#### 2023Call3.

(1) **Q1** 

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{a}{b}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

Complete the formulae.

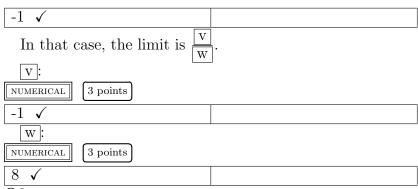
$$\cos(x-1) = \boxed{a} + \boxed{b}(x-1) + \boxed{c}(x-1)^2 + \boxed{e}(x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$$

| a:  NUMERICAL 1 point |
|-----------------------|
| 1 🗸                   |
| b: NUMERICAL 1 point  |
| 0 🗸                   |
| <u>C</u> :            |
| NUMERICAL 2 points    |
| -1 ✓                  |
| d:                    |
| NUMERICAL 1 point     |
| 2 🗸                   |
| e:                    |
| NUMERICAL 1 point     |
| 0 /                   |

$$(x-1)\sqrt{x} = \boxed{g} + \boxed{h}(x-1) + \frac{\boxed{i}}{\boxed{j}}(x-1)^2 + \frac{\boxed{k}}{\boxed{1}}(x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$$

| g: NUMERICAL 1 point |  |
|----------------------|--|
| 0 🗸                  |  |
| h:                   |  |
| NUMERICAL 1 point    |  |

|            | 1 🗸                                                                                         |                 |
|------------|---------------------------------------------------------------------------------------------|-----------------|
|            | <u>i</u> :                                                                                  |                 |
|            | NUMERICAL 1 point                                                                           |                 |
|            | 1 🗸                                                                                         |                 |
|            | j:                                                                                          |                 |
|            | NUMERICAL 1 point                                                                           |                 |
|            | 2 🗸                                                                                         |                 |
|            | k:                                                                                          |                 |
|            | NUMERICAL 1 point                                                                           |                 |
|            | -1 🗸                                                                                        |                 |
|            |                                                                                             |                 |
|            | NUMERICAL 1 point                                                                           |                 |
|            | 8 🗸                                                                                         |                 |
|            |                                                                                             |                 |
| $\sin((x-$ | $(-1)^3$ = m+n(x-1)+o(x-1) <sup>2</sup> +p(x-1) <sup>3</sup> +o((x-1) <sup>3</sup> ) as x - | $\rightarrow 1$ |
|            | <u> </u>                                                                                    |                 |
|            | NUMERICAL 2 points                                                                          |                 |
|            | 0 🗸                                                                                         |                 |
|            | n:                                                                                          |                 |
|            | NUMERICAL 1 point                                                                           |                 |
|            | 0 🗸                                                                                         |                 |
|            | 0:                                                                                          |                 |
|            | NUMERICAL 1 point                                                                           |                 |
|            | 0 🗸                                                                                         |                 |
|            | [p]:                                                                                        |                 |
|            | NUMERICAL 2 points                                                                          |                 |
|            |                                                                                             |                 |
|            | For various $\alpha, \beta \in \mathbb{R}$ , study the limit:                               |                 |
|            | $\lim_{x \to 1} \frac{\cos(x-1) + (x-1)\sqrt{x} + \alpha + \beta(x-1)}{\sin((x-1)^3)}.$     |                 |
|            |                                                                                             |                 |
|            | This limit converges for $\alpha = \boxed{q}, \beta = \boxed{r}$ .                          |                 |
|            | q:                                                                                          |                 |
|            | NUMERICAL 6 points                                                                          |                 |
|            | -1 ✓                                                                                        |                 |
|            |                                                                                             |                 |
|            | NUMERICAL 6 points                                                                          |                 |
|            |                                                                                             |                 |

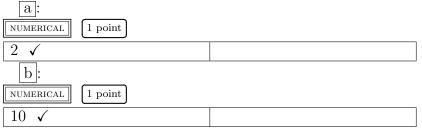


# (2) **Q2**CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{a}{b}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

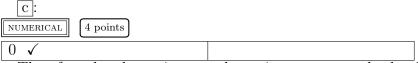
but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ . Let us study the following series  $\sum_{n=0}^{\infty} \frac{3^n-1}{n!} (x+1)^n$ , with various x.

This series makes sense also for  $x \in \mathbb{C}$ . For x = i, calculate the partial sum  $\sum_{n=0}^{2} \frac{3^{n}-1}{n!} (x+1)^{n} = \boxed{\mathbf{a}} + \boxed{\mathbf{b}} i$ .

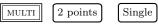


In order to discuss the convergence using the ratio test for  $x \in \mathbb{R}$ , we put  $a_n = \frac{3^n - 1}{n!} |x + 1|^n$ . Complete the formula.

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\boxed{\mathbf{c}}$$



Therefore, by the ratio test, the series converges absolutely for



- all *x*. ✓
- -3 < x < -1.
- -3 < x < 1.
- -3 < x < 1.  $-\frac{5}{4} < x < -\frac{3}{4}$ .  $-\frac{3}{2} < x < -\frac{1}{2}$ .  $\frac{1}{2} < x < \frac{3}{2}$ .  $\frac{3}{4} < x < \frac{5}{4}$ . -1 < x < 1.

- $\bullet$  -1 < x < 3.
- x = 0.
- 1 < x < 3.

For the case  $x = -\frac{4}{3}$ , the series



- converges absolutely.  $\checkmark$
- converges but not absolutely.
- diverges.

Calculate the sum  $\sum_{n=0}^{\infty} \frac{5}{2^n} = d$ .



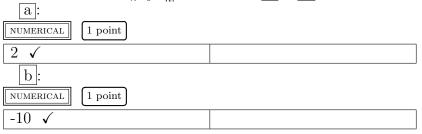
### $(3) \mathbf{Q2}$

0.10 penalty CLOZE

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{|a|}{|b|}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted

but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ . Let us study the following series  $\sum_{n=0}^{\infty} \frac{3^n-1}{n!} (x+1)^n$ , with various x.

This series makes sense also for  $x \in \mathbb{C}$ . For x = -i, calculate the partial sum  $\sum_{n=0}^{2} \frac{3^{n}-1}{n!} (x+1)^{n} = \boxed{\mathbf{a}} + \boxed{\mathbf{b}} i$ .



In order to discuss the convergence using the ratio test for  $x \in \mathbb{R}$ , we put  $a_n = \frac{3^n - 1}{n!} |x + 1|^n$ . Complete the formula.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \boxed{\mathbf{c}}$$



Therefore, by the ratio test, the series converges absolutely for

#### MULTI 2 points Single

- $\bullet$  all  $\overline{x}$ .
- -3 < x < -1.

- -3 < x < 1. -3 < x < 1.  $-\frac{5}{4} < x < -\frac{3}{4}$ .  $-\frac{3}{2} < x < -\frac{1}{2}$ .  $\frac{1}{2} < x < \frac{3}{2}$ .  $\frac{3}{4} < x < \frac{5}{4}$ . -1 < x < 1.

- -1 < x < 3.
- x = 0.
- 1 < x < 3.

For the case  $x = -\frac{4}{3}$ , the series MULTI 2 points Single

- $\bullet$  converges absolutely.  $\checkmark$
- converges but not absolutely.
- diverges.

Calculate the sum  $\sum_{n=0}^{\infty} \frac{3}{4^n} = d$ .



 $(4) \ \mathbf{Q3}$ CLOZE 0.10 penalty

> If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as a b have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

Let us consider the following function

$$f(x) = \frac{x}{1 + \exp x}.$$

Choose all the points that are **not** in the natural domain of f(x), if there is any.

MULTI 4 points Single

- $\bullet$  -3  $\overline{(-100\%)}$
- -2 (-100%)
- -1 (-100%)
- $-\frac{1}{2}$  (-100%)
- 0(-100%)
- $\frac{1}{2}$  (-100%)
- $\bar{1}$  (-100%)
- 2 (−100%)
- 3 (−100%)
- f is defined for all  $x \in \mathbb{R}$ .

Choose all asymptotes of f(x).

- $y = -e \ (-100\%)$
- $y = -1 \ (-100\%)$
- y = 0  $\checkmark$
- $y = 1 \ (-100\%)$
- $y = e \ (-100\%)$
- $x = -2 \ (-100\%)$
- $x = -\sqrt{3} \ (-100\%)$
- $x = -\sqrt{2} \ (-100\%)$
- $x = -1 \ (-100\%)$
- $x = 0 \ (-100\%)$
- x = 1 (-100%)
- $x = \sqrt{2} \ (-100\%)$ •  $x = \sqrt{3} \ (-100\%)$
- $x = 2 \ (-100\%)$
- $y = x/2 \ (-100\%)$
- $y = x \checkmark$
- $y = 2x \ (-100\%)$
- $y = -x/2 \ (-100\%)$
- y = -x(-100%)
- y = -2x(-100%)

One has

$$f'(\log 2) = \frac{\boxed{\mathbf{a} + \boxed{\mathbf{b} \log 2}}}{\boxed{\mathbf{c}}}.$$



The function f(x) has  $\boxed{d}$  stationary point(s) in the domain. (Hint: no need to find it (them) explicitly)



Choose the behaviour of f(x) in the interval (-1,0).

MULTI 4 points Single

- monotonically decreasing
- monotonically increasing ✓
- neither decreasing nor increasing

# (5) **Q3**[CLOZE] [0.10 penalty]

If not specified otherwise, fill in the blanks with **integers** (**possibly** 0 **or negative**). A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{a}{b}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

Let us consider the following function

$$f(x) = \frac{x}{1 + \exp(-x)}.$$

Choose all the points that are **not** in the natural domain of f(x), if there is any.

MULTI 4 points Single

- -3 (-100%)
- -2 (-100%)
- -1(-100%)
- $\bullet$   $-\frac{1}{2}$  (-100%)
- 0 (-100%)

- $\frac{1}{2}$  (-100%) 1 (-100%)
- 2(-100%)
- 3 (−100%)
- f is defined for all  $x \in \mathbb{R}$ . Choose all asymptotes of f(x).

## MULTI 4 points Single

- $y = -e \ (-100\%)$
- $y = -1 \ (-100\%)$
- y = 0
- y = 1 (-100%)
- $y = e \ (-100\%)$
- $x = -2 \ (-100\%)$
- $x = -\sqrt{3} \ (-100\%)$
- $x = -\sqrt{2} \ (-100\%)$
- $x = -1 \ (-100\%)$
- $x = 0 \ (-100\%)$
- $x = 1 \ (-100\%)$
- $x = \sqrt{2} \ (-100\%)$
- $x = \sqrt{3} \ (-100\%)$
- x = 2 (-100%)
- $y = x/2 \ (-100\%)$
- $y = x \checkmark$
- y = 2x (-100%)
- $y = -x/2 \ (-100\%)$
- y = -x (-100%)
- y = -2x (-100%)

One has

$$f'(\log 3) = \frac{\boxed{a} + \boxed{b} \log 3}{\boxed{c}}.$$

| a  :               |  |
|--------------------|--|
| NUMERICAL 2 points |  |
| 12 🗸               |  |
| b:                 |  |
| NUMERICAL 2 points |  |
| 3 ✓                |  |
| <u>c</u> :         |  |
| NUMERICAL 4 points |  |
| 16 ✓               |  |

The function f(x) has  $\boxed{d}$  stationary point(s) in the domain. (Hint: no need to find it (them) explicitly)



Choose the behaviour of f(x) in the interval (-2,0).

MULTI 4 points Single

- monotonically decreasing
- monotonically increasing
- ullet neither decreasing nor increasing  $\checkmark$

# (6) **Q4**CLOZE 0.10 penalty

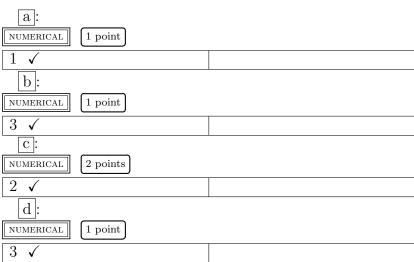
If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{a}{b}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

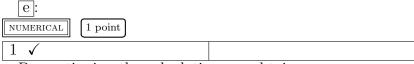
Let us calculate the following integral.

$$\int_0^1 x^2 e^{3x} dx.$$

By applying the integration by parts, we have

$$\int_0^1 x^2 e^{3x} dx = \left[\frac{\boxed{\mathbf{a}}}{\boxed{\mathbf{b}}} x^2 e^{3x}\right]_0^1 - \int_0^1 \frac{\boxed{\mathbf{c}}}{\boxed{\mathbf{d}}} x^{\boxed{\mathbf{e}}} e^{3x} dx.$$





By continuing the calculation, we obtain

$$\int_0^1 x^2 e^{3x} dx = \frac{\boxed{\mathrm{f}}}{\boxed{\mathrm{g}}} + \frac{\boxed{\mathrm{h}}}{\boxed{\mathrm{i}}} e^3.$$

| f:                 |  |
|--------------------|--|
| NUMERICAL 2 points |  |
| -2 <b>√</b>        |  |
| g:                 |  |
| NUMERICAL 1 point  |  |
| 27 ✓               |  |
| h:                 |  |
| NUMERICAL 2 points |  |
| 5 ✓                |  |
| i:                 |  |
| NUMERICAL 1 point  |  |
| 27 ✓               |  |

# (7) **Q4**CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly** 0 **or negative)**. A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{a}{b}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

Let us calculate the following integral.

$$\int_0^1 x^2 e^{4x} dx.$$

By applying the integration by parts, we have

$$\int_0^1 x^2 e^{4x} dx = \left[ \frac{\boxed{\mathbf{a}}}{\boxed{\mathbf{b}}} x^2 e^{4x} \right]_0^1 - \int_0^1 \frac{\boxed{\mathbf{c}}}{\boxed{\mathbf{d}}} x^{\boxed{\mathbf{e}}} e^{4x} dx.$$



| 1 🗸                |  |  |
|--------------------|--|--|
| b:                 |  |  |
| NUMERICAL 1 point  |  |  |
| 4 🗸                |  |  |
| <u>c</u> :         |  |  |
| NUMERICAL 2 points |  |  |
| 1 🗸                |  |  |
| d:                 |  |  |
| NUMERICAL 1 point  |  |  |
| 2 🗸                |  |  |
| e:                 |  |  |
| NUMERICAL 1 point  |  |  |
| 1 🗸                |  |  |

By continuing the calculation, we obtain

$$\int_0^1 x^2 e^{4x} dx = \frac{\boxed{f}}{\boxed{g}} + \frac{\boxed{h}}{\boxed{i}} e^4.$$

| f:                 |  |
|--------------------|--|
| NUMERICAL 2 points |  |
| -1 ✓               |  |
| g:                 |  |
| NUMERICAL 1 point  |  |
| 32 ✓               |  |
| h:                 |  |
| NUMERICAL 2 points |  |
| 5 🗸                |  |
| i:                 |  |
| NUMERICAL 1 point  |  |
| 32 ✓               |  |

(8)  $\overline{\mathbf{Q5}}$ CLOZE 0.10 penalty

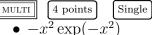
If not specified otherwise, fill in the blanks with **integers (possibly** 0 **or negative)**. A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\boxed{a}$ ) have ambiguity, the negative sign

should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

Let us calculate the following improper integral based on definition.

$$\int_0^\infty x \exp(-x^2) dx$$

Choose a primitive of the integrated function.

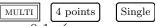


- $3x^3 \exp(-x^2)$
- $\bullet \exp(-x^2)/2 \checkmark$
- $2x \exp(-x)$
- $-\exp(-x^3)/3$
- $\bullet \exp(-x^2)/2$

Calculate the integral  $\int_0^\infty x \exp(-x^2) dx = \boxed{a}$ 



Choose all the value of s for which the integral  $\int_0^\infty x^s \exp(-x^2) dx$ converges.



- 0.1 √
- 0.2 ✓
- 0.5 ✓
- 1 ✓
- 1.5 ✓
- 2 √
- 3 √

Choose the value of s for which the series  $\sum_{n=1}^{\infty} n^s \exp(-n^2)$ converges.

#### MULTI 4 points Single

- $\overline{\bullet} \ 0.1 \overline{\checkmark}$
- 0.2 ✓
- 0.5 ✓
- 1 ✓
- 1.5 ✓

- 2 √
- 3 √

Consider the following three improper integrals.



If not specified otherwise, fill in the blanks with **integers** (**possibly** 0 **or negative**). A fraction should be **reduced** (for example,  $\frac{1}{2}$  is accepted but not  $\frac{2}{4}$ ), and if it is negative and the answer boxes (such as  $\frac{a}{b}$ ) have ambiguity, the negative sign should be put on the numerator (for example  $\frac{-1}{2}$  is accepted but  $\frac{1}{-2}$  is not).  $\log x = \log_e x$ , not  $\log_{10} x$ .

Let us calculate the following improper integral based on definition.

$$\int_0^\infty x^2 \exp(-x^3) dx$$

Choose a primitive of the integrated function.

MULTI 4 points Single

- $-x^{2} \exp(-x^{2})$   $3x^{3} \exp(-x^{2})$
- $\exp(-x^2)/2$
- $2x \exp(-x)$

• 
$$-\exp(-x^3)/3$$
  $\checkmark$ 

•  $\exp(-x^2)/2$ 

Calculate the integral  $\int_0^\infty x^2 \exp(-x^3) dx = \boxed{\text{a}}$ 

a:

NUMERICAL 1 point

1 

b:

NUMERICAL 1 point

3

Choose all the value of s for which the integral  $\int_0^\infty x^s \exp(-x^3) dx$  converges.

MULTI 4 points Single 

• 0.1 ✓

- 0.1 V
- 0.2 ✓
- 0.5 ✓
- 1 ✓
- 1.5 ✓
- 2 √
- 3 √

Choose the value of s for which the series  $\sum_{n=1}^{\infty} n^s \exp(-n^3)$  converges.

MULTI 4 points Single

- 0.1 ✓
- 0.2 ✓
- 0.5 ✓
- 1 ✓
- 1.5 ✓
- 2 √
- 3 ✓

Consider the following three improper integrals.

$$(1) \int_0^\infty \log(x+e)/(x^2+1)^2 dx, \quad (2) \int_1^\infty \log(x)/(x^2+1)^2 dx, \quad (3) \int_0^\infty (x+1)/(x^2+1)^2 dx, \quad (4) \int_1^\infty \log(x+e)/(x^2+1)^2 dx$$

Give the correct order. (c) < (d) < (e) < (f).

C:
NUMERICAL 1 point

4 

d:

| NUMERICAL 1 point |  |
|-------------------|--|
| 2 🗸               |  |
| e:                |  |
| NUMERICAL 1 point |  |
| 1 🗸               |  |
| f:                |  |
| NUMERICAL 1 point |  |
| 3 ✓               |  |

Total of marks: 168