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Introduction

What is Quantum Field Theory (QFT)?
QFT is a framework in theoretical physics used to describe particle
physics, where there is particle production, and critical phenomena.
“Standard model” of particle physics, Quantum Electrodynamics
(QED), Quantum Chromodynamics (QCD), the Yang-Mills theories
are particlar examples of QFT.
Very successful phenomenologically. Precise predictions in particle
physics, universality in condensed matter.
Some physicists say QFT is well-understood. Others say QFT is not
yet defined. What do they mean?
Can mathematics give answers?
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Mathematical theory of physical systems

A physical theory formulates a problem in physics in terms of
mathematical objects. Determining the evolution of the system amounts
to predicting the change of the physical system.

Classical mechanics: ODA. The Newton equation
m d2

dt2 x(t) = −V ′(x(t)), where V is the potential energy.
Quantum mechanics: Operators on a Hilbert space. Schrödinger
equation i ∂

∂t Ψ(x , t) = [ 1
2m P̂2 + V (Q̂)]Ψ(x , t), P̂ = i ∂

∂x , Q̂ =
multiplication by x . [Q̂, P̂] = i1.
Classical field theory: PDA. ( ∂2

∂t2 − ∂2

∂x2 + m2)ϕ(x) = −V ′(ϕ(x))
Quantum field theory: ??

Definition of Quantum field ϕ̂(x)? ⇒ Axiomatic approaches (Wightman,
Osterwalder-Schrader, Araki-Haag-Kastler...) + Constructive Quantum
Field Theory (examples). (cf. Yang-Mills theory: a Millenium problem)
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Mathematical theories of physical systems

Classical mechanics
Cannonballs, planets, stars, galaxies...

Newton’s equation of motion

mẍ = F

Quantum mechanics

Atoms, molecules, metals...

The Schrödinger equation
d
dtψ = iHψ

“quantization”

Classical fields
Electromagnetism, gravitation...

Field equations

(e.g. ϕ4 theory, V (ϕ(x)) = ϕ(x)4)

(□ + m2)ϕ(x , t) = −λϕ(x , t)3

Quantum field theory

Elementary particles

Quantized field equations?

?

quantization?
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Quantum Mechanics

Consider a single particle in the d-dimensional space.
d degrees of freedom.
Hilbert space: H = L2(Rd).
Operators: Qj = Mxj (multiplication), Pj = i ∂

∂xj
.

Canonical commutation relations: [Qj ,Pk ] = iδj,k .
Hamiltonian: H =

∑d
j=1

1
2mP2

j + V (Q1, · · · ,Qd), a self-adjoint
operator on H.

Problems: the spectrum of H, the time evolution eitH , asymptotic
behaviors (stability of matter, scattering theory...).
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Quantum Field Theory

Classically, one considers functions ϕ(x) of the space(time).
Each point x has a degree of freedom.
Canonical commutation relations: [ϕ(x), π(y)] = iδ(x − y)?
ϕ(x), π(y) should be operator-valued distributions.

Hamiltonian: H ?=
∫ 1

2(π(y)2 + (∇ϕ(x))2 + m2ϕ(x)2 + V (ϕ(x))dx
Need “renormalization”.

Ultraviolet problem: more difficult in higher dimensions, higher
powers in V .
Infrared problem: integral over Rd .

Some solutions in 1 + d = 2, 3. Most important 1 + d = 4 is open
(cf. “triviality”).

Yoh Tanimoto (Tor Vergata) Introduction to AQFT (lecture 1/6) Nagoya, 2023/05/15 6 / 24



Wightman axioms

What should a quantum field theory be?
ϕ(x): operator-valued distribution of R1+d .
ϕ(f ) is an unbounded operator on a dense domain in a Hilbert space
H.
U: a unitary represenetation of the spacetime symmetry group P↑

+
(the Poincaré group).
Ω: the vacuum vector in H.

Wightman axioms
Covariance: U(g)ϕ(x)U(g)∗ = ϕ(g · x) for g ∈ P↑

+.
Locality (Einstein causality): [ϕ(x), ϕ(y)] = 0 if x , y are spacelike
separated.
Positivity of energy (a spectrum condition on U).
Properties of the vacuum: U(g)Ω = Ω, ϕ(f1) · · ·ϕ(fn)Ω span H.
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Examples of Wightman fields

See Summars’ review arXiv:1203.3991
Free fields in any dimension 1 + d .
The P(ϕ)2-models in 1 + 1 dimensions (Glimm and Jaffe, ‘72).
Exponential interactions, the Yukawa model, the Federbush model...
Euclidean method: construct first a probability theory on Rd

satisfying Reflection Positivity, then reconstruct a QFT by Wick
rotation (Osterwalder and Schrader ‘75).
The Gross-Neveu model, the sine-Gordon model (1 + 2 dimensions),
the ϕ4

3-model (1 + 2 dimensions), Abelian Higgs (U(1)-gauge) models
(1 + 1 and 1 + 2 dimensions, except uniqueness of the vacuum)...
Some d = 1 + 1 conformal field theories (CFTs, Vertex Operator
Algebras), (Carpi-Kawahigashi-Longo-Weiner ‘18, Raymond-T.-Tener
‘22 for chiral CFT (unitary vertex operator algebras),
Adamo-Giorgetti-T. ‘23 for some full CFT).
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1 + 3 dimensions, triviality

There is no known Wightman fields except the free fields in 1 + 3 or
higher dimensions.
The higher the dimensions are, the severer the Ultraviolet (UV)
divergence is.
Triviality of the ϕ4

4-model by Aizenman and Duminil-Copin ‘21 (very
roughly, one cannot construct interacting scalar fields through lattice
approximation in 1 + 3 dimensions).
Yang-Mills theory (one of the Millenium problems)? Quantum
Electrodynamics? The standard model?
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Current status of QFT

Physicists often say that the definition of QFT is missing...
Actually, the axioms are there (and are very weak, cf. conformal
bootstrap).
What is missing are examples in 1 + 3 dimensions.

Apart from constructing examples, one can study some other aspects
of QFT (perturbation theory, the formal power series,
topological/differential-geometrical properties of the classical
theory...)

Yoh Tanimoto (Tor Vergata) Introduction to AQFT (lecture 1/6) Nagoya, 2023/05/15 10 / 24



QFT/operator algebras-related Fields medals

1982 Connes (classification of type III factors)
1990 Jones (knot invariants and von Neumann algebras)
1998 Borcherds (vertex operator algebras, the moonshine conjecture)
2006 Werner (critical exponents or two-dimensional percolation)
2010 Smirnov (conformal invariance of the planar Ising model)
2014 Hairer (stochastic PDE, related with the ϕ4

3-model)
2022 Duminil-Copin (triviality of the ϕ4

4-model)

20?? Construction of the quantum Yang-Mills theory
20?? Construction of the standard model
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von Neumann algebras

An operator algebra (C∗, von Neumann) is a ∗-subalgebra of the
algebra B(H) of bounded operators on a Hilbert space H, closed
under a topology (norm, weak operator topology).
If a C∗-algebra A is commutative, it is isomorphic to C(X ) for some
topological space X . If a von Neumann algebra M is commutative, it
is isomorphic to L∞(X , dµ) for some measurable space X and a
measure µ.
A noncommutative operator algebra should be regarded as
noncommutative geometry/probability theory.
From a ∗-closed subset S of B(H), one can take the smallest C∗-/von
Neumann algebra S ′′ containing S.
Main problems in operator algebras: classification,
subalgebras/extensions, (quantum) group actions, representations...
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Algebraic QFT

Axioms for QFT in terms of von Neumann algebras (the
Araki-Haag-Kastler axioms): a family of von Neumann algebras
{A(O)}, a unitary representation U of the Poincaré group and a vacuum
Ω ∈ H satisfying

Isotony: If O1 ⊂ O2, then A(O1) ⊂ A(O2).
Locality: If O1 and O2 are spacelike separated, then
[A(O1),A(O2)] = {0}.
Covariance: U(g)A(O)U(g)∗ = A(g · O).
Positive energy: The spectrum of U|R1+d is contained in the future
lightcone.
Vacuum: Ω is unique s.t. U(g)Ω = Ω and

⋃
O A(O)Ω spans H.

Weak additivity: If O ⊂
⋃

j Oj , then A(O) ⊂ (
⋃

j A(Oj))′′.
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Wightman + α ⇒ Algebraic QFT

Assume that a Wightman field theory (ϕ,U,Ω) satisfies a technical
condition (“linear energy bounds”). For spacetime regions O, define
A(O) = {eiϕ(f ) : supp f ⊂ O}′′.
Here, for a self-adjoint set M of bounded operators, M ′ is called the
commutant of M and it is the set of all bounded operators on H
commuting with all elements of M. M ′′ is the double commutant,
and is the smallest von Neumann algebra including M.
Then (A,U,Ω) satisfy the AHK axioms.
Examples: the P(ϕ)2-models, the Yukawa2 model, the ϕ4

3-model,
CFT2...
Probably all the other Wightman theories can be associated with
AHK theories.
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Why AQFT?

Powerful tools of von Neumann algebras (the Tomita-Takesaki modular
theory, the nuclearity conditions, the subfactor theory) can be applied to
obtain

Representation theory (states + the GNS construction).
Extension/classifications of a class of CFT.
Defining relative entropy/mutual information in QFT.
Constructing new examples (in 1 + 1 dimensions, until now...).
Studying QFT on curved spacetimes.
Defining and proving quantum energy inequalities.
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Doplicher-Haag-Roberts (DHR) representation theory

A representation of a AHK net A is a family of representations {ρO}
on a (possibly different) Hilbert space Hρ with the compatibility
condition

ρO1 |A(O2) = ρO2 for O2 ⊂ O1.

Consider the class of DHR representation on H such that, for some
O, ρA(O′) = id. Assuming the Haag duality A(O′)′ = A(O), ρA(O) is
an endomorphism of A(O). ⇒ such ρ’s can be composed.
Consider the category C of “nice” endomorphisms ⇒. In 1 + 3
dimensions (or higher), C is a symmetric tensor category.
By a generalization of the Tannaka-Krein duality, C is isomorphic to
the category of finite-dimensional representations of some compact
group G .
There is an extension B of A and an action of G such that
A(O) = B(O)G (the Doplicher-Roberts reconstruction).

Yoh Tanimoto (Tor Vergata) Introduction to AQFT (lecture 1/6) Nagoya, 2023/05/15 16 / 24



The classification theory of chiral CFT

For chiral CFT (QFT on S1), one can consider a similar
representation theory.
For a “completely rational” net A, the category C is a modular tensor
category.
Assume that there is an extension A ⊂ B. Consider all
representations ρ of A and make the “induced” representations ρ̂±,
there are actually two such “solitonic” representations.
The matrix Zρ,σ = dim (ρ̂+, σ̂−) gives a modular invariant.
A classification of extensions A ⊂ B can be reduced to the
classification of modular invariants.
Carried out for the Virasoro nets Virc , c < 1 (Kawahigashi-Longo
‘04).
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The Tomita-Takesaki modular theory

Let M be a von Neumann algebra, Ω be cyclic (MΩ = H) and
separatiang (for x ∈ M, x ̸= 0, xΩ ̸= 0). The densely defined
antilinear operator

MΩ ∋ xΩ 7−→ x∗Ω

is closable. Its closure has the polar decomposition S = J∆ 1
2 .

∆ is called the modular operator, J the modular conjugation.
∆itM∆−it = M for t ∈ R, JMJ = M′ (Tomita).

In a AHK net, take M = A(WL),Ω the vacuum vector. Then ∆it are
the Lorentz boosts, J the TCP operator (the Bisognano-Wichmann
property).
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Araki’s relative entropy

In Quantum Mechanics (B(H) for some finite-dimensional H), any
state σ is given by x 7→ tr(xMσ), where Mσ ∈ B(H)+, tr Mσ = 1. For
two states σ1, σ2, the relative entropy is given by
S(σ1|σ2) = tr(σ1(log σ1 − log σ2)).
Relative entropy in QFT plays important role in theoretical physics.
But there is no tr for local algebras A(O) in a AHK net.
Let Ω,Ψ be vectors cyclic and separating for A(O). Let
ω = ⟨Ω, ·Ω⟩, φ = ⟨Φ, ·Φ⟩. The relative modular objects is given by
Sω,φ = JΩ,φ∆

1
2
Ω,φ, where

Sω,φxΨ = x∗Ω.

The relative entropy of M with respect to ω, φ is

S(ω, φ) = ⟨Ω, log ∆ω,φΩ⟩.

In some models and some states, S(ω, φ) can be calculated.
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New examples

Isotony: O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2).
Larger regions contain more observables.
It is difficult to construct local interacting quantum fields ϕ(x).
Maybe simpler operators in larger regions?
Wedge: WR := {(t, x) : x > |t|}.

Construct first the algebras A(WR) of observables in wedges. Local
observables are obtained by A(O) = A(WR + a) ∩ A(WL + b).
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Standard wedge and double cone

WR

WR + aa

t

x
a

D0,a

t

x
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New examples

Fix a nice analytic function (“S-matrix”) S : R + i(0, π) → C,
S-symmetric Fock space: H1 = L2(R, dθ), Hn = PnH⊗n

1 , where Pn is
the projection onto S-symmetric functions:
Ψn(θ1, · · · , θn) = S(θk+1 − θk)Ψn(θ1, · · · , θk+1, θk , · · · , θn).
Zamolodchikov-Faddeev algebra: S-symmetrized creation and
annihilation operators z†(ξ) = Pa†(ξ)P, z(ξ) = Pa(ξ)P,P =

⊕
n Pn.

Wedge-local field: ϕ(f ) = z†(f +) + z(f +).

A(WR) = {eiϕ(f ) : supp f ⊂ WR}
vN

.
Need to prove that A(O) = A(WR + a) ∩ A(WL + b) is large.
This can be reduced to proving that A(WR + a) ⊂ A(WR) is split.
The massive Ising model, Sinh-model with CDD factors (Lechner),
more algebraic construction of the Federbush-like model (T.), the
Bullough-Dodd model (Bostelmann-Cadamuro-T., in progress).
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Summary

Mathematical definitions of relataivistic quantum fields (Wightman)
and algebras of observables (Araki-Haag-Kastler).
Examples from Constructive QFT, 2d CFT
Representation of AHK nets, extension and classification of 2d CFTs
Tomita-Takesaki theory, relative entropy
the wedge construction, new 2d massive examples
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Overview of the lectures
Lecture 2: basics

von Neumann algebras, the Tomita-Takesaki modular theory
the Minkowski space, the Poincaré group

Lecture 3: the Araki-Haag-Kastler axioms
local net of von Neumann algebras
the commutator theorem, strong locality
consequences of the axioms (the Reeh-Schlieder property)

Lecture 4: the free field net
the Fock space, field operators
construction of the free field nets

Lecture 5: further properties of AHK nets
the Bisognano-Wichmann property
nuclearity conditions, the split property for the fermionic free field
wedge construction, twisting

Lecture 6: modular nuclearity/advanced topics
proof of modular nuclearity for the fermionic free field
advanced topics
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