map

$$\mathcal{N} \ni \mathcal{A} \longmapsto \langle J\!A\Omega, \cdot \, \Omega \rangle = \langle \Delta^{\frac{1}{4}} \mathcal{A}^*\Omega, \Delta^{\frac{1}{4}} \cdot \, \Omega \rangle \in \mathcal{M}_*$$

is nuclear. $\langle JBJ\Omega, A\Omega \rangle = \sum \varphi_{1,n}(A)\varphi_{2,n}(B)$ and one may assume that $\varphi_{k,n}$ are normal. This defines a normal state on $\mathcal{N} \otimes \mathcal{M}'$ which is equivalent to $\mathcal{N} \vee \mathcal{M}'$.

• If $\mathcal{N} \subset \mathcal{M}$ is split, the relative commutant is large.

Bisognano-Wichmann property: for $\mathcal{M} = \mathcal{A}(W_{\rm R})$, Δ^{it} is Lorentz boost (follows if one assumes strong commutativity)

Choose $\xi = \xi_0^2$ as before.

Consider $\mathcal{A}(W_{\mathrm{R}} + a) \subset \mathcal{A}(W_{\mathrm{R}})$, where $a = (0, a_{1})$ and the vacuum Ω . Modular nuclearity: $\mathcal{A}(W_{\mathrm{R}}) \ni A \mapsto \Delta^{\frac{1}{4}} U(a) A \Omega \in \mathcal{H}$, $(\Delta^{\frac{1}{4}} U(a) A \Omega)_{n}(\theta) = e^{-ia_{1}\sum_{k} \sinh(\theta_{k} - \frac{\pi i}{2})} (A \Omega)_{n} \left(\theta_{1} - \frac{\pi i}{2}, \cdots, \theta_{n} - \frac{\pi i}{2}\right)$,

which contains a strongly damping factor $e^{-c\sum_k \cosh \theta_k}$.

- $A\Omega$ has a bounded analytic extension.
- Represent it as a Cauchy integral.

• $A\Omega$ has a bounded analytic extension. $A \in \mathcal{A}(W_{\mathrm{R}}) \Longrightarrow A\Omega \in \mathrm{Dom}(\widetilde{\phi}(\xi)) \Longrightarrow (A\Omega)_n \in \mathrm{Dom}(\chi_n(\xi))$, where $\chi_1(\xi) = M_{\xi_+} \Delta_1^{\frac{1}{6}} M_{\xi_+}^*$.

$$\begin{aligned} \langle \chi_n(\xi)(A\Omega)_n, (A\Omega)_n \rangle &= n \| (\Delta_1^{\frac{1}{12}} M_{\xi_+}^* \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}) \cdot (A\Omega)_n \|^2 \\ &= \langle (\widetilde{\phi}(\xi) - \phi(\xi))(A\Omega)_n, (A\Omega)_n \rangle \\ &= \langle (A\xi - \phi(\xi)A\Omega)_n, (A\Omega)_n \rangle \leq 3\sqrt{n+1} \|\xi\| \cdot \|A\Omega\|^2 \end{aligned}$$

Towards modular nuclearity

Choose a **nice** ξ so that $|\xi_+(\theta + i\lambda)| > |e^{-ia_1 \sinh \frac{\theta}{2}}|$ for $\lambda > \delta > 0$. \implies Estimate of $(U(\frac{a}{2})A\Omega)_n$ around $(\theta_1 - \frac{\pi i}{6}, \theta_2, \cdots, \theta_n)$ by ||A|| \implies By *S*-symmetry and the flat tube theorem, $(U(\frac{a}{2})A\Omega)_n$ has an analytic continuation in all variables in the cube.

- $(A\Omega)_n \in \text{Dom}(\Delta_n^{\frac{1}{2}}) = \text{Dom}(\Delta_1^{\frac{1}{2} \otimes n})$ so it is analytic on the diagonal.
- By $\Delta^{\frac{1}{2}}A\Omega = JA^*\Omega$, $(U(\frac{a}{2})A\Omega)_n$, it is analytic on the lower cube.
- $\implies \text{Estimate of } (U(\frac{a}{2})A\Omega)_n \text{ around } \left(\theta_1 \frac{\pi i}{2}, \cdots, \theta_n \frac{\pi i}{2}\right) \text{ by } ||A||$ $\implies \text{nuclearity for minimal distance (Alazzawi-Lechner '17).}$

Towards modular nuclearity

• Represent the analytic continuiation of $A\Omega$ as a Cauchy integral.

- $A\Omega$ is analytic in the hypercube.
- The value $(A\Omega)_n(\theta_1 \frac{\pi i}{2}, \cdots, \theta_n \frac{\pi i}{2})$ can be Cauchy integral on the boundary.
- The integral kernel is L^2 , so it is a nuclear operator.
- The esimate can be improved if S(0) = -1 by mapping to the fermionic Fock space.
- The esimate can be improved if the distance between two wedges is large (Lechner '08, Alazzawi-Lechner '15).
- ⇒ modular nuclearity ⇒ split property ⇒ large relative commutant (observables in double cones) ⇒ Haag-Kastler net.

Summary

- input: two-particle factorizing S-matrix with **poles**
- new observables $\widetilde{\phi}(\xi) = \phi(\xi) + \chi(\xi)$
- strong commutativity + modular nuclearity \Rightarrow interacting net

Open problems

- ☑ Bullough-Dodd (scalar)
- $\Box Z(N)$ -Ising, Sine-Gordon, Gross-Neveu, Toda field theories...
- Equivalence with other constructions (exponential interaction by Hoegh-Krohn): what about other examples?
 - sinh-Gordon (Hoegh-Krohn vs Lechner)
 - Federbush (Ruijsenaars vs T.)
 - sine-Gordon ((Fröhlich-)Park(-Seiler) / Bahns-Rejzner vs ??)
- Relations with CFT (scaling limit, integrable perturbation...)
- quantum group symmetry?

< □ > < □ > < □ > < □ > < □ > < □ >