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Abstract

We give an overview of mathematical approaches to quantum field theory. We start
with some preliminaries on von Neumann algebras, the Tomita-Takesaki modular theory
and the Minkowski space. We present the Araki-Haag-Kaster axioms and prove some
consequences. As a first example, we construct the two-dimensional massive bosonic and
fermionic free field nets. We discuss the Bisognano-Wichmann property, the modular
nuclearity condition and the split property, and show that the two-dimensional massive
free fermionic net satisfies modular nuclearity. As a consequence, we construct a AHK
new net, which turns out to be the massive Ising model. We also briefly discuss a
construction of a class of interacting models on the two-dimensional Minkowski space
and some advanced topics.

1 Lecture 1 (5/15 14:45). Overview

1.1 Classical/quantum physics

Quantum Field Theory (QFT) is a physical theory to describe elementary particles (electrons,
quarks (that constitute protons and neutrons), photons...): the standard model of elementary
particles is considered as the most precise theory of all the interactions except gravity. QFT
is also very useful in the study of critical phenomena in statistical mechanics and it captures
universal properties of condensed matter physics. On the other hand, the most realistic
models (the standard model of particle physics or its components, such as the Yang-Mills
theory) remain to be constructed mathematically.

At the classical level, the motion of particles is described by classical system (ordinary
differential equations). To study particles at atomic or subatomic scales, we need quantum
mechanics (Hilbert spaces, self-adjoint operators). More in general, we also need to consider
the change of the (background) fields. A field is a function of the configuration space,
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and it changes in time (partial differential equation). At atmic and subatomic scales, we
would also need to “quantize” the fields. Although we know what quantized fields should
be (Wightman/Osterwalder-Schrader/Araki-Haag-Kastler axioms), we do not have the most
important examples (the standard model, Quantum Electrodynamics, the Yang-Mills theories
in the 4 spacetime dimensions).

To be more specific, the Newton equation in Classical Mechanics, in its simplest form
where there is only one particle in a potential, is given by

m
d2

dt2
x(t) = −V ′(x(t)),

where m is the mass of the particle, x(t) is the position of the particle at time t and V (x)
is the potential energy at the position x. This is a specific form of the “F = ma” formula.
For a given initial condition, one can solve this ordinary differential equation and predict
the motion of the particle. It can be equivalently written in the Hamiltonian formalism,
where the equation of motion is given by dq

dt
= ∂H

∂p
= {H, p}, dp

dt
= −∂H

∂q
= {H, q}, where

H(p, q) = p2

2m
+ V (q) is the Hamiltonian of the system.

The simplest system in Quantum Mechanics is formulated on a Hilbert space H =
L2(R). Correspondingly to the previous classical system, its “quantization” is given by
the Schrödinger equation (with ℏ = 1)

i
∂

∂t
Ψ(t, x) =

[
1

2m
P 2 + V (Q)

]
Ψ(t, x),

where P = i ∂
∂x
, Q is the multiplication operator by x. Therefore, the system is given by this

partial differential equation. In the “Heisenberg picture”, where operators change in time
(instead of the states Ψ), the evolution of the system is equivalently given by the Heisen-
berg equation dQ

dt
(t) = i[H,Q(t)], dP

dt
(t) = i[H,P (t)], making the correspondence from the

classical mechanics more straightforward. The basic observables Q,P satisfy the canonical
commutation relation [Q,P ] = i.

There are important classical theories involving fields on the continuum, such as the
Electrodynamics, fluid mechanics, or General relativity. These theories are based a set of
partial differential equations (Maxwell’s equations, the Navier-Stokes equation or the Einstein
equation, respectively). As a simplest example, one may consider the non-linear Klein-
Gordon equation (

∂2

∂t2
−∆+m2

)
ϕ(t, x) = −V ′(ϕ(t, x))

This is a partial differential equation about a function ϕ(t, x). Informally, for each x, there
is a function ϕ(t, x) of t satisfying the equation of motion. In this sense, a field theory can
be seen as a classical mechanics with infinite degrees of freedom.

If we try to quantize the Klein-Gordon equation, formally ϕ(t, x) should be an operator for
each (t, x). Yet, if we impose the canonical commutation relations in analogy with quantum
mechanics (considering the Poisson brackets), it should read [ϕ(0, x), π(0, y)] = δ(x − y).
Therefore, ϕ(t, x) should be an operator-valued distribution, rather than an operator-valued
function.
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Yet, if ϕ(t, x) is a distribution, then the expression for the Hamiltonian is not straight-
forward:

H
?
=

∫
Rd−1

1

2
(π(0, x)2 + (∇ϕ(0, x))2 +m2ϕ(0, x)2 + V (ϕ(0, x)))dx

As ϕ(0, x) is an operator-valued distribution, the meaning of ϕ(0, x)2 is not clear. It turns out
that one can make sense of it by the so-called Wick product, but the potential term V (ϕ(0, x))
is even more problematic. This is the ultraviolet problem in QFT, and it is severer in higher
dimensions and with stronger interactions. The intergral over Rd−1 poses another, infrared
problem.

Classical mechanics

Cannonballs, planets, stars, galaxies...

Newton’s equation of motion

mẍ = F

Quantum mechanics

Atoms, molecules, metals...

The Schrödinger equation

d
dt
ψ = iHψ

“quantization”

Classical fields

Electromagnetism, gravitation...

Field equations

(e.g. ϕ4 theory, V (ϕ(x)) = ϕ(x)4)

(□+m2)ϕ(t, x) = −λϕ(t, x)3

Quantum field theory

Elementary particles

Quantized field equations?

?

quantization?

1.2 The status of mathematical quantum field theory

As we have seen, a quantum field should be an operator-valued distribution, a mathematical
object not easy to handle. Mathematicians started with the minimal requirements that a
quantum field satisfy. One such set of requirements are called the Wightman axioms (the
literature says that Wightman formulated them in 1950s but they are only published in 1964,
the first edition of [SW00]): they consist of Poincaré covariance, locality (Einstein causality),
positivity of energy and existence of vacuum (see below for the precise statements). There
is also an operator-algebraic formalism, called Haag-Kastler axioms (1964) [HK64], that
are representation-independend, or when we require that the operators are represented in
the vacuum Hilbert space, they are called Araki-Haag-Kastler axioms [Ara99]. We will be
mainly interested in the latter.

It is not difficult to show that these axioms are nonempty: in any spacetime dimension d,
there are so-called free fields. However, they represent particles that do not interact and hence
of no physical interest. The first interacting examples have been constructed in d = 1+ 1 by
Glimm-Jaffe in 1972 by the Hamiltonian method [GJ72].
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In 1975, Osterwalder and Schrader found a connection between Wightman fields and
statistical mechanics in the Euclidean space (the Osterwalder-Schrader axioms) [OS75]. As
statistical mechanics is concerned with (commutative) probability theory, therefore, it is more
tractable. Many interacting examples have been constructed in the Osterwalder-Schrader ax-
ioms (this research programme is referred to as Constructive QFT). There are corresponding
Wightman fields. Just to name a few, there have been constructed the Gross-Neveu model
and the sine-Gordon model in d = 1+ 1, the ϕ4

3-model (d = 2+ 1), the Abelian Higgs model
(d = 1 + 1, 2 + 1), see [Sum12] and the references therein.

Apart from the constructive QFT, there are also interesting QFT, called conformal field
theories. These models have a large symmetry group in d = 1+1 and been studied in an alge-
braic framework such as vertex operator algebras, and recently their Wightman counterparts
have been found [CKLW18, RTT22, AGT].

However, in the realistic dimension d = 1 + 3, no interacting QFT has been constructed.
The main reason why interacting QFTs are difficult in higher dimensions is that they suf-
fer from the UV divergence. Most recently, the triviality of the ϕ4

4-model has been proven
[ADC21]. Roughly speaking, one cannot construct interacting scalar ϕ4

4-model from lattice
approximation. Other models that are considered plausible for nontrivial construction are
the Yang-Mills theories. Constructing the Yang-Mills theories and proving the mass gap is
a Millemium problem. The most important theory, the standard model of particle physics,
contains some Yang-Mills theories and Quantum Electrodynamics and the Higgs particles.
Constructing the standard model is widely open. One can say that the mathematical defini-
tions of QFT are there, but examples are missing.

In these lectures, we present the AHK axioms. There are good reasons to study the
algebraic approach:

• one can consider various states and representations

• there are interesting relationships between the theory of operator algebras (in partic-
ular the Tomita-Takesaki modular theory) and physics such as the Lorentz group and
(relative) entropy

• theories can be defined on curved spacetimes

• some new examples have been constructed in the AHK axioms, using operator-algebraic
techniques

To exhibit some of these aspects, we will study the axioms, the simplest example (the free
field in d = 1+1), some algebraic and analytic properties of the free field and a construction
of interacting examples.

2 Lecture 2 (5/15). Preliminaries

We briefly review some basic mathematical ingredients needed for Algebraic Quantum Field
Theory. In quantum physics, observables are represented by self-adjoint operators on a
Hilbert space H. Here we consider “quantum fields” Φ(x), which should be an operator-
valued distribution: for any test function f on the spacetime, we have an (unbounded)
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operator ϕ(f) on H. In the so-called Wightman axioms, we consider such operator-valued
distributions. In Algebraic QFT, we are instead interested in operator algebras (either C∗-
or von Neumann) and the family of operator algebras should obey the so-called Araki-Haag-
Kastler axioms.

2.1 Operator algebras

Most material should be found in the books by Bratteli-Robinson [BR87, BR97] or those by
Takesaki [Tak02, Tak03] or by Strătilă-Zsidó [SZ79].

Let H be a (separable) Hilbert space. The set B(H) of bounded operators on H can be
equipped with the operator norm, defined by

∥x∥ = sup
ξ∈H,ξ ̸=0

∥xξ∥
∥ξ∥

.

Then it holds that ∥xy∥ ≤ ∥x∥∥y∥ and ∥x∗x∥ = ∥x∥2. The space B(H) is a C∗-algebra with
this norm.

Actually, we use other topologies on B(H) as well.

• The strong operator topology (SOT) is generated by open base of the form Ux,ξ,ϵ =
{y ∈ B(H) : ∥(y − x)ξ∥ < ϵ}, for x ∈ B(H), ξ ∈ H, ϵ > 0.

• The weak operator topology (WOT) is generated by open base of the form Ux,ξ,η,ϵ =
{y ∈ B(H) : |⟨η, (y − x)ξ⟩| < ϵ}, for x ∈ B(H), ξ, η ∈ H, ϵ > 0.

We denote the identity operator (on some Hilbert space) by 1. A von Neumann algebra
M on H is a ∗-subalgebra of B(H) such that 1 ∈ M and closed in WOT.

For a subset M ⊂ B(H), define the commutant of M by

M ′ = {x ∈ B(H) : [x, y] = 0 for all y ∈M}.

If M = M∗ (that is, x ∈ M if and only if x∗ ∈ M), then it is easy to see that M ′ is a von
Neumann algebra (that is, it is a ∗-algebra, contains 1 and closed in WOT).

A fundamental result is the following.

Theorem 2.1 (von Neumann’s bicommutant theorem). Let M ⊂ B(H) be a ∗-algebra,
1 ∈ M. The following are equivalent.

1. M is closed in WOT.

2. M is closed in SOT.

3. M = M′′.

The first two conditions are topological, while the last one is algebraic (the commutant
is defined only algebraically). This theorem is fundamental because it shows the interplay
between analysis and algebra.

A state φ on M is a linear functional M → C, φ(x∗x) ≥ 0 (positive) and φ(1) = 1
(normalized). Any state is automatically continuous in norm. If a state is in the norm-closure
of the set of WOT-continuous states, it is called a normal state.

A von Neumann algebra M is called a factor if M∩M′ = C1. A factor is classified into
three types.
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• Type I. M is isomorphic to B(K) for some Hilbert space K. There is a “trace” on M
which takes discrete values.

• Type II. There is a “trace” on M which takes continuous values.

• Type III. There is no trace. Any orthogonal projection p ∈ M is equivalent to 1 in
M, that is, there is u ∈ M such that u∗u = 1, uu∗ = p.

2.2 Review of von Neumann algebras and the Tomita-Takesaki
modular theory

Let H be a Hilbert space, M be a von Neumann algebra on H. A vector Ω ∈ H is said to
be cyclic for M if MΩ = H, and separating for M if there is no x ̸= 0, x ∈ M such that
xΩ = 0.

We have the following.

Lemma 2.2. Let M be a von Neumann algebra on H. A vector Ω is cyclic for M if and
only if it is separating for M′.

Let Ω be cyclic and separating for M on H. We define the map

S : MΩ ∋ xΩ 7−→ x∗Ω ∈ MΩ ⊂ H.

This is a well-defined (because Ω is separating) densely defined (because Ω is cyclic) operator
on H. It is actually closable, and we denote its closure with the same symbol S. It has the
polar decomposition J∆

1
2 . The main result of the Tomita-Takesaki modular theory is the

following.

Theorem 2.3 (Tomita). It holds that Ad∆it(M) = M, JMJ = M.

We call ∆ the modular operator, ∆it the modular group, J the modular conjuga-
tion and σM,Ω(x) = Ad∆it(x) on M the modular automorphism group.

We will need the following later [BBS01].

Lemma 2.4 (Borchers-Buchholz-Schroer). If Ψ ∈ Dom(∆
1
2 ), then there is a closed operator

F affliate with M such that Ψ = FΩ, SΨ = F ∗Ω.

Proof. Let Ψ be such a vector. As MΩ is a core for S, there is a sequence xn ∈ M such
that Ψ = limn xnΩ, SΨ = limn SxnΩ = limn x

∗
nΩ. We define the operator F defined on

M′Ω by FyΩ = yΨ = limn yxnΩ. It has an adjoint F ∗ defined on a dense domain M′Ω by
F ∗yΩ = ySΨ = limn yx

∗
nΩ. Thus F is closable.

It is clear that yF ⊂ Fy for any y ∈ M′. If Φ ∈ Dom(F ∗), then ⟨yΦ, FzΩ⟩ =
⟨Φ, y∗FzΩ⟩ = ⟨y∗SΨ, zΩ⟩, which shows that yΦ ∈ Dom(F ∗) and F ∗yΦ = y∗SΨ. Altogether,
F is affiliated with M.
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2.3 The Minkowski space and the Poincaré group

Next we introduce the geometry where our quantum field theories are defined. Let d ∈
N, d ≥ 1. The (1 + d)-dimensional Minkowski space is the space R1+d equipped with
the indefinite metric (x, y) = x0y0 −

∑d
j=1 xjyj, where x, y ∈ R1+d. The group of (affine)

transformations γ of R1+d that preserve the metric (that is, (γx, γy) = (x, y) for all x, y ∈
R1+d) is called the Poincaré group. We are mostly interested in the elements in the Poincaré
group that preserve also the time-orientation (orthochronous) and parity (proper). They form
a subgroup, denoted by P↑

+.
We say that two points x, y ∈ R1+d are

• spacelike separated if (x− y, x− y) < 0.

• lightlike separated if (x− y, x− y) = 0.

• timelike separated if (x− y, x− y) > 0.

x1

x0

timelike
lightlike

spacelike

O O′O′

Figure 1: Left:The Minkowski space and vectors x, separation from 0. Right: A region O
and its causal complement O′.

Let O ⊂ R1+d. We denote by O′ the causal complement, that is, the interior of the set
of all the points spacelike to O.

We have the decomposition P↑
+ = R1+d ⋊ L↑

+, where R1+d acts on R1+d by translations

and L↑
+ is the group of linear transformations of R1+d that preserve the metric. The group

L↑
+ is called the (proper orthochronous) Lorentz group, and is generated by the spacelike

rotations (the elements preserving the time component x0 and acting as the usual rotations
on (x1, · · ·xd)) and the Lorentz boosts, which mix the time and space components.

In the case d = 1, the Lorentz boosts have the following form

Λ(λ) =

(
coshλ sinhλ
sinhλ coshλ

)
, λ ∈ R.
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It is easy to check that this is a group homomorphism from R (as the additive group) into
the set of 2 × 2-matrices M(R, 2), therefore, we can identify the 1 + 1-dimensional (proper
orthochronous) Lorentz group with R, and denote its element by λ ∈ R. A generic element
in P↑

+ can be written as γ = (a, λ), and it acts on x ∈ M by Λ(λ)x + a, where Λ(λ)x is the
matrix multiplication.

Let H be a Hilbset space. A unitary representation of a group G is a map U : G →
U(H) (the group of unitary operators on H) such that U(γ1γ2) = U(γ1)U(γ2). We always
assume that such U are continuous from a natural topology on G into SOT on U(H).

If G = R and U is a unitary representation of R, then there is a “generator” H such that
U(t) = eitH (the Stone theorem). Using the spectral decomposition of H =

∫
R pdE(p), we

have U(t) = eitH =
∫
eitpdE(p).

If G = R1+d and U is a unitary representation of R1+d, then there is a projection-valued
measure E on R1+d (the dual of G, which in this case coicides with G itself) such that

U(x) =

∫
R1+d

ei(x,p)dE(p),

where (x, p) is the metric, but is considered as the coupling between the abelian group R1+d

and its continuous dual group R1+d. This is a generalization of the Stone theorem, known
as the SNAG theorem [BdlH20, Theorem 2.C.2]. The support of dE is referred to as the
spectrum of U .

A representation U is said to be irreducible if {U(γ) : γ ∈ G}′′ = B(H). Let m > 0.
An irreducible representation of P↑

+ is given on Hm = L2(R), and for Ψ ∈ Hm, the action is
given by

(Um(a, λ)Ψ)(θ) := ei(a,p(θ))Ψ(θ − λ),

where p(θ) = (m cosh θ,m sinh θ) ∈ R1+1.

Exercise: Show that Um is indeed a representation of P↑
+.

Exercise: Determine the spectrum of Um defined above.

3 Lecture 3 (5/16). The axioms

3.1 The Wightman axioms

Let us start with the most conservative set of axioms. A quantum theory should act on a
Hilbert space H and the symmetry group should be represented as unitary operators. By
the observation in Lecture 1, a quantum field ϕ should be an operator-valued tempered
distribution. This means that, for any Ψ1,Ψ2 in the “domain” of ϕ, the map S (R1+d) ∋
f 7→ ⟨Ψ1, ϕ(f)Ψ2⟩ is a tempered distribution. Moreover, there should be the distinguished
“vacuum” state in H that represents the physical state without particles. The quantum fields
should be characterized by the correlation functions, that are the values of their product in
the vacuum. In order to define correlation functions, we need to assume that the vacuum is
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in the domain D which is invariant under ϕ(f) for any f ∈ S (R1+d) (that is, ϕ(f)D ⊂ D).
For simplicity, we consider the scalar case, that is, there is only one field ϕ and we have
ϕ(f) ⊂ ϕ(f̄)∗. In particular, ϕ(f) is a symmetric operator if f is real.

A (scalar) Wightman field theory is (ϕ, U,Ω,D ⊂ H), where H is a Hilbert space, D
is a dense subspace in H, ϕ is an operator-valued distribution, U is a unitary representation
of P↑

+ such that U(γ)D = D for all γ ∈ P↑
+ and Ω ∈ D such that

(1) Locality. If f, g ∈ S (R1+d) such that supp f and supp g are spacelike separated, then
[ϕ(f), ϕ(g)] = 0 (on D).

(2) Covariance. For γ ∈ P↑
+, it holds that AdU(γ)(ϕ(f)) = ϕ(fγ), where fγ(x) = f(γ−1x).

(3) Positivity of energy. The restriction U |R1+d has the spectrum in V+, where V+ := {p ∈
R1+d : p0 > ∥p⊥∥} is the future light cone and p⊥ = (p1, · · · pd) ∈ Rd.

(4) Vacuum. For all γ ∈ P↑
+, U(γ)Ω = Ω and span{ϕ(f1) · · ·ϕ(fn)Ω : n ∈ N, fj ∈ S (R1+d)}

is dense in H.

If there is no confusion, we just call ϕ a Wightman field, without specifying U,Ω,D .

Remark 3.1. The Millenium problem asks to construct the quantum Yang-Mills theory in
the Wightman axioms, or a similarly strong framework (such as the Osterwalder-Schrader
axioms).

We are mainly interested in the operator-algebraic approach, the (Araki-)Haag-Kaster
axioms. Note, however, that many examples are first constructed in the Wightman axioms,
then corresponding operator algebras are constructed. We will see how this can be done.

By the closed graph theorem, one can show that f 7→ ϕ(f)Ψ is continuous in norm for
any fixed Ψ ∈ D : we assume that ϕ is a tempered distribution defined on S (R1+d) which
is an F-space and the range of the map ϕ(f)Ψ is a Hilbert space. If fn → 0, ϕ(fn)Ψ → Φ,
then ⟨Ψ1, ϕ(fn)Ψ⟩ → ⟨Ψ1,Φ⟩, but the former is a tempered distribution, thus must tend to
0. This implies that ⟨Ψ1,Φ⟩ = 0 for any Ψ1 ∈ D , and as D is dense, Φ = 0. Then we can
apply the closed graph theorem [Rud91, Theorem 2.15].

3.2 The Araki-Haag-Kastler axioms

An Araki-Haag-Kastler net is (A, U,Ω,H), where H is a Hilbert space, A is a map
from bounded open regions O = {O ⊂ R1+d : O is open and bounded} into the set of von
Neumann algebras on H, U is a unitary representation of P↑

+ and Ω ∈ H such that

(1) Isotony. If O1 ⊂ O2, then A(O1) ⊂ A(O2).

(2) Locality. If O1, O2 are spacelike separated, then A(O1) and A(O2) commute.

(3) Covariance. For γ ∈ P↑
+ and O ∈ O, AdU(γ)(A(O)) = A(gO).

(4) Positivity of energy. The restriction U |R1+d has the spectrum in V+.

(5) Vacuum. For all γ ∈ P↑
+, U(γ)Ω = Ω and

⋃
O∈O A(O)Ω is dense in H.
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(6) Weak additivity. If O ⊂
⋃

j Oj, then A(O) ⊂
∨

j A(Oj), where
∨

denotes the von
Neumann algebra generated by the following set.

The term “net” is indeed a net from the set O into the set of von Neumann algebras on
H, preserving the order relations defined by inclusion. Isotony means that a larger region
corresponds to a larger algebra, and local algebras A(O) should be interpreted as the algebras
generated by observables that can be measured in the corresponding regions O.

As in the case of Wightman fields, we may callA an Araki-Haag-Kastler net if no confusion
arises.

Remark 3.2. When one wants to study the properties of the net of algebras that do not depend
on a particular (vacuum) representation, one can take local algebras to be C∗-algebras (rather
than von Neumann algebras) and do not require that the vacuum axiom and positivity of
energy (and replace the adjoint action by U(γ) by isomorphisms between local C∗-algebras).
Such a set of axioms is sometimes referred to as the Haag-Kastler axioms.

3.3 From Wightman to AHK

Let ϕ be a Wightman field. We would like to define

A(O) = {eiϕ(f) : supp f ⊂ O}′′.

However, it is not automatic that ϕ(f) is (essentially) self-adjoint, and the meaning of eiϕ(f)

is unclear. One might try to define using the polar decomposition A(O) = {U, eitA : UA =
ϕ(f), supp f ⊂ O, t ∈ R}′′. Then it is easy to show isotony, covariance, positivity of energy
and cyclicity of vacuum, but locality and weak additivity do not follow easily.

We say that two symmetric operators commute on the domain D if D is invariant for
A,B and [A,B]Ψ = 0 for all Ψ ∈ D . We say that two self-adjoint operators A,B commute
strongly if eisA and eitB commute for all t, s ∈ R. This is equivalent to the condition that
all spectral projections of A and B commute.

The main problem is that commutation on a domain does not imply strong commutation.
Indeed, there are self-adjoint operators A,B, defined on a common invariant domain such
that [A,B]Ψ = 0 for any vector Ψ in the common invariant domain, yet A,B do not strongly
commute (Nelson’s counterexample [Nel59, Section 10][RS80, Section VIII.5]). This means
that, even if ϕ satisfies locality in the Wightman sense, we cannot infer that its exponentials
eiϕ(f), eiϕ(g) commute even if supp f and supp g are spacelike.

The following is due to [GJ87, Theorem 19.4.4], with a slight variation on the assumptions
[AGT, Theorem A.2].

Theorem 3.3 (Glimm-Jaffe). The following hold.

• Let H be a positive self-adjoint operator, D a core of H and A a symmetric operator
on D such that AD ⊂ D and suppose that ∥AΨ∥ ≤ C∥(H + 1)Ψ∥, ∥[H,A]Ψ∥ ≤
C∥(H +1)Ψ∥, ∥[H, [H,A]]Ψ∥ ≤ C∥(H +1)Ψ∥ for Ψ ∈ Dom(H). Then A is essentially
self-adjoint on any core of H.

• Let H,A as above and assume that B satisfies parallel assumptions as A, and suppose
that the operators

10



– A, δ(A) = i[H,A], δ2(A) = −[H, [H,A]], δ3(A) = −i[H, [H, [H,A]]]
– B, δ(B) = i[H,B], δ2(B) = −[H, [H,B]], δ3(B) = −i[H, [H, [H,B]]]

are defined on D and

– ∥AΨ∥ ≤ C∥(H + 1)Ψ∥, ∥δk(A)Ψ∥ ≤ C∥(H + 1)Ψ∥, k = 1, 2, 3

– ∥BΨ∥ ≤ C∥(H + 1)Ψ∥, ∥δk(B)Ψ∥ ≤ C∥(H + 1)Ψ∥, k = 1, 2, 3

Suppose furthermore that AB = BA on D . Then A,B are essentially self-adjoint on
any core of H and their closures commute strongly.

Let (ϕ, U,Ω) be a Wightman field theory and H be the generator of the one-parameter
group U((t, 0, · · · 0), 0) (called the Hamiltonian). We say that ϕ satisfies a linear energy
bound if for any f ∈ S (R1+d) there is Cf > 0 such that ∥ϕ(f)Ψ∥ ≤ Cf∥(H + 1)Ψ∥ for all
Ψ ∈ D .

We need the following [RS80, Theorem VIII.7].

Lemma 3.4. Let H be a self-adjoint operator on Dom(H), Ψ ∈ H. Ψ ∈ Dom(H) if and

only if eitHΨ−Ψ
t

converges (to iHΨ, a posteriori) as t→ 0.

Lemma 3.5. Assume that ϕ satisfies linear energy bounds. Then, for any f ∈ S (R1+d),
ϕ(f) preserves C∞(H), where C∞(H) =

⋂
n∈NDom(Hn), and [H,ϕ(f)] = iϕ(f ′).

Proof. Let Ψ ∈ Dom(H2) and f ∈ S (R1+d). We denote ft(x) = f(x− (t, 0, · · · , 0)), V (t) =
U((t, 0, · · · , 0), 0). By covariance, we have ϕ(ft)Ψ = V (t)ϕ(f)V (t)∗Ψ, or

V (t)∗ϕ(ft)Ψ = ϕ(f)V (t)∗Ψ. (1)

As for the right-hand side, note that∥∥∥∥ϕ(f)V (t)∗Ψ− ϕ(f)Ψ

t
− iϕ(f)HΨ

∥∥∥∥ ≤ Cf

∥∥∥∥(H + 1)
(V (t)∗ − 1)

t
Ψ− iHΨ

∥∥∥∥
= Cf

∥∥∥∥((V (t)∗ − 1)

t
− iH

)
(H + 1)Ψ

∥∥∥∥
therefore, as Ψ ∈ C∞(H), hence (H + 1)Ψ ∈ Dom(H) and we conclude that the derivative
of the right-hand side of (1) is iϕ(f)HΨ. As for the left-hand side,

lim
t→0

V (t)∗ϕ(ft)Ψ− ϕ(f)Ψ

t
= lim

t→0

(
V (t)∗ϕ(ft)Ψ− V (t)∗ϕ(f)Ψ

t
+
V (t)∗ϕ(f)Ψ− ϕ(f)Ψ

t

)
.

As the first term and the whole expression (which is equal to the right-hand side of (1)) con-
verge, the second term must converge. This implies that ϕ(f)Ψ ∈ Dom(H) and Hϕ(f)Ψ =
ϕ(f)HΨ + iϕ(f ′)Ψ. The last expression shows that, if Ψ ∈ Dom(Hn), then ϕ(f)Ψ ∈
Dom(Hn−1), by induction. Indeed, assume that ϕ(f)Ψ ∈ Dom(Hn−1) follows from Ψ ∈
Dom(Hn). Then if Ψ ∈ Dom(Hn+1), then HΨ ∈ Dom(Hn) and by induction Hϕ(f)Ψ =
ϕ(f)HΨ+ iϕ(f ′)Ψ ∈ Dom(Hn−1), hence ϕ(f)Ψ ∈ Dom(Hn).
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The following is [RS80, Theorem VIII.11], whose proof is essentially contained in the
proof of Stone’s theorem [RS80, Theorem VIII.8].

Lemma 3.6. Let V (t) be a unitary representation of R (continuous in SOT) and D be a
dense domain, V (t)D = D , and assume that vectors in D can be differentiated, that is,

limt→0
V (t)−1

t
Ψ converges for any Ψ ∈ D . Then the generator H of V (t) = eitH is essentially

self-adjoint on D .

By this Lemma, span{ϕ(f1) · · ·ϕ(fn)Ω : n ∈ N, fj ∈ S (R1+d)} is a core of H. Thus so is
the domain D of the Wightman field theory.

The following is known as the Trotter product formula [RS80, Theorem VIII.31], see also
the reference therein.

Lemma 3.7. Let A,B two self-adjoint operators, A+B essentially self-adjoint on Dom(A)∩
Dom(B). Then ei(A+B) = limn→∞(eiA/neiB/n)n.

Theorem 3.8. Assume that a Wightman field theory (ϕ, U,Ω) satisfies linear energy bounds.
Then (A, U,Ω) constructed above satisfies the AHK axioms.

Proof. Locality is immediate by Theorem 3.3, by extending the locality of ϕ to C∞(H) by
linear energy bounds (the conclusion that ϕ(f) is essentially self-adjoint on any core of H
follows without the commutation of ϕ(f), ϕ(g)). As for weak additivity, we may assume that
A(O) = {eiϕ(f) : supp f ⊂ O, supp f compact}′′. If O ⊂

⋃
j Oj, supp g ⊂ O compact, we can

find finitely many gj such that supp gj ⊂ Oj and g =
∑
gj. Therefore, it is enought to show

that O ⊂ O1 ∪O2 implies A(O) ⊂ A(O1) ∨ A(O2).
Let g = g1 + g2, supp gj ⊂ Oj. By linear energy bounds, ϕ(g1), ϕ(g2), ϕ(g) are essen-

tially self-adjoint on Dom(H). By the Trotter formula, eiϕ(g) = limn→∞(eiϕ(g1)/neiϕ(g2)/n)n ∈
A(O1) ∨ A(O2).

This is a typical case where one can associate a AHK net to a Wightman field. The
P(ϕ)2-models, the ϕ4

3-model, the Yukawa model in d = 1+1 have been shown to satisfy the
AHK axioms [Sum12]

3.4 The Reeh-Schlieder property

Let (A, U,Ω) be an AHK net. An important consequence of the axioms is the Reeh-
Schlieder property, which allows one to apply the Tomita-Takesaki modular theory to
local algebras and the vacuum vector.

Theorem 3.9 (Reeh, Schlieder). For any O ⊂ R1+d open, Ω is cyclic for A(O). If O′ is
nonempty, then Ω is cyclic for A(O).

Proof. Let us show the cyclicity of Ω for A(O), O open. Let Ψ ∈ (A(O)Ω)⊥ and we prove
that Ψ = 0.

Let O an open whose closure is included in O. Take x ∈ A(O). Then for a ∈ R1+d

sufficiently small, AdU(a, 0)(x) ⊂ A(O) and hence

⟨Ψ, U(a, 0)Ω⟩ = ⟨Ψ, U(a, 0)xU(a, 0)∗Ω⟩ = 0.

12



Let a be a lightlike vector with a0 > 0. For t ∈ R, we introduce

f(t) = ⟨Ψ, U(ta, 0)xΩ⟩,

and it vanishes for t small.
On the other hand, recall that

U(a, 0) =

∫
ei(a,p)dE(p)

and the support of dE is contained in V+. As a is lightlike and a0 > 0, the map t 7→ i(ta, p) ∈
C can be analytically extended to C, and if ℑt > 0, then ℜ(i(ta, p)) < 0. This implies that

t 7−→ ⟨Ψ, U(ta, 0)xΩ⟩ =
∫
ei(ta,p)⟨Ψ, dE(p)xΩ⟩

has a bounded analytic continuation to ℑt > 0. But f(t) = 0 for t ∈ R small, hence it must
vanish for all ℑt > 0, and by continuity, for all t ∈ R.

This holds for any lightlike vector a, hence by repeating this argument, we obtain that
⟨Ψ, U(a, 0)xΩ⟩ = 0 for any a ∈ R1+d.

The same argument can be applied to ⟨Ψ, U(an, 0)xnU(an−1, 0)xn−1 · · ·U(a1, 0)x1Ω⟩ sep-
arately for aj, and we conclude that such a scalar product vanishes for any aj ∈ R1+d. By
weak additivity, for any D ⊂

⋃
j O + aj, we obtain that ⟨Ψ, xΩ⟩ = 0 for x ∈ A(D). By the

cyclicity of Ω for
⋃

D⊂R1+d A(D), Ψ = 0.
The second part follows from the first part immediately.

It is a difficult question under which reasonable conditions one can construct Wightman
fields starting with an AHK net, see [Bos05, FJ96].

4 Lecture 4 (5/17). The massive free fields

In this Section, we introduce the simplest examples satisfying the Wightman axioms and the
AHK axioms: the massive free fields and their associated nets. For simplicity, we restrict
to the case d = 1, but the results on the bosonic free fields can be generalized to arbitrary
dimensions. We also discuss the massive free fermions. We follow [Lec03].

4.1 One-particle space

Let m > 0, called the mass of the scalar particle. We take Hm = L2(R, dθ) as before. Let Um

be the representation of the Poincaré group P↑
+ = R1+1 ⋊R, as we constructed in Section 2,

given by

(Um(a, λ)Ψ)(θ) = ei(a,p(θ))Ψ(θ − λ),

where p(θ) = (m cosh θ,m sinh θ) ∈ R1+1. This has positive energy, as we have seen (as an
exercise). The spectrum is Ωm = {(m cosh θ,m sinh θ) : θ ∈ R} ⊂ V+ ⊂ R1+1.
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V+

p1

p0

Ωm

Figure 2: The spectrum of Um, called the mass shell, included in V+.

4.2 Second quantization (general)

Let K be a Hilbert space and consider its n-th tensor product K⊗n. There is a natural acton
π+
n of the symmetric group Sn by permutation of the components:

π+
n (σ)Ψ1 ⊗ · · · ⊗Ψn = Ψσ−1(1) ⊗ · · · ⊗Ψσ−1(n).

Put Pn = 1
n!

∑
σ∈Sn

π+
n (σ), the orthogonal projection onto the symmetric n-particle subspace.

We introduce F+(K) =
⊕

n∈N PnK⊗n, where we make the convention that 0 ∈ N and K⊗0 =
CΩ and Ω is just a symbolic basis of a one-dimensional complex vector space, called the
(Fock) vacuum. This F+(K) is called the Bosonic Fock space (based on K),

Let ξ ∈ K. We define the creation and annihilation operators on F+(K) as follows: for
Φn ∈ PnK⊗n,

a†(ξ)Φn =
√
n+ 1Pn+1(ξ ⊗ Φn),

a(ξ) = a†(ξ)∗.

Note that a† is linear in ξ, while a(ξ) is antilinear in ξ.

Exercise: Show that a†, a satisfy

[a†(ξ), a†(η)] = 0, [a(ξ), a(η)] = 0, [a(ξ), a†(η)] = ⟨ξ, η⟩,

where our convention of the inner product is that it is linear in the second argument.
For a unitary operator U on K, we define

Γ(U) :=
⊕
n∈N

PnU
⊗n.

It is straightforward to see that Γ(U) is a unitary operator F+(K). Moreover, if U is a unitary
representation of a group G on K, then Γ(U)(γ) := Γ(U(γ)) is a unitary representation of
G on F+(K). They are called the (multiplicative) second quantization of U . For a
self-adjoint operator A, we define the (additive) second quantization by

dΓ(A) =
⊕
n∈N

n∑
k=1

1⊗ · · · ⊗ 1⊗ A
k-th

⊗ 1 · · · ⊗ 1,

where the n = 0 case the sum gives 0.
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Exercise: Show that AdΓ(U)(a†(ξ)) = a†(Uξ).

Exercise: Show that, if U is a representation of R1+1, then sp Γ(U) is contained in the
closure of the closure of the set additively generated by spU . If A is a self-adjoint operator,
it holds that eidΓ(A) = Γ(eiA).

4.3 Free massive scalar field

Now we define the free quantum field satisfying the Wightman axioms. Here we fix m > 0
and take K = Hm.

For f ∈ S (R1+1), we define

f+(θ) =

∫
ei(p(θ),x)f(x)d2x.

It is easy to show that f+(θ) ∈ Hm = L2(R, dθ), and furthermore, the map f 7→ f+ is an
L2-valued distribution. Considering p(θ) = (m cosh θ,m sinh θ) on the mass shell Ωm, this is
simply the restriction of the Fourier transform of f to Ω. Then we define

ϕ(f) = a†(f+) + a(f+).

This is real linear in f , defined on D =
⊕

n∈N,alg PnH⊗n
m .

Furthermore, for γ ∈ P↑
+, let U(γ) = Γ(Um(γ)). As the vacuum vector, we choose

Ω ∈ F+(Hm).
We need a technical lemma, see [Tan16, Proposition A.1]: for S0,π = R + i(0, π), we

consider

H2(S0,π) = {Ψ ∈ L2(R, dθ) : Ψ continues analytically to S0,π, ∥Ψ(·+ iλ)∥L2 ≤ C}.

Lemma 4.1. If ξ, η ∈ H2(S0,π), then the Cauchy theorem holds:
∫
ξ(θ)η(θ)dθ =

∫
ξ(θ +

iπ)η(θ + iπ)dθ.

Theorem 4.2. ϕ is a Wightman field on R1+1.

Proof. It is clear that ϕ is an operator-valued distribution with an invariant domain D and
U(γ)D = D .

Let us first show covariance. We have

(Um(a, λ)f
+)(θ) = ei(p(θ),a)

∫
ei(p(θ−λ),x)f(x)d2x.

Using

p(θ − λ) =

(
m cosh(θ − λ)
m sinh(θ − λ)

)
= m

(
cosh θ coshλ− sinh θ sinhλ
sinh θ coshλ− cosh θ sinhλ

)
=

(
coshλ sinh(−λ)

sinh(−λ) coshλ

)(
m cosh θ
m sinh θ

)
= Λ(−λ)p(θ),
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we have

(Um(a, λ)f
+)(θ) = ei(p(θ),a)

∫
ei(Λ(−λ)p(θ),x)f(x)d2x

= ei(p(θ),a)
∫
ei(p(θ),Λ(λ)x)f(x)d2x

= ei(p(θ),a)
∫
ei(p(θ),x)f(Λ(−λ)x)d2x

=

∫
ei(p(θ),x+a)f(Λ(−λ)x)d2x

=

∫
ei(p(θ),x)f(Λ(−λ)(x− a))d2x,

where we used the translation-invariance of the integral, the invariance of the Lorentz metric
and the fact that det Λ(−λ) = 1. This implies Um(a, λ)f

+ = (f(a,λ))
+.

Next we prove locality. By covariance, we may assume that supp f ⊂ WL, supp g ⊂ WR,
where

WL := {(a0, a1) ∈ R1+1 : |a0| ≤ −a1}WR := {(a0, a1) ∈ R1+1 : |a0| ≤ a1} = W ′
L.

x1

x0

WRWL

Figure 3: Letf and right wedges WL,WR.

As we know that the commutators between a† and those between a vanish, to know the
commutator [ϕ(f), ϕ(g)], we only have fo calculate [a†(f+), a(g+)] and [a(f+), a†(g+)]. Note
that

p(θ + iζ) = (m(cosh θ cosh(iζ) + sinh θ sinh(iζ)),m(sinh θ cosh(iζ) + cosh θ sinh(iζ)))

= (m(cosh θ cos(ζ) + i sinh θ sin(ζ)),m(sinh θ cos(ζ) + i cosh θ sin(ζ))),

therefore, its imaginary part m(sinh θ sin(ζ), cosh θ sin(ζ)) is in WR if 0 < ζ < π and p(θ +
iπ) = −p(θ) = −p(θ − iπ).

16



We have [a†(f+), a(g+)] = −
∫
f+(θ)g+(θ)dθ. As (x, y) > 0 if x ∈ WL, y ∈ WR, i(p(θ +

iζ), x) has negative real part, and therefore,

f+(θ + iζ) =

∫
ei(p(θ+iζ,x)f(x)d2x

is continuous on S0,π (as for the boundary, one can just use the Lebesgue dominated con-
vergence theorem), has an analytic continuation to 0 < ℑζ < π, and is rapidly decreasing
for each such π, and it holds that f+(θ + iπ) = f+(−θ) = f+(θ). Then by Lemma A.1,

f+ ∈ H2(S0,π). Similarly, g+(θ) has an analytic continuation to 0 < ℑζ < π (ζ 7→ g+(ζ̄) and

g+(θ + iπ) = g+(−θ) = g+(θ). Therefore, we can apply the Cauchy theorem, and

[a†(f+), a(g+)] = −
∫
f+(θ)g+(θ)dθ

= −
∫
f+(θ + iπ)g+(θ − iπ)dθ

= −
∫
f+(θ)g+(θ)dθ = −[a(f+), a†(g+)].

Altogether, we have [ϕ(f), ϕ(g)] = 0 in this situation.
Positivity of energy follows from the additivity of the spectrum for second quantization.
The properties of the vacuum Ω is easy: it is straightforward that {ϕ(f)Ω : f ∈ S (R1+1)}

spans the one-particle space Hm. The rest can be done by induction and the structure
ϕ(f) = a†(f+) + a(f+).

To conclude the discussion, let us show that ϕ satisfies linear energy bounds, therefore,
it generates a AHK net.

Theorem 4.3. The field ϕ satisfies linear energy bounds.

Proof. By the construction, it is clear that the generator Hm of the time-translation is given
by the multiplication operator by the function cosh θ ≥ 1. Then its second quantization is
bounded below by dΓ(1), which gives the particle number N .

On the other hand, it is clear that the norm of a†(ξ) is bounded by
√
n+ 1∥ξ∥ on PnH⊗n

m ,
hence it is bounded by ∥ξ∥(N + 1). Therefore, a(ξ) is bounded by ∥ξ∥(N + 1) as well.
Altogether, ϕ(f) is bounded by 2∥f+∥(N + 1).

Note that, we can repeat the same argument for the representation π− of Sn, except
locality. The operators a†(ξ), a(ξ) satisfy the anticommutations relations, instad of the com-
mutation relations.

5 Lecture 5 (5/18). The Tomita-Takesaki theory in

AHK nets

Here we study some properties of AHK nets related with the Tomita-Takesaki modular theory
and prove them for the massive free fields.
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5.1 The Borchers(-Florig) theorem

We will show that, in the massive free field nets, the modular group of a wedge algebra
with respect to the vacuum state coincides with the Lorentz boosts. More precisely, if
∆it

A(WL),Ω
= U(0, 2πt), we say that (A, U,Ω) satisfies the Bisognano-Wichmann property

[BW75, BW76]. It is known that the Bisognano-Wichmann property holds automatically if
a net is generated by a Wightman field in dimension d = 1 + 3. In d = 1 + 1, it is easy
to construct a counterexample. Therefore, we need to study the free fields explicitly. The
following is due to [Bor92], whose proof has been drastically simplified in [Flo98]

Lemma 5.1 (Borchers-Florig). Let M be a von Neumann algebra, Ω be a cyclic and separat-
ing vector for M on H, and ∆, J be the modular objects of M with respect to Ω. Assume that
there is a one-parameter group of unitaries V (t) = eitH with positive generator H satisfying
AdV (t)(M) ⊂ M for t ≥ 0. Then ∆itV (s)∆−it = V (e−2πts) and JV (s)J = V (−s).

Proof. Let x ∈ M, y ∈ M′ and define, for a fixed s ∈ R,

f(t) = ⟨∆−ityΩ, V (e2πts)∆−itxΩ⟩.

Recall that xΩ ∈ Dom(∆
1
2 ), yΩ ∈ Dom(∆− 1

2 ). Therefore, the map t 7→ ∆itxΩ has an H-
valued bounded analytic continuation to R + i(0, 1

2
). Similarly, the map t 7→ ∆−ityΩ has

an antianalytic continuation to R + i(−1
2
, 0). In addition, V (e2πts) =

∫
R+
eiλse

2πt
dE(λ) also

has a bounded analytic continuation to R+ i(0, 1
2
) because e2πt has positive imaginary part.

Therefore, f has an analytic continuation to R+ i(0, 1
2
), and on the boundary it holds that

f(t+ i
2
) = ⟨∆−i(t− i

2
)yΩ, V (e2π(t+

i
2
)s)∆−i(t+ i

2
)xΩ⟩

= ⟨∆−it∆− 1
2yΩ, V (−e2πts)∆−it∆

1
2xΩ⟩

= ⟨∆−itJy∗Ω, V (−e2πts)∆−itJx∗Ω⟩
= ⟨JV (−e2πts)J∆−itx∗Ω,∆−ity∗Ω⟩

Observe that V1(s) = JV (−s)J has the property that AdV1(s)(M) ⊂ M for s ≥ 0. There-
fore,

f(t+ i
2
) = ⟨∆−ity∆itΩ, V1(e

2πts)∆−itx∆itΩ⟩
= ⟨∆−ityΩ, V1(e

2πts)∆−itxΩ⟩ =: f1(t).

Note that, by replacing V by V1, we can repeat the same argument, that is, f1(t) has an
analytic continuation in R+ i(0, 1

2
) and

f1(t+
i
2
) = ⟨∆−ity∆itΩ, V1(e

2πts)∆−itx∆itΩ⟩
= ⟨∆−ityΩ, JV1(−e2πts)J∆−itxΩ⟩
= f(t).

This implies that f is constant, and we obtain that ∆itV (e−2πts)∆−it = V (s), JV (−s)J =
V (s).
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5.2 The Bisognano-Wichmann property

Using this Lemma, we prove the Bisognano-Wichmann property for the massive free fields
in d = 1 + 1. We can apply this to M = A(WL) and V (s) = U((s,−s), 0). The conclusion
is that ∆itV (s)∆−it = V (e−2πts). On the other hand, by the Poincaré group relations, we
also have that U(0, 2πt)V (s)U(0, 2πt)∗ = V (e−2πts). This implies that ∆itU(0,−2πt) com-
mutes with V (s) = U((s,−s), 0). We can apply a parallel argument to the negative lightlike
translations U((−s,−s)), 0), which preserves M with negative generator, and conclude that
∆it and U(0, 2πt) satisfy the same commutation relations with U((−s,−s), 0). Furthermore,
U(0, 2πt) implements a vacuum-preserving automorphism of A(WL), therefore, it commutes
with ∆it. Altogether, I(t) commutes with U(γ), γ ∈ P↑

+.

Theorem 5.2 (Bisognano-Wichmann property for the free field). For the massive free field
net (A, U,Ω), the Bisognano-Wichmann property holds: U(0, 2πt) = ∆A(WL),Ω.

Proof. We put M = A(WL), I(t) = ∆itU(0,−2πt). Our goal is to prove that I(t) = 1 for
t ∈ R. As I(t) commutes both with translations and Lorents boosts, it commutes with the
whole U(γ), γ ∈ P↑

+.
It is clear that I(t)Ω = Ω. Next, the one-particle space Hm is an irreducible subspace

of U(γ) with the mass m with no multiplicity, therefore, as I(t) commutes with U(γ), I(t)
must act as a scalar on Hm, say, I(t)|Hm = eitλ for some λ ∈ R.

Note that Ad I(t)(M) = M. We define ϕt(f) = Ad I(t)(ϕ(f)) for f ∈ S (R1+1) such
that supp f ⊂ WL, then ϕt(f) is still affiliated to M.

For g ∈ S (R1+1) such that supp f ⊂ WR, we have

I(t)ϕ(f)ϕ(g)Ω = ϕt(f)I(t)ϕ(g)Ω

= eitλϕt(f)ϕ(g)Ω

= eitλϕ(g)ϕt(f)Ω

= eitλϕ(g)I(t)ϕ(f)Ω

= ei2tλϕ(g)ϕ(f)Ω

= ei2tλϕ(f)ϕ(g)Ω

and this holds for all such f, g, we must have λ = 0, because the vector ϕ(f)ϕ(g)Ω has Ω
component in general.

Assume that I(t) acts as 1 on the k-particle spaces, k = 0, · · ·n. This implies that the
restriction of ∆it is equal to U(0, 2πt). On the n-particle space, there are dense set of vectors
that are in the domain of U(0, iπ). For such a vector Ψ, there is a closed operator F affliated

with M such that Ψ = FΩ, J∆
1
2ΨΩ. Then Ad I(t)(F ) is affiliated with M and we have

I(t)ϕ(g)FΩ = Ad I(t)(F )ϕ(g)Ω

= Ad I(t)FI(t)∗ϕ(g)Ω

= ϕ(g)Ad I(t)FI(t)∗Ω

= ϕ(g)FΩ

which shows that I(t) is trivial on the n+1-particle space. This completes the induction.

We used the following in the proof.
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Exercise. Let A,B be (possibly unbounded) self-adjoint operators. Suppose that M is a
von Neumann algebra, A is affiliated with M and B is affiliated with M′. Prove that, if
Ψ ∈ Dom(B) ∩Dom(BA), then Ψ ∈ Dom(AB) and ABΨ = BAΨ.

With the uniqueness of Ω, we have the following [Lon79], or in the context of AHK net,
[Dri75].

Theorem 5.3. Let M be a von Neumann algebra, Ω be a cyclic and separating vector for M
on H, and ∆, J be the modular objects of M with respect to Ω. Assume that there is a one-
parameter group of unitaries V (t) = eitH with positive generator H satisfying AdV (t)(M) ⊂
M for t ≥ 0 and Ω is the only vector (up to scalar) that V (t)Ω = Ω. Then, if M ≠ 1C, then
it is a type III factor.

Proof. We introduce MΩ = {x ∈ M : ⟨Ω, xyΩ⟩ = ⟨Ω, yxΩ⟩ for y ∈ M}, the centralizer of
M with respect to Ω. We claim that MΩ = C1.

Let p ∈ MΩ a projection. Define f(t) = ⟨Ω, pV (t)pΩ⟩. Then, for t ≥ 0, V (t)pV (t)∗ ∈ M
for t ≥ 0 and f(t) = ⟨Ω, pV (t)pV (t)∗Ω⟩ = ⟨Ω, V (t)pV (t)∗pΩ⟩ = ⟨Ω, pV (−t)pΩ⟩ = f(−t). But
f has a bounded analytic continuation to R+ i(0,∞), while from the last expression it also
continues to R + i(−∞, 0), thus it is constant. This implies that ⟨pΩ, V (t)pΩ⟩ = ⟨pΩ, pΩ⟩,
which is possible only if V (t)pΩ = pΩ, and by assumption pΩ = Ω. As Ω is separating,
p = 1.

Now we can show that M is of type III. Indeed, if not, the modular automorphism would
be inner, say implemented byW (t), and thenW (t) ∈ MΩ because AdW (t) preserves ⟨Ω, ·Ω⟩,
thus W (t) ∈ C1. But the the modular group would be trivial, and MΩ = M = C1.

Actually, from the same assumption, it follows that M is a type III1 factor, see e.g.
[Bau95, Corollary 1.10.8].

Corollary 5.4. A(WL) is a type III1 factor.

Knowing explicitly the modular group can be useful for further structural analysis. Let
us start with a general result.

5.3 Modular nuclearity

Let A,B be Banach spaces. A linear map φ : A → B is said to be nuclear if there are
sequences φn ∈ A∗, ψn ∈ B such that φ(x) =

∑
n φ(x)ψn and

∑
n ∥φ∗

n∥∥ψn∥ is finite. If
φ is normal on a von Neumann algebra A, we may assume that φn are normal as well, by
decomposing φn into its normal and singular parts, then the sum of the singular parts is
singular, hence the sum must be 0.

Let N ⊂ M be an inclusion of von Neumann algebras, and Ω be cyclic and separating
for M. Let ∆ be the modular operator for M with respect to Ω. We say that (N ⊂ M,Ω)
satisfies the modular nuclearity if the map

N ∋ x 7−→ ∆
1
4xΩ

is nuclear.
We say that an inclusion of von Neumann algebras N ⊂ M is split if there is a type I

factor R such that N ⊂ R ⊂ M.
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Lemma 5.5. Let N ⊂ M be an inclusion of type III factors satisfying modular nuclearity
with respect to Ω, and assume that Ω is cyclic for N as well. Then N ⊂ M is split.

Proof. Denote by ∆ the modular operator for M with respect to Ω and define, for x ∈ N ,
Ξ(x) = ∆

1
4xΩ. By assumption and the remark above, there are φn ∈ N∗, ξn such that

Ξ(x) =
∑

n φn(x)ξn. We prove that there is a unitary U : H → H⊗H such that AdU(N ) =
N ⊗ C1,AdU(M′) = C1⊗M′.

Note that the map M′ ∋ y 7→ ∆
1
4JyΩ ∈ H is bounded. Indeed,

∥∆
1
4JyΩ∥2 = |⟨∆

1
2JyΩ, JyΩ⟩| ≤ ⟨y∗Ω, JyΩ⟩ ≤ ∥y∥2.

Then it follows that its dual Υ : H ∋ η 7→ ⟨∆ 1
4J ·Ω, η⟩ is bounded as well, hence is an element

of (M′)∗.

Therefore, the map N ∋ x 7→ ⟨x∗Ω, ·Ω⟩ = ⟨J∆ 1
2xΩ, ·Ω⟩ = ⟨∆ 1

4J · Ω,∆ 1
4xΩ⟩ ∈ (M′)∗ is

nuclear, as it is Υ ◦Ξ(x) : N ∋ x 7→ ⟨∆ 1
4J · Ω,∆ 1

4xΩ⟩ of a nuclear map and a bounded map.
This means that there are sequences φn ∈ N∗, ψn ∈ (M′)∗ such that for any x ∈ N , y ∈ M′

we have

⟨x∗Ω, yΩ⟩ = ⟨Ω, xyΩ⟩ =
∑
n

φn(x)ψn(y).

This shows that the state onN⊗algM′ ∋
∑

n xn⊗yn (finite sum) given by ω = ⟨Ω,
∑

n xnynΩ⟩
extends to N ⊗M′. As Ω is cyclic for NM′, the GNS representation of N ⊗M′ with respect
to ω is realized by x⊗ y 7−→ xy. By assumption, N ⊗M′ is a type III factor, therefore, this
GNS representation is actually a unitary equivalence: there is a unitary U : H → H ⊗ H
such that U∗(x⊗ y)U = xy. That is, AdU∗ maps N ⊗ C1 to N and C1⊗M′ to M′. Now
we can take R as the image of B(H)⊗ C1, which satisfies

N = AdU∗(N ⊗ C1) ⊂ AdU∗(B(H)⊗ C1) = R
⊂ AdU∗(B(H)⊗M) = AdU∗(C1⊗M′)′ = (M′)′ = M,

as desired.

We say that a AHK net (A, U,Ω) satisfies the modular nuclearity for wedges if the
inclusion A(WL + a) ⊂ A(WL),Ω satisfy the modular nuclearity for some spacelike vector a.
As we have seen, in an AHK net, the algebras for wedges A(WL + a) are type III1 factors. If
the inclusion A(WL+a) ⊂ A(WL) is split, then the relative commutant A(WL)∩A(WL+a)

′

cannot be trivial, and actually it is a type III1 factor, because it is unitarily equivalent to
A(WL)

′ ⊗A(WL + a). Actually, one can even show [Lec06] that Ω is cyclic for it.
In the next Section, we will show that the modular nuclearity holds if A is constructed

throught the field ϕ−.
If we define A(WL ∩ (WL + a)) = A(WL)∩A(WL + a)′, it is easy to show that it satisfies

the AHK axioms. This is an interacting model, and indeed, one can calculate the S-matrix,
an invariant of AHK nets, and it is nontrivial.

21



6 Lecture 6 (5/19). Modular nuclearity for the free

fermion

6.1 Free fermion

We follow [Lec06]. Let us recall the construction of the free field. It is based on the one-
particle space Hm = L2(R, dθ), where we have a natural representation Um of P↑

+. In order
to constuct fermionic field, we take the antisymmetrization (instead of symmetrization):

π−
n (σ)Ψ1 ⊗ · · · ⊗Ψn = sgn(σ)Ψσ−1(1) ⊗ · · · ⊗Ψσ−1(n)

P−
n =

1

n!

∑
σ∈Sn

π−
n (σ)

and we construct the fermionic Fock space F−(Hm) =
⊕

n∈N P
−
n H⊗n

m , the creation and
annihilation operators a†, a. In the fermionic case, we have the anticommutation relations

{a†(ξ), a†(η)} = 0, {a(ξ), a†(η)} = ⟨ξ, η⟩.

In particular, it holds that

⟨ξ, ξ⟩ = {a(ξ), a†(ξ)} = (a(ξ)†)∗a†(ξ) + a†(ξ)(a(ξ)†)∗ ≥ (a†(ξ))∗a†(ξ)

hence a†(ξ) is bounded, and there is no question of domains.

Exercise: Prove these relations.
In this situation, we can construct the “right field” ϕ′ as follows. Let J =

⊕
n J

⊗n
0 π+

n (ιn),
where ιn : (12 · · ·n) 7→ (n · · · 21) and ϕ′(f) = Jϕ(fj)J , where fj(x) = f(−x) for f real.
It turns out that [ϕ(f), ϕ′(g)] = 0 if supp f ⊂ WL, supp g ⊂ WR. One can show that Ω is
cyclic for A(WL) and also A′(WR) := {eiϕ′(f) : supp f ⊂ WR}′′. Altogether, Ω is cyclic and
separating for A(WL). One can prove the Bisognano-Wichmann property for A(WL) as well.

Exercise: Based on these definitions, prove [ϕ(f), ϕ′(g)] = 0 for supp f ⊂ WL, supp g ⊂
WR.

Note that, if a ∈ WL, then we have A(WL + a) ⊂ A(WL). Then the natural question
arises whether this inclusion is split, and we can try to prove it by modular nuclearity. This
will turn to be the case, and as we remarked at the end of the last section, this gives an
interecting AHK net [Lec06].

6.2 General lemmas for modular nuclearity

Let K be a Hilbert space, Lφ,Lπ be complex subspaces of K, Z = Z∗ = Z−1 be a unitary
conjugation on K such that ZLφ = Lφ, ZLπ = Lπ. We put L := (1 + Z)Lφ + (1 − Z)Lπ,
a real subspace of K. Furthermore, L′ = {ξ ∈ K : ⟨ξ, η⟩ = ⟨η, ξ⟩, η ∈ L}, the symplectic
complement. Let Eφ, Eπ be the orthogonal projections onto Lφ,Lπ, respectively.
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Furthermore, we introduce

ϕ(ξ) := a∗(ξ) + a(ξ), ξ ∈ L,
φ(ξ) := a∗(ξ) + a(Zξ), ξ ∈ K,
π(ξ) := i(a∗(ξ)− a(Zξ)), ξ ∈ K.

Note that φ(ξ) and π(η) anticommute for all ξ, η, because ⟨Zξ, η⟩ = ⟨Zη, ξ⟩.
Let N = {ϕ(ξ) : ξ ∈ L}′′. Assume that X is a densely defined, positive invertible closed

operator on CL such that [X,Z] = 0 and NΩ ⊂ Dom(Γ(X)). Our goal is to show that
Ξ : N ∋ x 7→ Γ(X)xΩ is nuclear under certain assumptions on X.

Consider P(L) = span {ϕ(ξ1) · · ·ϕ(ξn) : n ∈ N, ξj ∈ L}. This is SOT dense in N .
Furthermore, P(L)± be the even and odd operators. For any A ∈ P(L), we have the
decomposition A = A+ + A−, A± ∈ P±(L). We introduce γ(A) = A+ − A−, then γ is
implemented by the unitary Γ(−1) =

⊕
n(−1)n, therefore, ∥γ∥ = 1 and ∥A±∥ = 1

2
∥A +

γ(A)∥ ≤ ∥A∥.
We denote {A,B} = [A,B]+, [A,B] = [A,B]−. For ξ ∈ K, we define

δ±ξ (A) =
1

2
[φ((1∓ Z)ξ) + iπ((1± Z)ξ), A+]−

+
1

2
[φ((1∓ Z)ξ) + iπ((1± Z)ξ), A−]+

Lemma 6.1. δ±ξ are odd derivations of P(L), that is, δ+ξ (A
±B) = δ+ξ (A

±)B ± A±δ+ξ (B)

and δ−ξ (A
±B) = δ−ξ (A

±)B ± A±δ−ξ (B) with δ±ξ (A) ∈ P(L), real linear in ξ and satisfy the
following bounds

∥δ+ξ (A
±)∥ ≤ (∥(1− Z)Eφξ∥2 + ∥(1+ Z)Eπξ∥2)

1
2∥A±∥,

∥δ−ξ (A
±)∥ ≤ (∥(1+ Z)Eφξ∥2 + ∥(1− Z)Eπξ∥2)

1
2∥A±∥.

If ξ ∈ L′, then δ+ξ = 0, δ−iξ = 0.

Proof. We leave the equalities as exercises, except that

δ±ξ (ϕ(η)) =
1

2
[φ((1∓ Z)ξ) + iπ((1± Z)ξ), ϕ(η)]+

=
1

2
(⟨η, (1∓ Z)ξ⟩ ∓ ⟨(1∓ Z)ξ, η⟩ − ⟨η, (1± Z)ξ⟩ ± ⟨(1± Z)ξ, η⟩)1

= (⟨Zξ, η⟩ ∓ ⟨η, Zξ⟩)1.

From this, it is straightforwad to show that they are derivations, and the last equalities
because ZL = L.

As for estimates, let ξ ∈ K. Then

ξ′ =

(
1

2
(1+ Z)(1− Eπ) +

1

2
(1− Z)(1− Eφ)

)
ξ ∈ L′,

by using the assumpsions ZLφ = Lφ, ZLπ = Lπ and the definition L = (1+Z)Lφ+(1−Z)Lπ.
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Therefore, using

(1− Z)(ξ − ξ′) = (1− Z)(1− 1
2
((1+ Z)(1− Eπ) + (1− Z)(1− Eφ)))ξ = (1− Z)Eφξ,

(1+ Z)(ξ − ξ′) = (1+ Z)(1− 1
2
((1+ Z)(1− Eπ) + (1− Z)(1− Eφ)))ξ = (1+ Z)Eπξ,

we can estimate

∥δ+ξ (A
±)∥ = ∥δ+ξ−ξ′(A

±)∥

=
1

2
∥[φ((1− Z)Eφξ) + iπ((1+ Z)Eπ)ξ, A

±]∓∥

≤ ∥φ((1− Z)Eφξ) + iπ((1+ Z)Eπ)ξ∥∥A±∥.

Furthermore, let χ− = (1 − Z)Eφξ, χ+ = (1 + Z)Eπξ. It holds that (φ(χ−) + iπ(χ+))
∗ =

−(φ(χ−) + iπ(χ+)) and φ(χ−) anticommutes with π(χ+). Therefore,

∥φ(χ−) + iπ(χ+)∥2 = ∥φ(χ−)
2 − π(χ+)

2∥ = ∥χ−∥2 + ∥χ+∥2.

This implies the claimed norm bounds. As for δ−ξ , one should use

ξ′′ =

(
1

2
(1− Z)(1− Eπ) +

1

2
(1+ Z)(1− Eφ)

)
ξ ∈ iL′.

The last paragraph of the following is a variation of [BJ87, Theorem 2.1]

Lemma 6.2. Assume that EφX and EπX extend to trace class operators. Then Ξ is nuclear.

Proof. Let {ηn} be an orthonormal basis of F−(K). We may try to form the decomposition
by

Ξ(x) = Γ(X)xΩ =
∑

⟨ηn,Γ(X)xΩ⟩ηn.

In order to prove nuclearity, we have to choose an appropriate basis {ηn}.
Note that

[a(XZξ), A±]∓ = [a(ZXξ), A±]∓ =
1

2
[φ(Xξ) + iπ(Xξ), A±]∓ =

1

2
(δ+Xξ + δ−Xξ)(A

±).

As X is symmetric, it holds that a(η)Γ(X)Ψ = Γ(X)a(Xη)Ψ. For vectors ξ1, · · · ξn ∈
Dom(X), we have

⟨a†(Zξ1) · · · a†(Zξn)Ω,Γ(X)A±Ω⟩ = ⟨Ω, a(XZξn) · · · a(XZξ1)A±Ω⟩
= 2−n⟨Ω, (δ+Xξn

+ δ−Xξn
) · · · (δ+Xξ1

+ δ−Xξ1
)(A±)Ω⟩.

Therefore, with Tφ = EφX,Tπ = EπX,

|⟨a†(Zξ1) · · · a†(Zξn)Ω,Γ(X)A±Ω⟩|

≤ 1

2n
∥A±∥

n∏
j=1

((∥(1− Z)Tφξj∥2 + ∥(1+ Z)Tπξj∥2)
1
2 + (∥(1+ Z)Tφξj∥2 + ∥(1− Z)Tπξj∥2)

1
2
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By assumption, T = (|Tφ|2 + |Tπ|2)
1
2 is of trace class and commutes with Z. By noting

that

∥(1− Z)Tφξj∥2 + ∥(1+ Z)Tπξ
2
j ∥ ≤ ∥(1− Z)Tξj∥2 + ∥(1+ Z)Tξ2j ∥) = 4∥Tξj∥2,

we see that

|⟨a†(Zξ1) · · · a†(Zξn)Ω,Γ(X)A±Ω⟩|

≤ 2n∥A±∥
n∏

j=1

∥Tξj∥

This is true for any sequence ξj ∈ Dom(X), but actually the both sides are continuous in ξj,
hence for arbitrary sequence ξj ∈ K.

Now, as the basis for K, we take the eigenvectors of T . As T commutes with Z, we can
choose the basis in such a way that they are eigenvectors of Z with eigenvalue ±1. Then the
vectors of the form

a†(Zξk1) · · · a†(Zξkn)Ω = a†(ξk1) · · · a†(ξkn)Ω, k1 < k2 < · · · < kn.

span F−(K).
Now we calculate

⟨a†(Zξk1) · · · a†(Zξkn)Ω,Γ(X)A±Ω⟩ ≤ 2n∥A±∥
n∏

j=1

∥Tξj∥ = ∥A±∥
n∏

j=1

2tkj ,

therefore,

∥Ξ∥1 ≤
∑

k1<k2<···<kn

2
n∏

j=1

2tkj = 2det(1+ 2T ) ≤ 2e2∥T∥1 .

Finally, we show that the same estimates holds for A ∈ N . By Kaplansky’s density
theorem, there are An ∈ P(L), An → A in SOT with ∥An∥ ≤ ∥A∥. Then AnΩ → AΩ and
Γ(X)AnΩ is weakly bounded because for any η ∈ K and the basis {ηn} constructed above,
we have

|⟨η,Γ(X)AnΩ⟩| ≤
∑
m

|⟨η, ηm⟩||⟨ηm,Γ(X)AnΩ⟩| ≤ ∥An∥|η|
∑
n

∥Ξ∥1,

thus by the uniformly boundedness principle Γ(X)AnΩ is bounded. We take a subsequence,
which we denote again by An, such that Γ(X)AnΩ is weakly convergent. In this case, as
X is a closed operator, (AnΩ,Γ(X)AnΩ) ∈ F−(K) ⊕ F−(K) has a limit in the graph, that
is, the limit AΩ ∈ Dom(Γ(X)), and Γ(X)AnΩ is weakly convergent, therefore, the bound
|⟨ηm,Γ(X)AnΩ⟩| ≤ cm∥An∥ of the functionals remain the same. This implies that the nucle-
arity bound extends to N .
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6.3 Modular nuclearity for wedges in the free fermion net

Let us prepare a general lemma.

Lemma 6.3. Let a > 0, b ̸= 0, b ∈ R. Then the integral operator Ta,b on L2(R, dθ), defined
by

(Ta,bΨ)(θ) =

∫
e−a cosh θ

θ − θ′ + ib
Ψ(θ′)dθ′

is of trace class.

Proof. We may assume b > 0. By considering the Fourier transforms, we can write Ta,b =
RaSb, where Ra, Sb are integral operators with the kernels

Ra(θ, θ
′) = e−a cosh θ i+ θ′

(i+ θ − θ′)2
,

Sb(θ, θ
′) = −i(i+ θ − θ′)2

i+ θ
Θ(θ − θ′)e−b(θ−θ′).

Indeed, in terms of X the multiplication operator by θ and P the differential operator i ∂
∂θ
,

Ra = e−a coshX(i+ P )−2(i+X),

Sb = (i+X)−1(i+ P )2Θ(P )e−bP .

Each of their kernels is L2-functions, therefore, they define integral operators of trace class.

We set S0,π = R+ i(0, π) and

H2(S0,π) = {Ψ ∈ L2(R, dθ) : Ψ continues analytically to S0,π, ∥Ψ(·+ iλ)∥ ≤ C}.

Any Ψ ∈ H2(S0,π) has the L
2 boundary values as λ→ 0, π and for Ψ ∈ H2(S0,π), we identify

Ψ(θ) with limλ→0Ψ(θ + iλ). In this sense, (∆
1
2Ψ)(θ) = Ψ(θ + iπ) and Dom(∆

1
2 ) = H2(S0,π)

[Tan15].
For our concrete application, we take

• K = Hm = L2(R, dθ)

• Lφ,0 = {Ψ ∈ H2(S0,π) : Ψ(θ + iπ) = Ψ(−θ)}

• Lπ,0 = {Ψ ∈ H2(S0,π) : Ψ(θ + iπ) = −Ψ(−θ)}

• Lφ = U((0,−1), 0)Lφ,0

• Lπ = U((0,−1), 0)Lπ,0

• X = ∆
1
2 .

• (ZΨ)(θ) = Ψ(−θ)
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Then L = (1+Z)Lφ+(1−Z)Lπ contains f
+ for supp f ⊂ WL. Indeed, for any Ψ ∈ L, it holds

that Ψ(θ+iπ) = Ψ(−θ) and conversely, if Ψ satisfies this condition, then so does ZΨ and with
Ψ = Ψ+ +Ψ− where ZΨ± = ±Ψ±, Ψ+ ∈ Lφ,Ψ− ∈ Lπ and Ψ = 1

2
((1+Z)Ψ+ + (1−Z)Ψ−).

Recall that, if supp f ⊂ WL, then f
+ ∈ L. Therefore, A(WL) ⊂ A(L), and it is enough

to show the nuclearity for U((1,−1), 0)A(L) ⊃ A(WL + (1,−1)) with the operator X = ∆
1
4 ,

where ∆ is the modular operator of A(WL).

On the other hand, we have XΨ(θ) = ∆
1
4Ψ(θ) = Ψ(θ + iπ

2
). For Ψ ∈ Lφ,0, we can write

this as the Cauchy integral:

Ψ(θ + iπ
2
) =

1

2πi

∫
dθ′

(
Ψ(θ′)

θ′ − θ − iπ
2

− Ψ(θ′ + iπ)

θ′ − θ + iπ
2

)
=

1

2πi

∫
dθ′

(
1

θ′ − θ − iπ
2

− 1

θ′ − θ + iπ
2

)
Ψ(θ′)

Let us put V = U((1,−1), 0), the multiplication by eim sinh θ. If VΨ ∈ Lφ with Ψ ∈ Lφ,0,

(∆
1
4VΨ)(θ) =

1

2πi

∫
dθ′

(
e−m cosh θ

θ′ − θ − iπ
2

− e−m cosh θ

θ′ − θ + iπ
2

)
Ψ(θ′)

and this integral operator is of trace class by the above Lemma. Similarly, ∆
1
4Eπ is of trace

class, as well. Altogether, we have the following.

Theorem 6.4. The two-dimensional massive fermion satisfies the wedge split property:
A(WL + a) ⊂ A(WL) for any a ∈ WL is split

Corollary 6.5. By defining A((WL + a) ∩WL) := A(WL + a)′ ∩A(WL) and extending it by
covariance, we obtain a AHK net (A, U,Ω).

This is called the massive Ising model.

6.4 More comments

6.4.1 Integrable models

More interacting model can be constructing by first specifying the algebras for wedges and
then taking their intersections, as we did for the Ising model. See [Lec06] for those called “in-
tegrable models”, and [Tan14] for some purely operator-algebraic construction. See [Lec15].

6.4.2 CFT

From two-dimensional net, one can restrict the AHK net to one of the lightrays and obtain
a net associated with the intervals in the lightray. Such a net can be extended to S1 and
satisfy an analogue of the AHK axioms for S1. They are called conformal nets on S1. These
nets have additional, diffeomorphism covariance and have very rich structures. See [Reh15].
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A Miscellany

A.1 GNS representation

A.1.1 ∗-algebras case

Let A be a ∗-algebra, ω a symmetric (ω(x∗) = ω(x)) linear functional on A such that
ω(x∗x) ≥ 0 for all x ∈ A. We note that the GNS construction works for ω.

First, we have the Cauchy-Schwarz inequality: |ω(x∗y)| ≤ ω(x∗x)ω(y∗y). There are two
cases. Assume first that ω(y∗y) = 0. Then, note that if 0 ≤ ω((x − λy)∗(x − λy)) =
ω(x∗x) − λ̄ω(y∗x) − λω(x∗y) + |λ|2ω(y∗y) for all λ ∈ C. In particular, for λ ∈ R, we
obtain 0 ≤ ω(x∗x) − 2λℜω(y∗x) and we must have ℜω(y∗x) = 0. With λ ∈ iR, we have
0 ≤ ω(x∗x) + 2λℑω(y∗x) and we must have ℑω(y∗x) = 0. Altogether, ω(y∗x) = ω(x∗y) = 0
if ω(y∗y) = 0. If ω(y∗y) ̸= 0, then

0 ≤ ω((x− ω(y∗x)
ω(y∗y)

y)∗(x− ω(y∗x)
ω(y∗y)

y)) = ω(x∗x)− ω(y∗x)ω(x∗y)
ω(y∗y)

,

from which it follows that |ω(y∗x)|2 ≤ ω(x∗x)ω(y∗y).
Next, N = {x ∈ A : ω(x∗x) = 0} is a left ideal of A. Indeed, if x ∈ N , then for any

y ∈ A we have ω((yx)∗yx) = 0 by the Cauchy-Schwarz inequality. Then we can define an
inner product on A/N by ⟨x, y⟩ = ω(x∗y), where A/N is the linear quotient space. This is
well-defined, because ω((x + n)∗(y +m)) = ω(x∗y) + ω(n∗y) + ω(x∗m) + ω(n∗m) = ω(x∗y),
where we used the Cauchy-Schwarz inequality and n,m ∈ N . By definition, ⟨·, ·⟩ is positive-
definite, therefore, is an innter product. We complete A/N by the norm defined by ⟨·, ·⟩ and
denote it by H. Denote by ι the natural map A → A/N → H.

Define, for x ∈ A, an operator on A/N by ρ(x)ι(y) = ι(xy). It is immediate that this is
well-defined. One can prove straightforwardly that ρ is a ∗-representation.

A.1.2 C∗-algebras case

Now we specialize to the case where A is a ∗-subalgebra of B(H). We denote A the norm
closure, which is a C∗-algebra. Assume further that ω extends to A by norm. Then ω remains
positive on A. Indeed, let 0 ≤ a ∈ A. Then we can write a = x∗x, x ∈ A and there is a
sequence xn ∈ A, xn → A. Then a = limn x

∗
nxn and ω(a) = limn ω(x

∗
nxn) ≥ 0.

This applies, in particular, if N ⊂ M are two von Neumann algebras in B(H) and there
is a linear functional on N ⊙M′ given by ω(x⊗ y) = ⟨Ω, xyΩ⟩. Then ω satisfies ω(z∗z) ≥ 0
for z ∈ N ⊙M′.

If ω extends to N ′ ⊗M by continuity, its extension is positive: it is positive on the norm
closure by the previous paragraph, and remains positive by Kaplansky’s density theorem.
Therefore, one can apply the GNS construction. As the extension is normal, then the GNS
representation is normal as well.
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A.2 On analytic functions on the strip

Lemma A.1. Let ξ be ananalytic function on S0,π bounded by Cξ, continuous on the closure
and it is L2 on the boundary. Then ξ ∈ H2(S0,π).

Proof. Let η ∈ L2(R, dθ), bounded by C with supp η ⊂ [−n, n]. We define

ξη(z) =

∫
ξ(θ + z)η(θ)dθ.

Then by Morera’s theorem, ξη(z) is analytic on S0,π, and continuous on the closure. As ξ
is bounded and η ∈ L1(R, dθ) (because of the bound C and the support), ξη is bounded by
Cξ∥η∥L1 . By the three line theorem [Rud87, Theorem 12.9], |ξη(z)| is bounded by its values
on the boundaries, and in this case by max{∥ξ∥L2 , ∥ξ(· + iπ)∥L2}∥η∥L2 . As such η span a
dense subspace, ∥ξ(·+ iζ)∥ ≤ max{∥ξ∥L2 , ∥ξ(·+ iπ)∥L2} for all ζ ∈ (0, π).
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[SZ79] Şerban Strătilă and László Zsidó. Lectures on von Neumann algebras. Editura
Academiei, Bucharest; Abacus Press, Tunbridge Wells, 1979. https://books.google.
com/books?id=Hi3vAAAAMAAJ&q.

[Tak02] M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathemat-
ical Sciences. Springer-Verlag, Berlin, 2002. https://books.google.com/books?id=

dTnq4hjjtgMC.

[Tak03] M. Takesaki. Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathe-
matical Sciences. Springer-Verlag, Berlin, 2003. https://books.google.com/books?

id=-4GyR1VlQz4C.

[Tan14] Yoh Tanimoto. Construction of two-dimensional quantum field models through Longo-
Witten endomorphisms. Forum Math. Sigma, 2:e7, 31, 2014. https://arxiv.org/abs/
1301.6090.

[Tan15] Yoh Tanimoto. Self-adjointness of bound state operators in integrable quantum field
theory. 2015. https://arxiv.org/abs/1508.06402.

31

http://www.jstor.org/stable/1970331
https://arxiv.org/abs/1501.03313
https://books.google.com/books?id=rpFTTjxOYpsC
https://books.google.com/books?id=rpFTTjxOYpsC
https://arxiv.org/abs/2203.10795
https://books.google.com/books?id=3d8umJoRd08C
https://books.google.com/books?id=Sh_vAAAAMAAJ
https://books.google.com/books?id=Sh_vAAAAMAAJ
https://arxiv.org/abs/1203.3991
https://www.jstor.org/stable/j.ctt1cx3vcq
https://www.jstor.org/stable/j.ctt1cx3vcq
https://books.google.com/books?id=Hi3vAAAAMAAJ&q
https://books.google.com/books?id=Hi3vAAAAMAAJ&q
https://books.google.com/books?id=dTnq4hjjtgMC
https://books.google.com/books?id=dTnq4hjjtgMC
https://books.google.com/books?id=-4GyR1VlQz4C
https://books.google.com/books?id=-4GyR1VlQz4C
https://arxiv.org/abs/1301.6090
https://arxiv.org/abs/1301.6090
https://arxiv.org/abs/1508.06402


[Tan16] Yoh Tanimoto. Bound state operators and wedge-locality in integrable quantum field
theories. SIGMA Symmetry Integrability Geom. Methods Appl., 12:100, 39 pages, 2016.
https://arxiv.org/abs/1602.04696.

32

https://arxiv.org/abs/1602.04696

	Lecture 1 (5/15 14:45). Overview
	Classical/quantum physics
	The status of mathematical quantum field theory

	Lecture 2 (5/15). Preliminaries
	Operator algebras
	Review of von Neumann algebras and the Tomita-Takesaki modular theory
	The Minkowski space and the Poincaré group

	Lecture 3 (5/16). The axioms
	The Wightman axioms
	The Araki-Haag-Kastler axioms
	From Wightman to AHK
	The Reeh-Schlieder property

	Lecture 4 (5/17). The massive free fields
	One-particle space
	Second quantization (general)
	Free massive scalar field

	Lecture 5 (5/18). The Tomita-Takesaki theory in AHK nets
	The Borchers(-Florig) theorem
	The Bisognano-Wichmann property
	Modular nuclearity

	Lecture 6 (5/19). Modular nuclearity for the free fermion
	Free fermion
	General lemmas for modular nuclearity
	Modular nuclearity for wedges in the free fermion net
	More comments
	Integrable models
	CFT


	Miscellany
	GNS representation
	*-algebras case
	C*-algebras case

	On analytic functions on the strip


