Assignment 1: solutions

Q01

Let $A = \{0, 1, 2, 3, 4, 6, 7\}, B = \{n \in \mathbb{Z} : \text{there is } m \in \mathbb{Z} \text{ such that } n = 2m\}$. Determine the elements of $A \cup B$ and $A \cap B$ in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

Solution *B* is the set of even numbers, that is, $B = \{\dots, -4, -2, 0, 2, 4, 6, 8, 10, \dots\}$.

 $A \cup B$ is the union, the set that contains the elements of A and B and nothing else. Thus, in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A \cup B$ contains 0, 1, 2, 3, 4, 6, 7, 8.

 $A \cap B$ is the intersection, the set that contains the elements that belong both to A and B and nothing else. Thus, in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A \cup B$ contains 0, 2, 4, 6.

Q02

Let $A = \{x \in \mathbb{R} : x^2 - 6x + 8 > 0\}$. Write A as a union of intervals.

Solution The condition for *A* can be written as follows:

 $x^{2} - 6x + 8 > 0$ $\Leftrightarrow (x - 2)(x - 4) > 0$ $\Leftrightarrow (x - 2 > 0 \text{ and } x - 4 > 0) \text{ or } (x - 2 < 0 \text{ and } x - 4 < 0)$ $\Leftrightarrow (x > 2 \text{ and } x > 4) \text{ or } (x < 2 \text{ and } x < 4)$ $\Leftrightarrow (x > 4) \text{ or } (x < 2)$ $\Leftrightarrow x \in (-\infty, 2) \cup (4, \infty)$

Q03

Let $A = \{x \in \mathbb{R} : x^3 - x^2 - 2x > 0\}$. Write A as a union of intervals:

Solution The condition for *A* can be written as follows:

$$x^{3} - x^{2} - 2x > 0$$

$$\Leftrightarrow (x+1)x(x-2) > 0$$

One can proceed as before, but it is more convenient to consider the following cases:

- x < -1. Then (x+1)x(x-2) < 0, so x does not belong to A.
- x = -1. Then (x + 1)x(x 2) = 0, so x does not belong to A.
- -1 < x < 0. Then (x+1)x(x-2) > 0, so x belongs to A.
- x = 0. Then (x + 1)x(x 2) = 0, so x does not belong to A.
- 0 < x < 2. Then (x+1)x(x-2) < 0, so x does not belong to A.
- x = 2. Then (x + 1)x(x 2) = 0, so x does not belong to A.
- 2 < x. Then (x+1)x(x-2) > 0, so x belongs to A.

Altogether, we have $A = (-1, 0) \cup (2, \infty)$.

Figure 1: Solution to Q2. $x \in A$ if and only if the graph of $x^3 - 6x - 8$ is above the x-axis.

Figure 2: Solution to Q3. $x \in A$ if and only if the graph of $x^3 - x^2 - 2x$ is above the x-axis.

Q04

Let $A = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2 + 1\}$. Choose all $(x,y) \in A$ among the following. (-2,0), (-2,3), (-1,2), (-1,4), (0,-2), (0,-1), (1,2), (1,3), (2,-2), (2,5), (3,0).

Solution For each of (x, y), one should chech whether $y = x^1 + 1$ holds or not. The answer is (-1, 2), (1, 2), (2, 5).

Q05

Let $A = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y < x^3 - 1\}$. Choose all $(x,y) \in A$ among the following. (-2,0), (-2,3), (-1,2), (-1,4), (0,-2), (0,-1), (1,2), (1,3), (2,-2), (2,5), (3,0).

Solution For each of (x, y), one should chech whether $y < x^3 - 1$ holds or not. The answer is (0, -2), (2, -2), (2, 5), (3, 0).

Q06

Let $A = \{x \in \mathbb{R} : x^3 - x^2 - 2x > 0\}$. Determine whether A is bounded below or above. Determine inf A (if it exists).

Solution This is the same set as in Q03, and we know that $A = (-1,0) \cup (2,\infty)$. This is bounded below, for example, by -1. But it is not bounded above. -1 is $\inf A$, because for any number x > -1, there is a number a such that -1 < a < x and $a \in (-1,0) \subset A$.

Figure 3: Solution to Q4. One should pick the points on the graph of $y = x^2 + 1$.

Figure 4: Solution to Q5. One should pick the points below the graph of $y = x^3 - 1$.

Q07

Let $A = \{\sum_{k=1}^{n} (\frac{1}{2})^k \in \mathbb{R} : n \in \mathbb{N}\}$. Determine $\sup A = [a]$ and $\inf A = [b]$.

Solution We saw in the lecture that $\sum_{k=1}^{n} (\frac{1}{2})^{k} = \frac{\frac{1}{2}(1-(\frac{1}{2})^{n})}{1-\frac{1}{2}} = 1 - (\frac{1}{2})^{n}$. Therefore, $A = \{1 - (\frac{1}{2})^{n} : n \in \mathbb{N}\} = \{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \cdots\}$. The sequence $1 - (\frac{1}{2})^{n}$ is monotonically increasing and converges to 1. Therefore, $\ln A = \frac{1}{2}$, $\sup A = 1$.

Q08

Compute the sum. $\sum_{n=1}^{4} (n^2 + 1)$.

Solution This is

$$\sum_{n=1}^{4} (n^2 + 1) = (1^2 + 1) + (2^2 + 1) + (3^2 + 1) + (4^2 + 1) = 2 + 5 + 10 + 17 = 34.$$

Q09

Compute the product. $\prod_{n=1}^{3} (1 - \frac{1}{2^n})$.

Solution This is

$$\prod_{n=1}^{3} \left(1 - \frac{1}{2^n}\right) = \left(1 - \frac{1}{2^1}\right)\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{2^3}\right) = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{7}{8} = \frac{21}{64}$$

Q10

Expand $(2x+y)^4$

Solution Using $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ with a = 2x, b = y, n = 4, we get

$$(2x+y)^4 = \sum_{k=0}^4 \binom{4}{k} (2x)^k y^{n-k}$$

= $y^4 + 4 \cdot 2xy^3 + 6 \cdot (2x)^2 y^2 + 4(2x)^3 y + (2x)^4$
= $16x^4 + 32x^3y + 24x^2y^2 + 8xy^3 + y^4$.