Assignment 5: solutions

Q01

Calculate the series $\sum_{k=1}^{\infty} \frac{5}{3^k}$.

Solution We know that $\sum_{k=1}^{n} a^k = \frac{a-a^{n+1}}{1-a}$, so for |a| < 1 we have $\sum_{k=1}^{\infty} a^k = \frac{1}{1-a}$. Here with $a = \frac{1}{3}$

$$\sum_{k=1}^{\infty} \frac{5}{3^k} = 5 \sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^k = 5 \cdot \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{5}{2}.$$

Q02

Determine for which x the series $\sum_{k=1}^{\infty} \left(\frac{x}{3}\right)^k$ converges.

Solution By the root test, $\left(\left(\frac{|x|}{3}\right)^n\right)^{\frac{1}{n}} = \frac{|x|}{3}$.

If $\frac{|x|}{3} < 1$, then the original series $\sum_{k=1}^{\infty} \left(\frac{x}{3}\right)^k$ converges absolutely. This happenes if and only if -3 < x < 3. If $\frac{|x|}{3} > 1$, it diverges. If $\frac{|x|}{3} = 1$, so x = -3, 3, the series is either $\sum_k 1^k$ or $\sum_k (-1)^k$ and

they are not convergent.

Q03

Determine for which x the series $\sum_{k=1}^{\infty} \frac{1}{k^{x}+1}$ converges.

Solution Let us consider the case x > 0. Then $\frac{k^x+1}{k^x} \to 1$ as $k \to \infty$, and we know that $\sum_{k=1}^{\infty} \frac{1}{k^x}$ converges if and only if x > 1. For $x \le 0$, $\frac{1}{k^x+1} > \frac{1}{2}$, so it diverges.

Q04

Calculate $(1 + i\sqrt{3})^5$.

Solution Note that $(1+i\sqrt{3}) = 2(\frac{1}{2}+i\frac{\sqrt{3}}{2}) = 2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})$. Thus $(1+i\sqrt{3})^5 = 2^5(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}) = 32(\frac{1}{2}-i\frac{\sqrt{3}}{2}) = 16 - i16\sqrt{3}$.

Q05

Calculate $\left(-\frac{\sqrt{3}}{2}+\frac{1}{2}\right)^{\frac{1}{5}}$, where both the real and the imaginary parts are positive.

Solution Note that $\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}\right) = \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$. Thus $\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}\right)^{\frac{1}{5}} = \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \frac{5\pi}{6}$ $\frac{\sqrt{3}}{2} + i\frac{1}{2}.$

Q06

Find a general solution of the differential equation y''(x) + 2y'(x) + 5y(x) = 0.

Solution Consider the algebraic equation $z^2+2z+5=0$, and this has the solutions $z=-1\pm 2i$. So in this case a general solution is

$$y(x) = C_1 e^{-x} \cos(2x) + C_2 e^{-1} \sin(2x)$$

Q07

Find a general solution of the differential equation $y'(x) = xy(x)^2$ and y(0) = 1.

Solution This is a separable differential equation. We can write it as

$$\frac{y'(x)}{y(x)^2} = x,$$

and by integrating the both sides,

$$-\frac{1}{y(x)} = \frac{x^2}{2} + C,$$
$$y(x) = -\frac{1}{\frac{x^2}{2} + C}.$$

or

With y(0) = 1, we should have $-\frac{1}{\frac{0^2}{2}+C} = 1$, thus C = -1 and

$$y(x) = -\frac{1}{\frac{x^2}{2} - 1} = \frac{-2}{x^2 - 2}.$$