Informazione: Sebastiano Carpi -> Didattica -> AM1 25/26. Testo: Analisi Matemotica (Bertsch, Dal Passo, Giacomelli) McGraw-Hill Ricevimento: su appuntamento (hoxt@mat.uniroma2.it) or Teams Programma: Numeri reali, funzioni, successioni, limiti, continuità di funzioni. devivate, studio del grafico, formula di Taylor, integrale di Rremann, teurena fordamentale di calcolo, integrali impropri.

Tutoraggio: Grivedi 14:00.

Perché avalisi matematica!

Nelle screnze, studiamo gli aspetti quantitativi degli oggetti.

Quando una quantità cambia col tempo, vome mmo sapere quanto velocemente cambia (derivata) e il usultato (integrazione).

Un altro esempio è la questione di ottimizzazione: trovare il massimo o il minimo di una quantità.

In AMI, si studiano funzioni di una variabile. Questo è una base depli argononti di AMZ, in cui si studiano funzioni di più variabili, che banno applicazioni a computer graphics, comunicazione via web, etc.

Suggerimenti per lo studio: prendere note. fare esercizi. considerare implicazioni logiche di vari teoremi.

Richiami della matematica di base.

(if. univomal, ingegneria → futuri studenti → test di autovalutazione).

• Radici. $(\sqrt{2})^2 = 2$. $\sqrt{2} = 1-41421356...$

Exp, log. Q^{2} . $Z^{3} = 8$, $S^{\frac{1}{2}} = \sqrt{5}$, $A^{\frac{1}{3}} = \sqrt[3]{4}$ ($A^{\frac{1}{3}}$) = $A^{\frac{1}{3}}$. $A^{\frac{1}{3}} = A^{\frac{1}{3}}$. $A^{\frac{1}{3}} = A^{\frac{$

· Grafico. Y= 12, x El.

```
Ridvani di logica e insiemistica
In maternatica, si considerano "afformazioni" che passono esseve veve o false.
 "2+2=4" è vera, "2+2=5" è falsa.
E possibile compone affermationi con ye" "o" "wou" "se_, allora_"!
Esapl . "2+2=4"e" 1+3=5" è falsa.
        · 2+2=4" 0 " 1+3=5" e vera.
" Se "1+3=5", allora "2+2=5"" è vera, pordé l'ipotesi è falsa.
~ "Non esiste I tale the P(x)" significa "per turti x, non P(x)".
· "Non per tutti x, vale P(x)" significa "esiste un a tale che non P(x)".
In maternatica, si considerano "insiremi" degli oggetti maternatici.
Esempl. N: l'insième dei numeri naturali = [1,2,3, -- ].
         Zil'insieme dei numeri ruter = [ - , -2, -1, 0, 1, 2, 3, - ].
         Q: l'insième dei numeri razional: = { = P. 9 \ Z}.
        A={0,1,2,3}. XEA significa "x appartisene a A".
(Isono due modi per definire insiem).
 . por nominazione. A={0,1,2,3}. B={1,10,100}.
  · per specificazione. A = {X \in Z : esiste y \in Z t.c. \lambda = 2y ] = l'insieme dei nuneri pori
  φ= {\ \ \ \ \ insieme vuoto.
                                                           -1--4,-2,0,2,4-6
 Se por tutt: XEA vale XEB. SI dice che Aè un sottoinsième dr B. ACB.
 Esempl. A={1,2,3}, B={0.1,23.4,5}, ACB. ACIN. ACZ.
 Due instemi A,B suo identici se ACBe BCA.
 Stano A. B due rustemi. L'unione AUB è l'insième che contieure gli demanti di AeB
 e niente altro. A={1,2,3}, B={0,1,3,4} AuB={0,1,2,3,4}.
 L'intersezione ANB è l'insieme degli element: che appartengono sia ad A che a.B. ANB=[1.3
 La differenza AIB è l'insième degli dementi di A che nun appartenzano aB. ALB=12].
 Stano P(2). 9(2) due afformazioni su x ("predicatr") del dominio D. A= (x0) P(x)
 Allora vale the AnB = (SLED: P(x) e 9(x)).
                                                              B-1x00=9(x).
                    AUB = [X&D P(x) 0 9(x)].
                    A = { 1 = D: num P(x)}. (CA nel Testo).
```

A(B= {zeD: P(z) e mm 9(z)}

Prodotto cartesiano degli insieni

Stano A,B due involui, Si pud considerane il luno prodotto cartesiano A&B = ?(a,b): a & A, b & B), l'instene di turte le copple ordinate.

Escupio 1=[3,4,7], B=[0,1]. AB-[(3,0),(3,1),(4,0),(4,1),(7,0),(7,1)].

Il prodotto cartesiano ha un significato geometrico.

Richamiano de NFZ, Q si passono rappresentare sulla netta.

Allora un punto del prodotto cartesiano «i rappresanta sul piano.

Considerance la relazione x=y. Il sotto insième di ZZZ

the soldisfa questa relazione si trava sulla vetta. Analogo per $\mathbb{R} \times \mathbb{R}$.

In questo modo, una relazione si può rappresentere

con hu gratico.

Analogomente, consideríamo la velastre XX y in Z×Z.

Equivalentemente, & considera l'insiène (a.y) EZ×Z: x <y)

St pub andre considerare la reluzione $Y=\chi^2$ in $Q\times Q$. St considera l'insieme $\{(\chi, \chi)\in Q\times Q: \chi=\chi^2\}$

0 0 0 0 0

(-4.1).

In generale, un sotoinsireme del prodotto AxA si dirama una relazione. X=Y è una relazione, X<Y è vini altra.

Per un insieme X, un operazione in X associa ad ogni coppra ordinata $(X,Y) \in X \times X$ un elemento $Z \in Y$.

Qha operazioni importanti: tra cui x+y, x.y.

Richiamiamo le luro proprietà. L'addizine t. Stano X, Y, Z ER.

1) $\pm 4 = 4 + 2$ (commutatività). 2) $(\pm 4) + 2 = \pm 4(4 + 2)$ (associtività)

3) Esiste un solo elemento, detto O, tale) due) X+0=0 per tutti x EQ.

4) Esiste un solo elevario, detto l'opposto -1, x.c. >1+(-x)=0.

St definisce x = x + (-y).

```
Of possible anche la moltiplicazione. Siano 2,4,260.
5) x - y = y \cdot \chi (commutatività) 6) (1-y) \cdot Z = \chi - (y-2) (associatività),
7) Esiste un solo elemento, detto 1, t.c. x. 1=x por tutti x = Q.
8) Se x +0, esiste un solo eleverto, detto reciproco o muerso. x-1, x.c. x-x7=1.
Si possono scrivere x+Y+2 (=(x+y)+2), x/y = x-Y-1.
Scriviumo anche x2 = x.x, x3 = x.x., --
9)(x+y). Z = x. Z+y. Z (proprietà distributiva).
 Inoltre, Q è munito con la reluzione \ "maggine o uguale! 1 < y significa
(U) Se X = Y, allora X+2 = Y+2.
                                                                     Yfxg Yzx.
II) Se X≤Y e U≤Z, allora Z·Z≤Y·Z.
 Da queste proprietà, si possono dimostrare
 12)e0 = x, allow -x =0. Se y =x, allow -x =-y.
   (por (0) con z=(-x), 0+(-x)=-x \le x+(-x)=0).
 13) se 0 < x, allera 0 < x-1. se 0 < y < x, allera x = y -1.
 14) se 254, 250, allora 4257.2.
 15) Se 2 to, allora O < 22. (6) 22 tour vale.
Rapplesontazione decimale
 Ogni numero razionale si può rappresentare in quella decimale.
 Se 1= = q, allow 1= ± Y. d, d2 -, con YEN, X; € [0,1, --, 9].
 Per X & Q, tale rappresontazione è porivolica.
Irrozionalità di 12
 Lemma Non existe & EQ x.c. x2=2.
dim). Per assurdo, supponiamo che \chi = \frac{1}{4}, \left(\frac{1}{4}\right)^2 = 2, P, 9 \in [N, primi].
Risulta P^2 = 29^2, duque P deve essere pari, e 9 è dispari.
 Scriviano P=2p1, pen. Allra (p)2=4(p)2=293,
  dunque 2 p2= q2, e q savebbe pari, contraddizione.
 Si conclude che non esiste un tale XEIR.
```

Abbiamo visto che non c'è un numero razionale \times \star .c. $\chi^2=2$. D'altra parte, ci sono numeri vazionali \times \times .c. χ^2 è molto vicino a \times . Si osserva che $(1-4)^2=1.96$, $(1.5)^2=2.25$. $(1-41)^2=1.9881$, $(1.42)^2=2.0164$.

Procedendo così, si determina un allineamento decimale 1.41421356 --.

Def (inizine) Un numero reale è un allineamento decimale proprio (la parte
finale non è -- aqq---q-). L'insième dei numeri veali si indica con l.R.

Sapprano che x ED ha un all'neamonto decimale ponodro. Quelli non pertodici si driamano irrazionali. VI è irrazionale.

Le proprietà ()-16) valguro anche per IR. Inditie, Teo(nona) Stano Z. Y EIR tac. X<Y. Allura: esistono (infiniti) Z EOR XC. X<Z<Y.

Infatti, sia d'che y humo l'allineamento decinale, e siccome oly. Dunque de 2+4/2 y. 2+51 può approssimane trancardo l'allineamento, ottenado 260.

Intervalle Stano $a:b \in \mathbb{R}$, a < b. Si pune $(a:b) = \{x \in \mathbb{R}, a < x < b\}$. $[a:b] = \{x \in \mathbb{R}, a < x < b\}$ $(a:b) = \{x \in \mathbb{R}, a < x < b\}$ $[a:b) = \{x \in \mathbb{R}, a < x < b\}$ $[a:b) = \{x \in \mathbb{R}, a < x < b\}$ $[a:b) = \{x \in \mathbb{R}, a < x < b\}$ $[a:b] = \{x \in \mathbb{R}, a < x < b\}$

Valure assoluto

Def. Si induca $|\chi| = [-\chi]$ se $\chi = 0$ e si chiama il valore assoluto (o modulo)

Sia $C \ge 0$: Vale $|\chi| \le C$ se e solo se $-C \le \chi \le C$.

In particiolore, $-|\chi| \le \chi \le |\chi|$.

Prop Per di, to the | xi+x2| = | xi|+ | x2|.

dim) St ha - | xi| = | xi| , - | x2| = x2 = | x2|. Durgue - (x1)+ | x2| = x1+x2 = | x1|+| x2|

Des sia A < IR, A + t. R = IR si dice maggiorneute de A se a = h per tutti a < A (analogomete "minurarho"). A si dice limitato suporiormente se esiste un maggiornete ("inferrormente" se esiste un minurarte). A si dice limitato se è limitato sia suporiormente che informente.

Det Se un maggiorante di A appartiene ad A, si clice il massima (analogo, minimo)

Det. Sia A = R, A = d. P = IR è detto l'estrano suporiore se è il minimo dei maggiorante di Al. sup A = Inin [k = IR: k è maggiorante di Al. in f A = Max [k = IR: k è minorante di Al.

Esempl A = [0,1]. 2 è un magginrante di A.

l è il massimo di A.

l è il sup A.

B = (-1,2)

B e un magginrante di B

B nun ha il massimo:

2 è sup B.

Other III

(= { th: NEW). lè îl massimo de C. Oè un minurate di C, non ha il minimo. Teo Sia ACR finito (ha un numoro finito di elementi). Allera A ha il massimo e il minimo.

Two Sra A CIR, A++, limitato superformente. Allura esiste sup A.

Questa proprietà di IR si driama "completezza".

Questo vale perché se A è limitato, si può decidene l'allineamento passo por passo.

A differenza di questo, considertamo $A = \{1.4.1.41, 1.414, - \} \subset \mathbb{R}$, B un sotto instene di \mathbb{R} , limitato superromorte, ma sup $A (=\sqrt{z})$ non esisto in \mathbb{R} , so lo m \mathbb{R} .

La struttura di IR si possaro caratterizzare con 1)-16). e la completezza. (non c'è un altro modo di "riemprie" (R).

L'insième IR si può rappresentare graficamente come una vetta.

Trams, usave codice dub 5960 Abbiano definito IR, e abbiano visto che $\sqrt{2}$ ER ma $\sqrt{2}$ EIR. Un altro modo per vedere che esiste $\sqrt{2}$ EIR è quello di considerare $\sqrt{2}$ EIR: $\chi^2 < 2$]= A. Albora A è limitato, e si può dimostrore che $(\sup A)^2 = 2$, ossia $\sup A = \sqrt{2}$.

Teo (Proprietà di Avchimede per Q). Stano $\chi, y \in \mathbb{Q}$, $o < \chi, p < \gamma$. Allora existe $N \in \mathbb{N}$ \mathcal{S}_{-} . \mathcal{S}_{-} . \mathcal{S}_{-} . \mathcal{S}_{-} \mathcal{S}_{-

Sia A CIR, A + of e limitato (superformente). Abbiamo definito sup A come il minimo dei maggioranti di A.

dei maggioranti di A. Lemma Sia le IR. l = sup A se e solo se (11) per ogni E >0, esiste X e A X.C. l-E < X.

dim) Sta l'un maggiorante di A. (II) esprime la condizione che, qualunque numero più piccolo di l (l-E) non può essere un maggiorante di A. Donque l'è il maggiorante minimo, ossia sup A.

Analogamente por inf.

Tec. Sta $Y \in \mathbb{R}$, $0 \le y$. Allora existe $x \in \mathbb{R}$, $0 \le x$ X.C. $Y = x^2$. dim) Si pone $A = \{x \in \mathbb{R}: x^2 < 2\}$. $A \in \mathbb{R}$ imparti, sincome $x^2 < 2 < 4 = 2^2$. Vale x < 2 (per assurdo, se $x \ge 2$, $x^2 \ge 4$, curtinaddissine). $1 \in A$. Si pune $x \in \mathbb{R}$ = sup $x \in \mathbb{R}$. Dimostromo che $x \in \mathbb{R}^2$ estudendo le possibilità $x \in \mathbb{R}^2$ e $x \in \mathbb{R}^2$. (i) Supponiamo $x \in \mathbb{R}^2$. Prendramo $x \in \mathbb{R}$ | . (per densità di $x \in \mathbb{R}$).

 $(l+\xi)^2 = l^2 + 2l\xi + \xi^2 < l^2 + 2lt\xi + \xi = l^2 + (2l+1)\xi < l^2 + 2 - l^2 = 2$. Dunque $l+\xi \in A$, ma contraddice $l = \sup A$. Escluso.

(17) Supportant $\ell^2 > 2$. Prendramo $\mathcal{E} < \frac{\ell^2 - 2}{2\ell}$, ossia $2 < \ell^2 - 2\ell \mathcal{E}$. $(\ell - \mathcal{E})^2 = \ell^2 - 2\ell \mathcal{E} + \mathcal{E}^2 > \ell^2 - 2\ell > 2$. Allura $\ell - \mathcal{E}$ is un magginante di A, contraddistance con $\ell = eqp A$.

Dunque si ha l=2.

Testo capitolo 2). Funzivi
Srano X, Y rusiemi (tipicamente sottiinsiemi dill) non vuoti.
Una funcione f da X in Y associa a ogni dex uno solo elemento y ex.
si scrive $y = f(x)$.
L'insième X si dice il dominio di f. e Y si dice il codominio di f. X=duf
Il grafico di f è {(x,y) \ x r: Y = f(x)}. L'i magine è
[Y \in Y: esiste $x \in X$ X-c. $Y = f(x)$]. Esempt $\cdot X = \mathbb{R}, Y = \mathbb{R}, f(x) = 2x + 1$.
Esemple $X = K , Y = K , f(x) = 2x + 1.$
· $\chi = R = \chi$. $f(x) = \chi^2$.
mon è il grafico di una funzione, matre Sì fon)=11-22.
Analogamente, la radice n-esma XII (= VX) si può definire per ol 20, n & 12,
0 220 Hz -173 - 0 '
• $X = [0,\infty)$, $Y = \mathbb{R}$. $f(x) = \sqrt{2}$
imf = [0,00). Infarti, per ogni x zo, vale x = \sqrt{z}.
Por una una funzione definita su X in Y si indica fix-> Y.
Sira ACX unsottoinsieme. Si può definire la restrizione di f su 1, ossia, f/A associa ad XEA H valure f(x).
JA assure an ext 11 value fu).
Per una fursione X> Y, vale Inf Y. I si può sempre vedere come
f: X -> Im X.
Per ma funzione data da una formula, il dominio naturale d'Insieme 1, x.c.
la formula f(a) ha senso per d ∈ X.
Escrit $f(x) = \frac{1}{x}$. Il dumino naturale è $[x \in \mathbb{R}: x \neq 0] = (-\infty, 0) \cup (0, \infty)$.
· f(x) - \tal . If during naturale è [x \in 12: 0 \le x] = [0, \in).
· f(x) = 11-x2. Il dominio naturale è [xGl: 1-x220] = [-1,1].

Ricardramoci due una funzione f con il dominio X e il coclominio Y è una compredence a $x \in Y$. Si scrue $f: X \to Y$.

Det Una funzione $f: \mathbb{N} \to \mathbb{R}$ con il dominio \mathbb{N} è detta una successione. Si usa spesso la notazione an := f(n). Significa che abbiamo una saccessione dei numeri neali a_1, a_2, a_3, \cdots .

Esempl - $f(n) = \frac{1}{N}$, $N \in \mathbb{N}$ è una successione. $f(n) = \frac{1}{N}$ è una successione. $N! = N \cdot (n-1) - \frac{1}{3 \cdot 2 - 1}$.

Funzioni definite su N $v \ge 0$, oppose $n \in \mathbb{N}$: n > 10 si chiamano successioni. Per esempro, \hat{c} comune definire 0! = 1, e f(n) = n! \hat{e} definita su $|N v \ge 0|$. $f(n) = \sqrt{18-n^2}$ \hat{e} definita solo per $n > \hat{s}$

Fausian' monotone

Stano $A \subset X \subset IR$, $f: X \to IR$. State the $f \in X$ (i) Chescorte in A se per ogni $X_1, X_2 \in A$, $X_1 \subset X_2$, stan $f(X_1) \subseteq f(X_2)$. (ii) Strettamente chesconte se $f(X_1) = f(X_2) \subseteq f(X_2)$. (iii) decrescute $f(X_1) = f(X_2) \subseteq f(X_2)$. $f(X_1) = f(X_2) \subseteq f(X_2)$. Strettamente decresconte se $f(X_1) = f(X_2) \subseteq f(X_2)$. Si chice f monotona se vale uno dei casi.

Escupl - f(x) = x è strettamente crescante sul?

. f(a) = 12 non è monotona in R.

Mu è strettamente crescente in [0,00), e strettamente

decresconte in (-00,0]

- fix) = [x], la parte intera. (x=r. x, dz,... [x]=v).

e crescente ou IR, ma nun strettarante.

[1]=1, [½]=0, [T]=3, [T]=1.

· f(a)= 0 se x < 0 il gradino di Heauside.

chescente ma nu strettamente.

Crescente ma nu strettaneto

Siano S:x-IR, g: Y-IR, X, YCIR, a EIR. Si definiscono $(f+g): X \cap Y \rightarrow R$. (f+g)(x) = f(x) + g(x). J.g: KnY→R, (f.g)(x) = f(x).g(x). $af: X \rightarrow \mathbb{R}$. (af)(x) = af(x). Ja: (x = x nx: gw) +0). (3)(x) = +(x)

Sta la funzione d'ordentinà idua)= 1. A partire da rd, con +, ., e la moltiplicazione con a EIR, si costouriscono i polinomi.

 $f(x) = x^2$, $f(x) = x^3 + 3x + 2$, $h(x) = w x^{(00)} + 78x^{23} - 4$.

In generale, un polimino si scrive fla) = aux 9,2+axx2+--aux4.

·fla)= 1, definita su (-00,0)0 (0,00). =

Simmethe

(i) f si droe pavi se per x Ex, -x Ex e f(-x)=f(x)

(ii) dronf(-1) = f(x) f,(ii) dispari

(iii) pernodica (colporadp) se par x ex, x+p ex o f(x+p)=f(x).

Escapi. $f(x) = x, x^3$ sono dispari. f(x) = x2, 24. sur port. for) = sinx, cosx, taxx sur portidiche (P=2TL, 2TL, TL).

Fursiani potensa SIA a EQ. Q=q, PEZ, 9EIN. Si pune, por XE(0, 00), It = (19)P. (quado PZO, si può anche definire per 100, 9 è dispari, si può anche definire per ol <0).

In $[0,\infty)$, se $\alpha>0$, $\chi\mapsto \chi^{\alpha}$ e strettamente chescente 1 max $\alpha < 0$

d= = fa = \fa.

Det Sia $f: X \rightarrow IR$. f si dire l'imitata (superiormente se esiste $M \in IR$ X.C. per tutti $x \in X$, $f(x) \leq M / M \leq f(x)$. Inferiormente.

Overo, se imfèlimitata $\begin{cases} superiormente \\ ruferiormente \end{cases}$. f si dice l'imitata se è l'imitata sia superiormente de inferiormente, ovvero se infalimitate.

Esempl f(x) = sin x è l'imitata. $f(x) = x^2$ è l'imitata inforiormente un un superiormente. $f(x) = x^3$ non è l'initata mè sup n'è inf.

La su ccessime $f(x) = x^3$ non è l'initata mè sup n'è inf.

La su ccessime $f(x) = x^3$ non è l'initata $f(x) = x^3$.

Si dice che f(x) è l'initata se il domino è vistnette a $f(x) = x^3$.

Det Sra $f:X\to IR$. f si clice positiva/nun negativa/negativa/nun positiva in A se, per tutti $x \in A$, $f(x) > / \ge / < / \le 0$.

Det Sa fix-IR, Acx. Si definiscono syff- [sup (imf) se fè limitata superiu morte Analogo por inffaltriment.

St sortions anche sup f(x), suff f(x).

Esempl sup $\sin x = [.]$ sup $x^2 = \infty$. x = 9. $\lim_{x \in [1,\infty)} \frac{1}{x} = 0$.

Frempl max sin $\chi = 1$, min $\chi^2 = 0$, most $\chi = 1$.

Non esistano mate 72, min 26.

Recording (f+g)(x) = f(a) + g(x). $(f-g)(n) = f(x) \cdot g(x)$. Valgono $\sup(f+g) \leq \sup_{x} f + \sup_{x} g$. In fatti, vale partite $x \in X$, $f(x) \leq \sup_{x} f$, $g(x) \leq \sup_{x} g$ dunque f(a)+g(a) < supf + sup g. Indica sup (f+y) < sup g. + sup g. Analogamente inf(f+g) z inf f+ inf g.

Esempto. $\chi = [0,1]$, $f(x) = \chi$, $g(x) = -\chi$. sup f = 1, sup g = 0.

Sup $(f+g) = \sum_{i=0}^{n} 0 = 0 < 1 = \sup_{i=0}^{n} f + \sup_{i=0}^{n} g_i$.

Det f: X-Y 81 dre invertirua se, portutti aux26X, X1472, allora f(x1) + f(x2). Si dice, suivettiva se imf. (Si dice bijettiva se è imettiva e surrettiva).

Escupi. - X=Y=IR. f(x)=x è invettiva e suviettiva.

· X=Y=IR. f(x)= 2 non è ne moettiva ne surettiva.

· X = [0, 00), Y=1R. f(x)=x2 è miettrua.

Sm f: X > R, X=R. Un'equazione y = f(x) può essere vero o falso, diperdentemente da X. Se è vevo, a è detta una soluzione di X=f(x).

Stafix-IR Mettera. X sia una soluzione di Y=f(x). por imettruità, non ci sono altre soluzioni (l'unicità di n). Sta f=x-> Y, sumettma, Y ∈ Y. Allora esiste x ∈ x. x.c. Y=fox). la surrettruità garantisce l'espotanza di una soluzione x di Y=f(a).

Lemma Sia XCIR, f:X > IR. strettamente exescente. Allora fe miettiva. dim). Stano Zi, X2 EX, Xi = X2. Allora vale o xi> X2 o Xi< X2. Well primo case, sogue the fai) > f(x2), durque f(x1) + f(x2). Nel secondo caso, segue che f(x1) < f(x2), duque f(x1) + f(x2).

· fa) = sind. X = [-], }] è strettamente (rescorte. dunque ilvertima Escupt. · fla) = cosa X = [0, TT] è strettamente decresarte. -f(x) = tant = sixx (=(-7.7) & strettante croscorte

tunzione composta

Siano X, Y, V, W insiem, e f: X -> Y, f: V -> W. Si dice la funzione comparta g.f la fuzzone col dominio Tac X: f(a) eV) eff(a) := g(f(a)).

Esempi $\cdot X = Y = V = W$, f(x) = x + 1, $f(x) = x^2$.

Si ha che gof(a) = f(f(x)) = f(x+1) = (x+1)2.

Si wata the fog(x) = f(f(x)) = f(x2) = 2141. Dunque fof \$ \$ \$ \$ \$ \$ of.

• $X = [0, \infty)$ Y = V = W = R. $f(\alpha) = \sqrt{\chi}$ $f(\alpha) = 3 + \chi$.

gof(x) = 3+√x, fog(x)=√3+x, deforto su (x ∈(R: 3+x ≥0)=[-3,∞).

Se cisono tre funzioni f, g,h, si può considerore (fog) o h. In realtà, st ha (fog) o h(x) = (fog) (h(x)) = f(g(h(x))) = f(goh(x)) = fo(goh(x)). Ossra, vale l'associatività (fog). h = fo(foh).

Esemplo. $\frac{1}{(a+1)^2-5} = f \cdot g \cdot h(x), done f(x) = \frac{1}{x}, g(x) = a-5, h(x) = (x+1)^2.$

Il duminio è [241: (2+1)-5+0]. = [261: 2+1+15]=[241: X+-1+5].

Too Siano f, & funzioni, A < dom (fof)

(7) Sefècrescente inch g è crescente, allura gof è crescente.

(27) Chescente decrescente, decrescente.
(27) decrescente chescente decrescente

(TV) decrescente decrescente conscente.

din) (Ti). Siano di, dze A, di <dz allura. f(ai) = f(az), e duque

g(f(11)) > g(f(21)), Ossia, gof è decrescrite.

Ell altri sono analoghi, anche per "strettamente"!

Escapo fuj=(1211+1)3 è stiettemente crescente m [-1,00).

Punzione inversa

Sia f: X-) una funzione miettroq. Significa che, per Y = Im fresiste uno solo 24 x e.c. Y=f(x). Allera possiramo definile una fuzirne f', detta l'ravorsa dif, col dominio in fe codominio X, x.c. f (f(x)) = x. Esempl . f(x) = x+1, f-1(y) = y-1. Infatti, f-1. f(x) = f(x)-1=x+1-1=x. $\chi = [0, \infty), \quad f(x) = \chi^2, \quad f^{-1}(y) = \sqrt{y}, \quad \text{Infart}, \quad f^{+0}f(x) = \sqrt{t(x)} = \sqrt{x}.$ Himmerte i molidi x ey. Il grotro di ft si ottiene inflettado il grafico di f(x) lungo y=x. Stecome f Sa una comspudenza unica fi x m f(x), flè invettrua. Too Sra S: K > Y invertiva, ft = inf > K. Allora fof-1(y) = Y. diw). Si ha f-(fof-(4)) = (f-of) of(4) = f-(4). Por invertourla, fof-(4) = x. Per BCY, si sche [xex: f(x) eB] = f-1(B) = {xex: esiste reB x.c. f-1(r)=21. Si chiama il controlimagine di B. La definizione hu senso anche se frunt investira, e si usa la wtazione f-(B). ture in trigonometriche invose Abbisono visto che Sinx [[], cos x [[o, T], Tana [[],]) sono invettre. Le loro funzioni muerse or divamano arcsin: [H, 1] - [2,], antos: [-1,1] -> [0, ti], aretan: (-∞, ∞) -> (-\(\frac{1}{2}\). aresin \(\frac{1}{2}\) = \(\frac{1}{6}\), aretan \(\frac{1}{2}\) \(\frac{1}{4}\). Imeiani potensa Per a \(\langle (0,00), V = \frac{m}{n} \in \(\mathreat{Q} \), abbiano definito \(\alpha^{\mu} = (\alpha^{\mu})^{\mu}. \) \(\alpha^{\mu} \). Vale che · (at) m= (am) n. Infatti, ((at) n= (at) m= am · Per koln, at = at. Infatti, (ati) en = (ati) = (ati) = at. Siano a.be(0,00), r.seQ. () $a^{r+s} = a^{r} \cdot a^{s} \cdot 2$) $(ab)^{r} = a^{r}b^{r} \cdot 3$) $(a^{r})^{s} = a^{r}s \cdot 4$) $a^{r} = a^{r} \cdot 5$ 5) $a^{r} > 0$, $a^{0} = 1$, $a^{r} = 1$, $a^{r} > 1$ se a > 1 e a > 19) Sia at 1, ar = as. Allow ras. Det Sma>1. Y € (0,00). Y=P. di--dn-- aY = Sup { aP. di--dn: neW}. P.d. - In ER, durine la cappiama. L'insterne è l'initata suporiurumente da att, un moto. Se O<a<| e > 0, si definise a"= (+) · se r < 0, a"= a-r · Se a= 1, a"=1. Si possono dimestrue 1)-9) anche per ae(0,00), relR.

AMI Lezione 8 Finzioni esponenziali, lugaritmonetriche 2025.10.08.
Función esponomiale.
Stano a >0, vell Abbiano definito av. Fressato a, possiono vedere x -> fr)=d'come una funzione su lR. Si dice una funzione exponenziale. Si ha che . 02 >0 per totto d' (D)
Fissato a, possiano vedere Y -> fa)=d'come una funziono su IP.
St dice una functione exponenziale.
Si ha che
· Qx > 0 per tutti x e IR.
· Se a > 1, d -> a> e strettamente crescente.
- Se a=(, x -> x= e custante.
· any = an. ay. · Se and per quality is bosiste at a company
· Qx+Y = Qx · QY. · Se a>1, per qualcague Spesiste x x.c. Qx > b. (por Archimede
Teo. L'immagine della funsione IR 3 x -> ax è (0,00), per a +1,
Genno). Sia Y G(0,∞). Poniamo A = {x ∈ R: Qx < y}.
A è limitato suporturmente e non vuoto. (axi) Metthamo l= sup A.
Vedrano che al=Y. Dimostriamo prev assurdo.
· Supportano $\alpha^{\ell} < \gamma$. Per un priccolo $\epsilon > 0$, $\alpha^{\epsilon} < \frac{\gamma}{\alpha^{\epsilon}}$. così,
alte Y, elts & A, contraddice l = sup A.
· Supportano at >y. Per un precolo £ >0, a < 2. cusi,
al-2>4, el-2 sarebbe un maggiorante di A minore di l, contraddisorure.
Det Si définisce, per a>l o aa<1, y Hologay come la funzione inversa la>17
di timat. Ossia, loga at = x.
Prop Siano a.b.x, ye(0,00), a+1+b. Allora,
(i) $\alpha^{\log_{2} 2} = \chi$.
(17) loga(24) = loga x + loga y.
$(\tilde{\eta})$ $\log_{\alpha}(\tilde{\chi}) = -\log_{\alpha}\chi$
(by) losa(x) = > losa x
(1) loga = logo x/loga a.
dim) (i) loga (alogar) = logar, per l'invettroità della funzione nuovosa.
(77) aloga(24) = 14 = alogat. alogat = aloga(244). per l'inhettrità di finsine espirazione.
(TTT) ((600 (x)) = = = (050 x)
(10) alogadi)= xr=(aloga)r= arlorat.

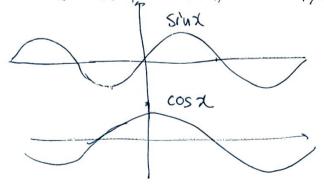
Exempt (og 3) = 3, logo avol = -4, logo f = 3.

Función trigunometrole.
Le función cos a, sina si definiscono usando il cerduio unitale, I done a è la lunghezza dell'arco, mentre (cosa, sina) è il punto definito dall'arco sul corchio.

For questa mandera, $\cos \alpha$, $\sin \alpha$ si possuro definite come funcioni su \mathbb{R} . $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ è definita per $\alpha \neq \frac{\pi}{2} + h \pi$, $h \in \mathbb{Z}$.

Valgeno, per x. Y & R.

- . | SINZ | 5 |, | COS 7 | 5 |.
- · [cosxl2+ |sinxl2=1 (Prtagora). Siscercore cosx=(cosxl2, sin2x=(sin)).
- sin(-x) = -sinx, cos(x) = ast.
- $\sin(\frac{\pi}{2}-x) = \cos x$.
- · SM (xty) = STUX COSY+ COSX Siny.
- , $cos(x+y) = cosx \cdot cosy Sinx \cdot siny$.
- . Sin(x-y) = Sinx cosy cost siny.
- . cos(x-y) = cosx cosy + sinx siny
- · 2002. sin/ = sin(x+y) sin(x-y)
- -- 2 sinx. siny = (OS(x+y) ws(x-y).



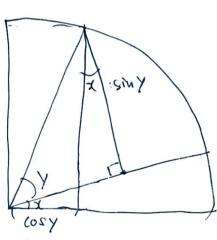
Escapt
$$Si'u(-\frac{\pi}{4}) = -\frac{\pi}{12}$$

$$\cos(\frac{\pi}{4}\pi) = \frac{\pi}{12}$$

$$\tan(\frac{\pi}{4}\pi) = 1.$$

$$\sin(\frac{\pi}{4}\pi) = 1.$$

$$\sin(\frac{\pi}{4}\pi) = 1.$$



(COSX, 542)

USIC

Luk

SIN(X+Y) = SINY. cosx+ Sin7. ccsy.

Det Six XCIR, $f: K \rightarrow IR$. St definisano le funsion. Su X: Il valore assoluto $ f (x):= f(x) $ La porte positiva $f+(x)= f(x) $ For definizione, $f-e$ una funzione nun negativa, Valgano $f(x)= f+(x)- f-(x) $, $ f (x)= f+(x)+ f-(x) $. Escepto $f(x)= f-x ^2$. Vale the $f(x) > 0$ quando $x \in [-1,1]$ Trasluzioni. Six $A \in IR$. Considerano $f(x):= f(x) + A$ definita su X . $(x,y) \in IR \times IR \times Y - f(x) + A$. Trasluzioni. Six $A \in IR$. Considerano $f(x):= f(x) + A$ definita su X . $(x,y) \in IR \times IR \times Y - f(x) + A$. Allora (x_0, y_0) si trova sul grafico di $f(x)$, 0 six $(x_0, y_0) \in IR \times IR \times Y - f(x_0)$. Six $B \in IR$. Considerano $f(x):= f(x) = f(x_0)$ definita su $X \in IR \times X + A + A + A + A + A \times X + A + A + A + A + A + A + A + A + A +$	AM 1 Lezione 9 Operazioni su funzioni, numoni complessi 2025. U. 09
It value assolute $ f (x):= f(x) $ • La porte positiva $f_+(x)= f(x) $ • La porte positiva $f_+(x)= f(x) $ • Se $f(x)>0$ Per definizione, f è una funzione nun negativa. Valgroso $f(x)= f_+(x)-f(x) $, $ f _+(x)= f_+(x)+ f(x) $. Escopio $f(x)= f x $. Valle the $f(x)>0$ quando $x\in[f_+,f]$ $f(x)= f x $ Valle the $f(x)>0$ quando $f(x)= f x $. Ricordonamo ci che, per una funzione $f(x)= f x $, if frafico è $f(x)= f x $. Praslazione Sira A-IR. (ausidoriano $f(x):= f x $) $f(x)= f x $ definita $f(x)= f x $. ($f(x)= f x $). Allora ($f(x)= f x $) $f(x)= f x $ for $f(x)= f x $. Dunque $f(x)= f x $ for $f(x)= f x $ definita $f(x)= f x $. Sira $f(x)= f x $ for $f(x)= f x $ definita $f(x)= f x $. Sira $f(x)= f x $ for $f(x)= f x $ definita $f(x)= f x $. Sira $f(x)= f x $ for $f(x)= f x $ definita $f(x)= f x $. Sira $f(x)= f x $ for $f(x)= f x $ definita $f(x)= f x $.	Operazioni car funzioni
· La porte positiva $J_+(x) = \int f(x)$ se $f(x) \ge 0$ negativa $J(x) = \int 0$ se $f(x) > 0$ Por definizione, J è una funzione nun negativa. Valgruo J (x) = J_+ (x) - J (x), J (x) = J_+ (x) + J (x). Escupio J (x) = J_+ (x) - J (x), J (x) = J_+ (x) + J (x). Escupio J (x) = J (x) Viale che J (x) J (x) J (x) = J (x) + J (x) = J (x) + J (x) = J (x) + J (x) =	Det Sia XCIR, f: X-> IR. Si definisano le fansioni. Su X: · Il valore assoluto f (x):= f(x)
Vor definizione, $f(x) = f(x) - f(x)$, $f(x) = f(x) + f(x)$. Escupio $f(x) = f(x) - f(x)$, $f(x) = f(x) + f(x)$. Escupio $f(x) = f(x) - f(x)$, $f(x) = f(x) + f(x)$. Ricordianno ci che, per unu funzione $f(x) = f(x) + f(x)$, il grafico è $f(x) = f(x) + f(x)$. Traslazioni Siru A-IR. (cusideriano $f(x) := f(x) + f(x) + f(x)$, ossia, $f(x) = f(x) + f(x)$. Supponianno che $f(x) = f(x) + f(x) + f(x)$, ossia, $f(x) = f(x) + f(x) + f(x)$. Allura $f(x) = f(x) + f(x) + f(x) + f(x) + f(x) + f(x) + f(x)$. Dunque $f(x) = f(x) + f(x)$. Sira $f(x) = f(x) = f(x) + f(x)$	La porte positiva $f_{+}(x) = \int f(x)$ se $f(x) \ge 0$ hegativa $f_{-}(x) = \int 0$ se $f(x) > 0$
Ricordonnoci che, por una funzione $f: X \rightarrow IR$, il grafico è $\{(z_1y) \in IR^{\perp}IR^{\perp}: Y = f(z_1)\}$. Traslazioni Sira A \in IR. (considerizare $f(z):=f(z_1)+A$ definita su X . $\{(x_1y) \in IR^{\perp}IR^{\perp}: Y = f(z_1)\}$. Sira A \in IR. (considerizare $f(z):=f(z_1)+A$ definita su X . $\{(x_1y) \in IR^{\perp}IR^{\perp}: Y = f(z_1)\}$. Sira A \in IR. (considerizare $f(z_1):=f(z_1)$) as $f(z_1):=f(z_1)$. Allura $f(z_1):=f(z_1)$ Sira $f(z_1):=f(z_1)$ S	Por definizione, J- è una funzione non negativa.
Ricordramo a' che, per una funsione $f: X \rightarrow IR$, il grafico è $\{(x,y) \in IR \times IR': Y = f(x)\}$. Traslazioni Sya $A \in IR$. Considerano $f(x) := f(x) + A$ definita su X . $\{(x,y) \in IR \times IR : Y = f(x) + A\}$ Supponiamo che (x_0, y_0) si trova sul grafico di $f(x)$, ossia, $y_0 = f(x)$. Allura $(x_0, y_0 + A)$ si trova sul grafico di $g(x)$. Infatti. $(x_0 + A) = f(x) + A = g(x_0)$. Dunque il grafico di g è quello di g 'alzoto" per g . Sia g e g	Escripto $f(x) = 1-x^2$. Vale the $f(x) \ge 0$ quando $x \in [-1, 1]$ $ f(x) _{x}$
Sta AEIR. Considerano $g(x) := f(x) + A$ definita sux . $g(x) = f(x) + A$ Supposition of the $g(x) = f(x) + A$ Supposition of $g(x) = f(x) + A$ Supposition of $g(x) = f(x) + A = g(x) + $	
Sin A = IR. Considerano g(x):= f(x) + A definita su y. \ \(\text{(xiy)} \in \text{IR} \text{ \text{(xiy)}} \in \text{IR} \text{(xiy)} = f(x) + A \\ Supposition of the (xo, yo) si thoua sul grafico di f(x), ossia, yo = f(xo). Allura (xo) yo+A) si thoua sul grafico di g(x). Infetti. Yo+A = f(xo)+A = g(xo). Dunque H grafico di g è quello di f 'alzato" per A. Sia B \in IR. Consideriumo g(x):= f(x-B) definita su X+B:= \(\text{(x+B)} \text{ x} \in \text{(x)} \) = \(\text{(x-B)} \) definita su X+B:= \(\text{(x+B)} \text{ x} \in \text{(x)} \) = \(\text{(x)} \) e sul arofico di f \(\text{(x)} = f(x) \)	Ricordonnoci che, per una funsione f: X > 1R, il grafico è [(z,y) \in 12 X = fa)].
Allura (Xg YotA) si twog sul grafies di gial. Infatti. YotA = f(xo)+A = g(xo). Dunque H grafies di g è quello di f "alzato" per A. Sia B \in IR. Consideriumo g(x) := f(x-B) definta su X+B := \left(x+B) \times \times \left(x) = \left(z=IR) \times \time	Sin AEIR. Considerano &(a):= f(a)+A definita sux. (n,y) eIR x IR (x=fa)+Al
Dunque H grafies di $g \in quello di f 'alzato" per A. Sta B \in \mathbb{R}. Consideramo f(x) := f(x-B) definta su X + B := \{x + B: x \in Y\} = \{z \in \mathbb{R}: \text{ existe } x \in X \text{ a.c. } z = x + B\}. Somewhat f(x) = \{x \in Y\} = \{x \in Y\} and f(x) = f(x)$	
Sta $B \in \mathbb{R}$. Considerant $f(x) := f(x-B)$ defints sy $X + B := \{x + B : x \in Y\} = \{z \in \mathbb{R} : \text{esiste } x \in X \text{ a.c. } z = x + B\}.$ Suppressed the (x, y, y) of sulf exortion of $f(x) = f(x)$	Dunque of grafies di g è quello di f "alzato" per A.
$X+B:=\{x+B:x\in X\}=\{z\in R: \text{ existe }x\in X=C,\ z=x+B\}.$	
Supplying the (7, Va) of sul grafter di + Va= +(1a)	Sta B \in IX. Wasidoniamo \(\frac{1}{2} \) := \frac{1}{2} - B) \(\text{defin to Sy} \) \(\text{Y + R := } \frac{1}{2} + R : Y \in Y \in E = R : R : R : R : R : R : R : R : R : R
Allura (20+B, 70) & sul grafico di g. Infatti, g(20+B) = f(20+B-B) = f(20) = Yo. Dunque H grafico di g è quello di f'spostato" per B orizzantalmate.	Supplying dis (7, Va) of sul grafting di + Va = +(1)
Dunque H grafico di g è quello di f'spostato" per B orizontalmente.	Allora (20+B. 70) & sul grafico di g. Tufatti,
	Dunque il grafico di g è quello di f'spostato" per B onsentalmente.

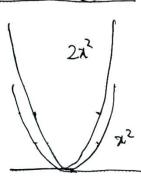
Piscalamento

Sia A «IR ansideriumo f(x) » A f(a) definito su X.

Supponiamo one (xo, yo) à sul grafico di S. Xo = f(xo).

Albura (xo, Ayo) à xul grafico di g. Ayo = Af(xo) = g(xo)

Dunque il grafico di g. è quello di f "viscalato" verticalmente per A.



Sta $A \neq 0$. Consideriumo $g(x) := f(\frac{x}{A})$ definite su 8.Ax : x ∈ X) = (24R: esiste x ∈ X x.c. z = Ax).

Suppositions to = f(20). Allura (Axu, yo) è sul graftes di q.

Infatti $Y_0 = f(x_0) = f(\frac{Ax_0}{A}) = g(Ax_0)$.

Dunque il grostico di g è quello di f "n'scaluto" orizzantalmente per A.

Si nota che, se A < 0, allera questa oporazione da il viscalaturato segui to dalla niflessione.

Le operazioni si possono compone. Se $f(x) = f(x-B)^2 + (1 \text{ allora e})$ etternita dal riscalamito per A seguito dalla traslazione (B,C).

Dunque il grafico rimane una paralada.

Numer complessi

Albrano visto die. se XER, har vale mai x2=-1, porché x20. B possibile considerane un sistema di numoni esteso in qui esiste un izz.c. i=-1
Formalmente, si considerano i simboli X+iY, dove X, Y EIR, e sono detti numeri complessi. Ossia, por ogni coppia (x,y) EIR? si ascocia x+iy, e uceversa. SIN C = { X+1Y: X, Y GIR}, Si sering Z=X+1Y.

Definiamo le seguenti operazioni.

 $(\chi_1 + i\gamma_1) + (\chi_2 + i\gamma_2) = (\chi_1 + \chi_2) + i(\chi_1 + \chi_2)$ (addresine). $(\chi_1 + i \gamma_1) \cdot (\chi_2 + i \gamma_2) = (\chi_1 \chi_2 - \gamma_1 \cdot \gamma_2) + i(\chi_1 \chi_2 + \chi_2 \gamma_1)$ [moltoprossime]. Per 2= X+N/E Q. X si chiama la parte vede. Y la parte immaginaria.

. Si dice the due Zi= xi+iYi, Zz= xz+iYz EC sum ugnali se e solo se di = 1/2 e 1/1 = 1/2. In questo modo, un punto 2=x+1/4 e (15) relevitifica cun (x,y) = 12, gemetricamente. Cè detto il prano complesso. Per XEIR, si identifica un x+10 c C. In questo modo, possiamo dire IR C C. Rin C è detto l'asse reale. Mortre [O+iY: YEIR] è detto (asse immaginario.

Si considera 0+ii. Si ha $(0+1)i^2=(0-1)+i(0+0)=-1$. In questo souso, $2^2=-1$.