Introduction to Algebraic Quantum Field Theory Lecture 1/6 Nagoya University

Yoh Tanimoto

University of Rome "Tor Vergata"

2023 May 15

What is Quantum Field Theory (QFT)?

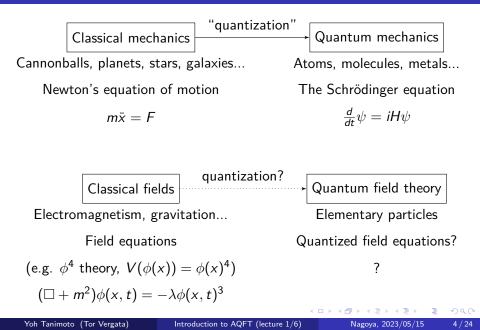
- QFT is a framework in theoretical physics used to describe particle physics, where there is particle production, and critical phenomena.
- "Standard model" of particle physics, Quantum Electrodynamics (QED), Quantum Chromodynamics (QCD), the Yang-Mills theories are particlar examples of QFT.
- Very successful phenomenologically. Precise predictions in particle physics, universality in condensed matter.
- Some physicists say QFT is well-understood. Others say QFT is not yet defined. What do they mean?
- Can mathematics give answers?

A physical theory formulates a problem in physics in terms of mathematical objects. Determining the evolution of the system amounts to predicting the change of the physical system.

- Classical mechanics: ODA. The Newton equation $m \frac{d^2}{dt^2} x(t) = -V'(x(t))$, where V is the potential energy.
- Quantum mechanics: Operators on a Hilbert space. Schrödinger equation $i\frac{\partial}{\partial t}\Psi(x,t) = [\frac{1}{2m}\hat{P}^2 + V(\hat{Q})]\Psi(x,t), \ \hat{P} = i\frac{\partial}{\partial x}, \ \hat{Q} =$ multiplication by x. $[\hat{Q}, \hat{P}] = i\mathbb{1}$.
- Classical field theory: PDA. $(\frac{\partial^2}{\partial t^2} \frac{\partial^2}{\partial x^2} + m^2)\phi(x) = -V'(\phi(x))$
- Quantum field theory: ??

Definition of Quantum field $\hat{\phi}(x)$? \Rightarrow Axiomatic approaches (Wightman, Osterwalder-Schrader, Araki-Haag-Kastler...) + Constructive Quantum Field Theory (examples). (cf. **Yang-Mills theory**: a Millenium problem)

Mathematical theories of physical systems



- Consider a single particle in the *d*-dimensional space.
- d degrees of freedom.
- Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^d)$.
- Operators: $Q_j = M_{x_j}$ (multiplication), $P_j = i \frac{\partial}{\partial x_j}$.
- Canonical commutation relations: $[Q_j, P_k] = i\delta_{j,k}$.
- Hamiltonian: $H = \sum_{j=1}^{d} \frac{1}{2m} P_j^2 + V(Q_1, \cdots, Q_d)$, a self-adjoint operator on \mathcal{H} .
- Problems: the spectrum of *H*, the time evolution e^{itH} , asymptotic behaviors (stability of matter, scattering theory...).

Quantum Field Theory

- Classically, one considers functions $\phi(x)$ of the space(time).
- Each point x has a degree of freedom.
- Canonical commutation relations: $[\phi(x), \pi(y)] = i\delta(x y)$?
- $\phi(x), \pi(y)$ should be operator-valued distributions.
- Hamiltonian: $H \stackrel{?}{=} \int \frac{1}{2} (\pi(y)^2 + (\nabla \phi(x))^2 + m^2 \phi(x)^2 + V(\phi(x)) dx)$
- Need "renormalization".
- **Ultraviolet problem**: more difficult in higher dimensions, higher powers in *V*.
- Infrared problem: integral over \mathbb{R}^d .
- Some solutions in 1 + d = 2,3. Most important 1 + d = 4 is open (cf. "triviality").

Wightman axioms

What should a quantum field theory be?

- $\phi(x)$: operator-valued distribution of \mathbb{R}^{1+d} .
- $\phi(f)$ is an unbounded operator on a dense domain in a Hilbert space \mathcal{H} .
- U: a unitary representation of the spacetime symmetry group P[↑]₊ (the Poincaré group).
- Ω : the vacuum vector in \mathcal{H} .

Wightman axioms

- Covariance: $U(g)\phi(x)U(g)^* = \phi(g \cdot x)$ for $g \in \mathcal{P}_+^{\uparrow}$.
- Locality (Einstein causality): [φ(x), φ(y)] = 0 if x, y are spacelike separated.
- Positivity of energy (a spectrum condition on *U*).
- Properties of the vacuum: $U(g)\Omega = \Omega, \phi(f_1)\cdots\phi(f_n)\Omega$ span \mathcal{H} .

See Summars' review arXiv:1203.3991

- Free fields in any dimension 1 + d.
- The $\mathscr{P}(\phi)_2$ -models in 1+1 dimensions (Glimm and Jaffe, '72).
- Exponential interactions, the Yukawa model, the Federbush model...
- Euclidean method: construct first a probability theory on \mathbb{R}^d satisfying Reflection Positivity, then reconstruct a QFT by Wick rotation (Osterwalder and Schrader '75).
- The Gross-Neveu model, the sine-Gordon model (1 + 2 dimensions), the ϕ_3^4 -model (1 + 2 dimensions), Abelian Higgs (U(1)-gauge) models (1 + 1 and 1 + 2 dimensions), except uniqueness of the vacuum)...
- Some d = 1 + 1 conformal field theories (CFTs, Vertex Operator Algebras), (Carpi-Kawahigashi-Longo-Weiner '18, Raymond-T.-Tener '22 for chiral CFT (unitary vertex operator algebras), Adamo-Giorgetti-T. '23 for some full CFT).

- There is **no known** Wightman fields except the free fields in 1 + 3 or higher dimensions.
- The higher the dimensions are, the severer the Ultraviolet (UV) divergence is.
- Triviality of the ϕ_4^4 -model by Aizenman and Duminil-Copin '21 (very roughly, one cannot construct interacting scalar fields through lattice approximation in 1 + 3 dimensions).
- Yang-Mills theory (one of the Millenium problems)? Quantum Electrodynamics? The standard model?

9/24

- Physicists often say that the **definition** of QFT is missing...
- Actually, the axioms are there (and are very weak, cf. conformal bootstrap).
- What is missing are examples in 1+3 dimensions.
- Apart from constructing examples, one can study some other aspects of QFT (perturbation theory, the formal power series, topological/differential-geometrical properties of the classical theory...)

QFT/operator algebras-related Fields medals

- 1982 Connes (classification of type III factors)
- 1990 Jones (knot invariants and von Neumann algebras)
- 1998 Borcherds (vertex operator algebras, the moonshine conjecture)
- 2006 Werner (critical exponents or two-dimensional percolation)
- 2010 Smirnov (conformal invariance of the planar Ising model)
- 2014 Hairer (stochastic PDE, related with the ϕ_3^4 -model)
- 2022 Duminil-Copin (triviality of the ϕ_4^4 -model)

- 20?? Construction of the quantum Yang-Mills theory
- 20?? Construction of the standard model

von Neumann algebras

- An operator algebra (C*, von Neumann) is a *-subalgebra of the algebra B(H) of bounded operators on a Hilbert space H, closed under a topology (norm, weak operator topology).
- If a C^* -algebra \mathcal{A} is commutative, it is isomorphic to C(X) for some topological space X. If a von Neumann algebra \mathcal{M} is commutative, it is isomorphic to $L^{\infty}(X, d\mu)$ for some measurable space X and a measure μ .
- A noncommutative operator algebra should be regarded as noncommutative geometry/probability theory.
- From a *-closed subset S of $\mathcal{B}(\mathcal{H})$, one can take the smallest C*-/von Neumann algebra S" containing S.
- Main problems in operator algebras: classification, subalgebras/extensions, (quantum) group actions, representations...

< □ > < □ > < □ > < □ > < □ > < □ >

Axioms for QFT in terms of von Neumann algebras (the **Araki-Haag-Kastler axioms**): a family of von Neumann algebras $\{\mathcal{A}(O)\}$, a unitary representation U of the Poincaré group and a vacuum $\Omega \in \mathcal{H}$ satisfying

- Isotony: If $\mathcal{O}_1 \subset \mathcal{O}_2$, then $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$.
- Locality: If O_1 and O_2 are spacelike separated, then $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}.$
- Covariance: $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(g \cdot O).$
- Positive energy: The spectrum of $U|_{\mathbb{R}^{1+d}}$ is contained in the future lightcone.
- Vacuum: Ω is unique s.t. $U(g)\Omega = \Omega$ and $\bigcup_O \mathcal{A}(O)\Omega$ spans \mathcal{H} .
- Weak additivity: If $O \subset \bigcup_j O_j$, then $\mathcal{A}(O) \subset (\bigcup_j \mathcal{A}(O_j))''$.

3

- Assume that a Wightman field theory (φ, U, Ω) satisfies a technical condition ("linear energy bounds"). For spacetime regions O, define A(O) = {e^{iφ(f)} : supp f ⊂ O}".
- Here, for a self-adjoint set *M* of bounded operators, *M'* is called the commutant of *M* and it is the set of all bounded operators on *H* commuting with all elements of *M*. *M''* is the double commutant, and is the smallest von Neumann algebra including *M*.
- Then $(\mathcal{A}, \mathcal{U}, \Omega)$ satisfy the AHK axioms.
- **Examples**: the $\mathscr{P}(\phi)_2$ -models, the Yukawa₂ model, the ϕ_3^4 -model, CFT₂...
- Probably all the other Wightman theories can be associated with AHK theories.

Powerful tools of von Neumann algebras (the Tomita-Takesaki modular theory, the nuclearity conditions, the subfactor theory) can be applied to obtain

- Representation theory (states + the GNS construction).
- Extension/classifications of a class of CFT.
- Defining relative entropy/mutual information in QFT.
- Constructing new examples (in 1 + 1 dimensions, until now...).
- Studying QFT on curved spacetimes.
- Defining and proving quantum energy inequalities.

Doplicher-Haag-Roberts (DHR) representation theory

 A representation of a AHK net A is a family of representations {ρ_O} on a (possibly different) Hilbert space H_ρ with the compatibility condition

$$\rho_{O_1}|_{\mathcal{A}(O_2)} = \rho_{O_2} \quad \text{ for } O_2 \subset O_1.$$

- Consider the class of DHR representation on \mathcal{H} such that, for some O, $\rho_{\mathcal{A}(O')} = \mathrm{id}$. Assuming the Haag duality $\mathcal{A}(O')' = \mathcal{A}(O)$, $\rho_{\mathcal{A}(O)}$ is an **endomorphism** of $\mathcal{A}(O)$. \Rightarrow such ρ 's can be composed.
- Consider the category C of "nice" endomorphisms \Rightarrow . In 1+3 dimensions (or higher), C is a symmetric tensor category.
- By a generalization of the Tannaka-Krein duality, C is isomorphic to the category of finite-dimensional representations of some compact group G.
- There is an extension \mathcal{B} of \mathcal{A} and an action of G such that $\mathcal{A}(O) = \mathcal{B}(O)^G$ (the Doplicher-Roberts reconstruction).

Yoh Tanimoto (Tor Vergata)

The classification theory of chiral CFT

- For chiral CFT (QFT on S¹), one can consider a similar representation theory.
- For a "completely rational" net \mathcal{A} , the category \mathcal{C} is a modular tensor category.
- Assume that there is an extension $\mathcal{A} \subset \mathcal{B}$. Consider all representations ρ of \mathcal{A} and make the "induced" representations $\hat{\rho}^{\pm}$, there are actually two such "solitonic" representations.
- The matrix $Z_{\rho,\sigma} = \dim(\hat{\rho}^+, \hat{\sigma}^-)$ gives a modular invariant.
- A classification of extensions $\mathcal{A} \subset \mathcal{B}$ can be reduced to the classification of modular invariants.
- Carried out for the Virasoro nets Vir_{c} , c < 1 (Kawahigashi-Longo '04).

The Tomita-Takesaki modular theory

• Let \mathcal{M} be a von Neumann algebra, Ω be cyclic $(\overline{\mathcal{M}\Omega} = \mathcal{H})$ and separatiang (for $x \in \mathcal{M}, x \neq 0, x\Omega \neq 0$). The densely defined antilinear operator

$$\mathcal{M}\Omega \ni x\Omega \longmapsto x^*\Omega$$

is closable. Its closure has the polar decomposition $S = J\Delta^{\frac{1}{2}}$.

- Δ is called the modular operator, J the modular conjugation.
- $\Delta^{it}\mathcal{M}\Delta^{-it} = \mathcal{M}$ for $t \in \mathbb{R}$, $J\mathcal{M}J = \mathcal{M}'$ (Tomita).
- In a AHK net, take $\mathcal{M} = \mathcal{A}(W_L), \Omega$ the vacuum vector. Then Δ^{it} are the Lorentz boosts, J the TCP operator (the Bisognano-Wichmann property).

18 / 24

Araki's relative entropy

- In Quantum Mechanics (B(H) for some finite-dimensional H), any state σ is given by x → tr(xM_σ), where M_σ ∈ B(H)₊, tr M_σ = 1. For two states σ₁, σ₂, the relative entropy is given by S(σ₁|σ₂) = tr(σ₁(log σ₁ − log σ₂)).
- Relative entropy in QFT plays important role in theoretical physics. But there is no tr for local algebras A(O) in a AHK net.
- Let Ω, Ψ be vectors cyclic and separating for $\mathcal{A}(O)$. Let $\omega = \langle \Omega, \cdot \Omega \rangle, \varphi = \langle \Phi, \cdot \Phi \rangle$. The relative modular objects is given by $S_{\omega,\varphi} = J_{\Omega,\varphi} \Delta_{\Omega,\varphi}^{\frac{1}{2}}$, where

$$S_{\omega,\varphi}x\Psi = x^*\Omega.$$

• The relative entropy of ${\cal M}$ with respect to ω,φ is

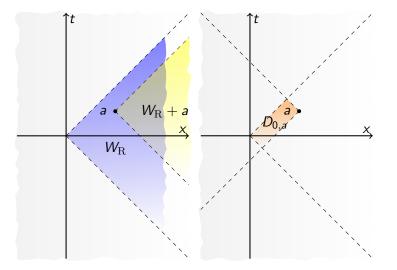
$$S(\omega, \varphi) = \langle \Omega, \log \Delta_{\omega, \varphi} \Omega \rangle.$$

• In some models and some states, $S(\omega, \varphi)$ can be calculated.

- Isotony: $O_1 \subset O_2 \Longrightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2).$
- Larger regions contain more observables.
- It is difficult to construct local interacting quantum fields $\phi(x)$.
- Maybe simpler operators in larger regions?
- Wedge: $W_{R} := \{(t, x) : x > |t|\}.$

Construct first the algebras $\mathcal{A}(W_{\mathrm{R}})$ of observables in wedges. Local observables are obtained by $\mathcal{A}(O) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$.

Standard wedge and double cone



New examples

- Fix a nice analytic function ("S-matrix") $S: \mathbb{R} + i(0,\pi) \to \mathbb{C}$,
- S-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto S-symmetric functions: $\Psi_n(\theta_1, \dots, \theta_n) = S(\theta_{k+1} - \theta_k)\Psi_n(\theta_1, \dots, \theta_{k+1}, \theta_k, \dots, \theta_n).$
- Zamolodchikov-Faddeev algebra: S-symmetrized creation and annihilation operators z[†](ξ) = Pa[†](ξ)P, z(ξ) = Pa(ξ)P, P = ⊕_n P_n.
- Wedge-local field: $\phi(f) = z^{\dagger}(f^+) + z(f^+)$.
- $\mathcal{A}(W_{\mathrm{R}}) = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}.$
- Need to prove that $\mathcal{A}(O) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$ is large.
- This can be reduced to proving that $\mathcal{A}(W_{\mathrm{R}}+a)\subset\mathcal{A}(W_{\mathrm{R}})$ is **split**.
- The massive Ising model, Sinh-model with CDD factors (Lechner), more algebraic construction of the Federbush-like model (T.), the Bullough-Dodd model (Bostelmann-Cadamuro-T., in progress).

22 / 24

< □ > < □ > < □ > < □ > < □ > < □ >

- Mathematical definitions of relataivistic quantum fields (Wightman) and algebras of observables (Araki-Haag-Kastler).
- Examples from Constructive QFT, 2d CFT
- Representation of AHK nets, extension and classification of 2d CFTs
- Tomita-Takesaki theory, relative entropy
- the wedge construction, new 2d massive examples

Overview of the lectures

- Lecture 2: basics
 - von Neumann algebras, the Tomita-Takesaki modular theory
 - the Minkowski space, the Poincaré group
- Lecture 3: the Araki-Haag-Kastler axioms
 - local net of von Neumann algebras
 - the commutator theorem, strong locality
 - consequences of the axioms (the Reeh-Schlieder property)
- Lecture 4: the free field net
 - the Fock space, field operators
 - construction of the free field nets
- Lecture 5: further properties of AHK nets
 - the Bisognano-Wichmann property
 - nuclearity conditions, the split property for the fermionic free field
 - wedge construction, twisting
- Lecture 6: modular nuclearity/advanced topics
 - proof of modular nuclearity for the fermionic free field
 - advanced topics