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Studying von Neumann algebras and inclusions

von Neumann algebra M: subalgebra of B(H), containing 1 and closed
in weak operator topology.

classification, construction from group/quantum group, subalgebras,
group actions...

subfactor N ⊂M: inclusion of von Neumann algebras (with trivial
centers).

classification, invariants, representation theory...
N ′ ∩M is typically “small” and there is a conditional expectation
E :M→N .

Half-sided modular inclusion
There are interesting inclusions N ⊂M where N ′ ∩M where there is no
conditional expectation from M to N .
Result: new examples from free product, applications to quantum
field theory.
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Tomita-Takesaki modular theory

M: von Neumann algebra on H.
Ω: vector in H, cyclic (MΩ is dense in H) and separating (xΩ 6= 0
for x 6= 0 for M).
M′ = {x ∈ B(H) : [x , y ] = 0 for all y ∈M}, the commutant of M.
S: closure of xΩ 7−→ x∗Ω. S = J∆ 1

2 .

Theorem (Tomita)
∆itM∆−it ⊂M, JMJ =M′.

σt(x) = ∆itx∆−it is called the modular automorphism of M with
respect to Ω, and plays a crucial role in the study of (type III) von
Neumann algebras.
In conformal field theory, where M = A(R) is a local algebra and Ω is the
vacuum vector, σt is the group of spacetime dilations (the
Bisognano-Wichmann property).
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Half-sided modular inclusions

N ⊂M: von Neumann algebras,
Ω: cyclic and separating for M,N
∆it
M: the modular group of M with respect to Ω.

N ⊂M is a half-sided modular inclusion if Ad ∆it
M(N ) ⊂ N for t ≤ 0.

(If Ad ∆it
M(N ) ⊂ N for all t ∈ R, there is conditional expectation

E :M→N (Takesaki) ⇒ M = N . We do not want it)

Theorem (Wiesbrock ‘93, Araki-Zsido ‘05)
If N ⊂M is a half-sided modular inclusion with respect to Ω, then

P := 1
2π (log ∆N − log ∆M)

is self-adjoint and positive, where ∆N is the modular operator of N . If we
set U(s) = eisP , then it holds that Ad ∆it(U(s)) = U(e−2πts) (the ax + b
group) and Ad U(1)(M) = N .
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Free products and AQFT

Algebraic quantum field theory
standard half-sided modular inclusions ⇔ (strongly additive) QFT on S1.
Construct new examples?

Free product of von Neumann algebras
{Mk ,Ωk} ⇒M, M contains copies of Mk and they are freely
independent.
{Nk ⊂Mk ,Ωk} ⇒ N ⊂M. What can one say about N ′ ∩M?

Results
Half-sided inclusions (N ⊂M,Ω) with N ′ ∩M = C1.
There is {Nk ⊂Mk ,Ωk} whose free products satisfy N ′ ∩M 6= C1.
Some candidates for new QFT.
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Haag-Kastler net on S1

Definition
A Möbius covariant net on S1 is (A,U,Ω), where {A(I)} is a family of
von Neumann algebras parametrized by intervals in S1 such that

Isotony: I ⊂ J ⇒ A(I) ⊂ A(J).
Locality: I ∩ J ⇒ [A(I),A(J)] = {0}.
Möbius covariance: U is a unitary representation of PSL(2,R) such
that Ad U(g)(A(I)) = A(gI).
Positive energy: the restriction of U to rotations has the positive
generator L0.
Vacuum: there is a unique (up to a scalar) unit vector Ω such that
U(g)Ω = Ω for g ∈ PSL(2,R) and cyclic for A(I).

Many examples coming from quantum field theory.
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Half-sided modular inclusions and Möbius covariant nets
on S1

Let (N ⊂M,Ω) be a half-sided modular inclusion. It is standard if Ω is
cyclic for M∩N ′.

Theorem (Guido-Longo-Wiesbrock ‘98)
There is a one-to-one correspondence between

standard half-sided modular inclusions
Möbius covariant nets on S1 = R ∪ {∞} which are “strongly
additive” (A(I1) ∨ A(I2) = A(I), where I \ {p} = I1 ∪ I2).

Correspondence: M = A(R+),N = A(R+ + 1),M∩N ′ = A(0, 1).

Some problems:
Can one construct half-sided modular inclusions “algebraically”?
Is there half-sided modular inclusions which satisfy M∩N ′ = C1?
Find handy criteria which give standardness.
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Free product of von Neumann algebras

K : index set. κ ∈ K .
Mκ: von Neumann algebras on Hκ
Ωk : cyclic and separating for Mκ

H◦κ := Hκ 	 Ωκ

Free product von Neumann algebra (Voiculescu ‘85)
H = CΩ⊕

⊕
n≥1

⊕
κj 6=κj+1
1≤j≤n−1

H◦κ1⊗· · ·⊗H
◦
κn with H◦κ := Hκ	CΩκ.

H ∼= Hκ ⊗Kκ
Mκ acts on H by this identification: λκ
M(= FκMκ) := {λκ(Mκ)}′′

M is often a factor, e.g. if one of Mκ is diffuse (Ueda ‘11).
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Some results on free product
A generic element x ∈M = FκMκ can be written as

∑
x◦1 ? x◦2 ? · · · ? x◦n ,

where x◦κ ∈ Hκk , κk 6= κk+1 such that 〈Ωκ, x◦κk Ωκ〉 = 0.
On a vector ξ1 · · · ξn, ξκ ∈ H◦κk , x◦κ ∈M◦κ acts as

x◦κ ·ξ1⊗· · ·⊗ξn =


x◦κΩκ ⊗ ξ1 ⊗ · · · ⊗ ξn if κ 6= κ1
(x◦κξ1 − 〈Ωκ1 , x◦κξ1〉Ωκ1)⊗ ξ2 ⊗ · · · ⊗ ξn if κ = κ1
+〈Ωκ1 , x◦κξ1〉ξ2 ⊗ · · · ⊗ ξn

Structure of the commutant (Voiculescu ‘85)
M′ is generated by x◦′1 ? · · · ? x◦′n , x◦′k ∈M′κk , and they act from the right.

Modular automorphisms (Dykema ‘94, Barnett ‘95)
Let σt

κ be the modular automorphism of Mκ,Ωκ. The modular
automorphism σt of M,Ω acts as

σt(x1 ? · · · ? xn) = σt
κ(x1) ? · · · ? σt

κn (xn).
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Free product of half-sided modular inclusions

Lemma
Let {(Nκ ⊂Mκ,Ωκ)}κ∈K be a family of half-sided modular inclusions.
The inclusion of free product von Neumann algebras

N = FκNκ ⊂M = FκMκ, Ω

is a half-sided modular inclusion.

Proof: For x1 ? · · · ? xn ∈M,

σt(x1 ? · · · ? xn) = σt
κ1(x1) ? · · · ? σt

κn (xn) ∈ N .

Question: What about the relative commutant N ′ ∩M?
Answer: it depends on {Nκ ⊂Mκ} and also on |K |.
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Half-sided modular inclusions with trivial relative
commutant

Theorem (Longo-T.-Ueda, arXiv:1706.06070, to appear in Ann. Inst.
Fourier)
Let {(Nκ ⊂Mκ,Ωκ)}κ∈K be infinite copies of a same half-sided
modular inclusion (N0 ⊂M0,Ω0).
For the half-sided modular inclusion (N = FκNκ ⊂M = FκMκ, Ω), it
holds that N ′ ∩M = C1.

Notes on the proof:
The same result holds for general inclusions of von Neumann algebras
For a subset K1 ⊂ K and the corresponding subalgebra
MK1 = FK1Mκ, there is a conditional expectation EK1 :M→MK1 .
This holds if K is infinite.
Estimate x◦Ω, x◦ ∈ N ′ ∩M using analytic elements
λκ′(b), κ′ ∈ K \ K1.
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Nuclearity conditions and split property

({A(I)},U,Ω): Möbius covariant net on S1, not necessarily local.
U(ρt) = eitL0 , where ρt is a rotation of S1.

Theorem (Buchholz-D’Antoni-Longo ‘07)
If e−βL0 is trace class for some β > 0, then for certain inclusion I ⊂ Ĩ ,
A(I) ⊂ A(̃I) is split, namely, there is an intermediate type I factor
(∼= B(K)).

Proof: The trace class condition implies that the map

A(I) 3 x 7−→ 〈JA(̃I),ΩxΩ, ·Ω〉 ∈ A(̃I)∗

is nuclear. Decompose it into normal maps
∑
ϕjψj , so that

xy → 〈JA(̃I),ΩxΩ, yΩ〉 =
∑
ϕj(x)ψj(y) is a normal state on N ∨M′.

A(I) are type III1 factors (Gabbiani-Fröhlich ‘93). If A(I) ⊂ A(̃I) is split,
then the relative commutant A(I)′ ∩ A(̃I) is of type III, in particular,
cannot be trivial.
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Free product inclusion with nontrivial relative commutant

({Aκ(I)},Uκ,Ωκ), κ = 1, 2: Möbius covariant nets on S1 with trace class
property for all β (many such examples). In concrete examples,
dim ker(n − L0) ≈ eαn, 0 < α < 1.

Theorem (Longo-T.-Ueda)
(A(I) = A1(I)?A2(I),FU,Ω) is a Möbius covariant net without locality.
e−βL0 is trace class for some β > 0.
Consequently, A(I) ⊂ A(̃I) is split and has nontrivial relative commutant.

Proof: FU can be written explicitly and Tr e−βL0 can be estimated by
geometric series. Take β so that Tr e−βLj,0 < 1.

This gives a first example of inclusion of free product von Neumann
algebras with nontrivial relative commutant.
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Possible construction of new Haag-Kastler net

Take two Möbius covariant nets and half-sided modular inclusions
(Aj(R+ + 1) ⊂ Aj(R+),Ωj), j = 1, 2.

Problem: finite free product
Take the free product
N = A1(R+ + 1) ?A2(R+ + 1) ⊂M = A1(R+) ?A2(R+),Ω. It is a
half-sided modular inclusion. Is the relative commutant nontrivial?

Good criterion for relative commutant is needed. The trace class
condition is useful for inclusions A(I) ⊂ A(̃I), where I ⊂ Ĩ, but not for
R + 1 ⊂ R.
Similar problem in two-dimensions, modular nuclearity? (used in 2d
Haag-Kastler net, Lechner ‘08, T. ‘14, etc.): For (N ⊂M,Ω), if

N 3 x 7→ ∆
1
4
M,ΩxΩ

is nuclear, then N ⊂M is split.
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Summary and outlook

Half-sided modular inclusion with trivial relative commutant
Inclusion of free product von Neumann algebras with nontrivial
relative commutant

Possibly new Haag-Kastler nets
More techniques to determine relative commutant
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