
1 Taylor expansion and limit

Problem. For various α, β ∈ R, study the limit:

lim
x→1

log x+ α(x− 1)
√
x+ β(x− 1)

exp(2(x− 1)3)− 1
,

and find α, β such that this converges, and calculate the limit.
Solution. As x → 1, as | exp(2(x − 1)3)| ends to 0. For the whole limit to converge, the
numerator must also tend to 0, and we need to study the behaviours of the numerator and the
denominator as x → 1. For this purpose, we calculate the Taylor formula of both the numerator
and the denominator. The general formula (to the 3rd order, see below why the 3rd order is
enough) is

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f (3)(a)(x− a)3 + o((x− a)3) as x → a.

We take a = 1.

• Put f(x) = log x. Then f ′(x) = 1
x , f

′′(x) = −x−2, f (3)(x) = 2x−3. Applying the general
Taylor formula with a = 1, we get log x = 0+(x−1)+ −1

2! (x−1)2+ 2
3!(x−1)3+o((x−1)3) =

0 + (x− 1) + −1
2 (x− 1)2 + 1

3(x− 1)3 + o((x− 1)3) as x → 1.

• In general, if g(x) = a0 + a1(x− 1) + a2(x− 1)2 + a3(x− 1)3 + o((x− 1)3), then we have
(x− 1)g(x) = a0(x− 1)+ a1(x− 1)2+ a2(x− 1)3+ o((x− 1)3), That is, the Taylor formula
can be multiplied. This can simplify some calculations.

•
√
x = 1 + 1

2(x− 1) + −1
8 (x− 1)2 + o((x− 1)2) (because (

√
x)′ = 1

2x
− 1

2 , (
√
x)?? = −1

4x
− 3

2 )

• By applying the formula for product (see above), (x−1)
√
x = (x−1)+ 1

2(x−1)2+ −1
8 (x−

1)3 + o((x− 1)3).

• As exp(y) = y + o(y), we have exp(2(x− 1)3) = 2(x− 1)3 + o((x− 1)3).

Now the numerator is

log x = 0 + (x− 1) +
−1

2
(x− 1)2 +

1

3
(x− 1)3 + o((x− 1)3)

+ α((x− 1) +
1

2
(x− 1)2 +

−1

8
(x− 1)3 + o((x− 1)3)) + β(x− 1)

= (1 + α+ β) (x− 1) +

(
−1

2
+ α

1

2

)
(x− 1)2 +

(
1

3
+ α

−1

8

)
(x− 1)3 + o((x− 1)3)

To have a finite limit for limx→1
log x+α(x−1)

√
x+β(x−1)

exp(2(x−1)3)−1
, we must have 1+α+β = 0,−1

2+α1
2 =

0, because otherwise the limit diverges. Therefore, α = 1, β = −2, and the given limit is

lim
x→1

5
24(x− 1)3 + o((x− 1)3)

2(x− 1)3 + o((x− 1)3)
= lim

x→1

5
24 + o((x−1)3

(x−1)3
)

2 + o((x−1)3

(x−1)3

=
5

48

Note: limx→1
a

(x−1)3
converges if and only if a = 0 (otherwise diverges). Similarly, we have

limx→1
a+b(x−1)2

(x−1)3
converges if and only if a = b = 0 (otherwise diverges).

The symbol g(x) = o((x−1)3) means that limx→1
g(x)

(x−1)3
= 0. In particular, we can calculate

limx→1
a(x−1)3+o((x−1)3)

(x−1)3
= limx→1

a+
o((x−1)3)

(x−1)3

1 = a.

Examples of Taylor series: ex = 1 + x + x2

2 + x3

6 + o(x3) as x → 0, log x = 0 + (x − 1) −
(x−1)2

2 + (x−1)3

3 as x → 1.
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2 Series

Problem. Calculate the finite sum for x = i in
∑2

n=0
n

(1+x)2n
and study the convergence of the

infinite series
∑∞

n=0
n

(1+x)2n
, with various x ∈ R, x ̸= −1.

Solution. The finite sum is
∑2

n=0 an = a0 + a1 + a2. Recall that a0 = 1 for all a ∈ C by
convention. In the case at hand with x = i, (i+ 1)0 = 1, (i+ 1)2 = 2i, thus

2∑
n=0

n

(1 + x)2n

=
0

(1 + i)0
+

1

(1 + i)2
+

2

(1 + i)4

= 0 +
1

2i
+

2

−4
= −1

2
− 1

2
i

As for the convergence, we use the ratio test. The ratio test tells, for a series
∑∞

n=0 an with
an > 0, that if limn→∞

an+1

an
= L < 1, then the series

∑∞
n=0 an converges, and if L > 1, then the

series diverges.
To apply the ratio test to our case, for x ∈ R, x ̸= −1, we set an = n

(1+x)2n
(need to take the

absolute value), and see if L > 1 or L < 1, depending on x.
To calculate the limit,

lim
n→∞

an+1

an
= lim

n→∞

n+1
(1+x)2(n+1)

n
(1+x)2n

= lim
n→∞

n+ 1

n(1 + x)2

=
1

|x+ 1|2

Therefore, the ratio test tells that, if 1
|x+1|2 < 1, the series

∑∞
n=0

n
(1+x)2n

converges, and as
n

(1+x)2n
> 0, it converges absolutely. The condition is equivalent to 1 < |x+1|2, that is, 1 < x+1

or x+ 1 < 1. This is equivalent to or 0 < x or x < −2.
For any specific value of x, one has to consider whether −2 < x < 0 or not. If x = −2, the

ratio test does give answer, but the series becomes
∑∞

n=0
n

(−1)2n
=

∑∞
n=0 n and this is divergent.

Problem. Calculate
∑∞

n=0
5
3n .

Solution. We have
∑∞

n=0
5
3n = 5

∑∞
n=0(

1
3)

n and by the formula for geometric series,
∑∞

n=0 a
n =

1
1−a for |a| < 1, thus

∑∞
n=0

5
3n = 5 · 1

1− 1
3

= 5
2
3

= 15
2 .

Note: a series
∑

an is a new sequence obtained from the sequence an by a0, a0 + a1, a0 + a1 +
a2, · · · . For example, if an = 1

2n , then
∑N

n=0 an are 1
1 = 1, 1 + 1

2 , 1 + 1
2 + 1

4 , 1 + 1
2 + 1

4 + 1
8 , · · ·

(N = 0, 1, 2, 3).
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3 Graph of functions

Problem. Study the graph of the function f(x) = exp
(

1−x3

(x−3)2

)
.

Solution.

• Domain. exp y is defined for every y ∈ R. Moreover, we should have x − 3 ̸= 0 to make
sense of 1−x3

(x−3)2
. That is, x ̸= 3. Altogether, the domain is (−∞, 3) ∪ (3,∞).

• Asymptotes.

– Vertical asymptotes. As x → 3, the denominator of 1−x3

(x−3)2
tends to +0, while the

numerator tends to −26, so the whole fraction tends to −∞. Composed with exp, it
tends to 0, and no divergence. So there is no vertical asymptote at x = 3. and thus
log x2+1

x+2 → ∞. There is a vertical asysmptote at x = −2.

– Horizontal asymptote. As x → ∞, note that 1−x3

(x−3)2
→ −∞, and composed with exp,

it tends to 0. So y = 0 is a horizontal asymptote for x → ∞. As x → −∞, note
that 1−x3

(x−3)2
→ ∞, and compoese with exp, it tends to ∞. So there is no horizontal

asymptote for x → −∞.

– Oblique asymptote. As x → ∞, we know that y = 0 is a horizontal asymptote, so
there is no oblique asymptote. As x → −∞, we saw that f(x) diverges exponentially,
so there is no oblique asymptote for x → −∞.

• The derivative. We can use the chain rule: if f(x) = g(h(x)), then f ′(x) = h′(x)g′(h(x)). In
our case, g(y) = exp y and h(x) = 1−x3

(x−3)2
, g′(y) = exp y, h′(x) = −3x2(x−3)2−(1−x3)·2(x−3)

(x−3)4
=

−x3+9x2−2
(x−3)3

, therefore, we get

f ′(x) = exp

(
1− x3

(x− 3)2

)
· −x3 + 9x2 − 2

(x− 3)3
.

• In particular, f ′(1) = 6
−8 = −3

4 .

• Stationary points. They are points x in the domain where f ′(x) = 0 holds. As we have
computed f ′(x), the condition is that −x3 + 9x2 − 2 = 0 and x ̸= 3. The graph of
F (x) = −x3+9x2−2 crosses the x-axis at least once. Furthermore, F ′(x) = −3x2+18x =
−3x(x − 6) and x = 0 is a local minumum of F , while x = 6 is a local maximum of F .
F (0) = −2, while F (6) = 34, so F must cross the x-axis 3 times. That is, there are 3
stationary points. (use that limx→−∞ F (x) = ∞, limx→∞ F (x) = −∞ and the intermediate
value theorem)

• Behaviour of the graph. Recall that the function f is monotonically increasing in an interval
if f ′(x) > 0 there, and is monotonically decreasing in an interval if f ′(x) < 0.

It is easy to see that f ′(0) > 0 while f ′(−1) < 0. By continuity of f ′(x), f ′(x) > 0 around
x = 0, so f is increasing there, while f ′(x) < 0 around x = −1, so f is decreasing there.

Note: the graph of a function f(x) is the collection of points (x, f(x)) where x is in the domain
of f .
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4 Integral

Problem. Calculate the integral ∫ 2

1

1

3x + 2
dx

Solution. We change the variables by 3x = t, or equivalently, x log 3 = log t. From this we get
dx
dt = 1

t log 3 . and formally replace dx by 1
t log 3dt, therefore, with 31 = 3, 32 = 9,∫ 2

1

1

3x + 2
dx =

∫ 9

3

1

t log 3(t+ 2)
dt

=

∫ 9

3

1

log 3(t2 + 2t)
dt.

To carry out this last integral, we need to find the partial fractions: as t2 +2t = t(t+2), we put
1

t(t+2) =
A
t + B

t+2 = A(t+2)+Bt
t2+2t

, or 1 = (A+B)t+ 2A. By solving this, B = −1
2 , A = 1

2 . Namely,
1

t2+2t
= 1

2(
1
t −

1
t+2). Altogether,∫ 2

1

1

2x + 3 + 2(2−x)
dx =

1

2 log 3

∫ 9

3

(
1

t
− 1

t+ 2

)
dt

=
1

2 log 3
[log t− log(t+ 2)]93 dt

=
1

2 log 3
((log 9− log 11)− (log 3− log 5))

=
45
33

2 log 3
=

log 15
log 11

log 9
.

Note: other useful techniques are substitution (example:
∫
xex

2
dx by putting t = x2) and

integration by parts (example:
∫
xexdx by noticing that (ex)′ = ex).
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5 Improper integral

Problem. Study the improper integral ∫ ∞

−∞

x2

x6 + 1
dx.

Solution. The function f(x) = x2

x6+1
is bounded on R, but the integration region (−∞,∞) is

infinite. Therefore, we need to take α < β and calculate the integral on [α, 0] and [0, β]. Noting
that (x3)′ = 3x2, thus by substitution,∫ β

0

x2

x6 + 1
dx =

1

3

∫ β

0

3x2

x6 + 1
dx

=
1

3
[arctan(x3)]β0

=
1

3
(arctan(β3)− arctan 0]

=
1

3

(
arctan(β3)

)
As β → ∞, this is convergent to 1

3(
π
2 ) =

π
6 . That is,

∫∞
0

x2

x6+1
dx = limβ→∞

∫ β
0

x2

x6+1
dx = π

6 .
Similarly, one has

∫ 0
−∞

x2

x6+1
dx = π

6 .
Altogether, the improper integral converges absolutely.

Problem. Determine for which s > 0 the integral
∫∞
0

1
(x2+1)s

dx converges.
Solution. The function 1

(x2+1)s
is bounded around x = 0, so we only have to consider the integral

as x → ∞. Let us cut the integral at x = 1, thus
∫∞
1

1
(x2+1)s

dx. Compare this with
∫∞
1

1
(x2)s

dx.

As limx→∞
(x2)s

(x2+1)s
= 1, the original integral converge if and only if the latter converges. The

latter is
∫∞
1

1
(x2)s

dx = limβ→∞
1

2s+1 [x
−2s+1]β1 (if s = 1

2 , it is log x) and this converges if and only
if −2s+ 1 < 0, or 1

2 < s.

Problem. Determine for which s > 0 the series
∑∞

n=1
1

(n2+1)s
dx converges.

Solution. By the integral test, it converges 1
2 < s.

Problem. Consider the following three improper integrals and determine which is larger.

(1)

∫ ∞

0
x101e−xdx, (2)

∫ ∞

1
x100e−xdx, (3)

∫ ∞

0
e−xdx, (4)

∫ ∞

0
e−100xdx.

Compare (1) and (2). The functions are positive, and for x ≥ 1 we have x101e−x > x100e−x,
so

∫∞
0 x101e−xdx >

∫∞
1 x101e−xdx >

∫∞
1 x100e−xdx.

Compare (3) and (4). As e−x > e−100x for x ≥ 0, we have
∫∞
0 e−xdx >

∫∞
0 e−100xdx.

Compare (2) and (3). We have
∫∞
0 e−xdx =

∫ 2
0 e−xdx+

∫∞
2 e−xdx and

∫ 2
0 e−xdx < 2 because

e−x < 1. On the other hand,
∫∞
1 x100e−xdx =

∫ 2
1 x100e−xdx+

∫∞
2 x100e−xdx and

∫ 2
1 x100e−xdx >∫ 2

1.5 x
100e−xdx > 100e−2 > 10 (because (1.5)100 > 100 and e < 3, e2 < 9 < 10). Furthermore,∫∞

2 x100e−xdx >
∫∞
2 e−xdx. Thus altogether

∫∞
1 x100e−xdx >

∫∞
0 e−xdx.

Note: An integral is improper if the interval is unbounded or the function is unbounded. In
that case, we define ∫ b

a
f(x)dx = lim

ϵ→0

∫ c

a+ϵ
f(x)dx+ lim

ϵ→0

∫ b−ϵ

c
f(x)dx,

where c ∈ (a, b).
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