2023Call2.

(1) **Q1**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{\boxed{a}}{\boxed{b}}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Complete the formulae.

$$(x-1)\sqrt{x+3} = \boxed{g} + \boxed{h}(x-1) + \frac{1}{1}(x-1)^2 + \frac{1}{1}(x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$$

$$\boxed{g}:$$

$$\boxed{\text{NUMERICAL}} \quad 1 \text{ point}$$

$$\exp((x-1)^3) = \boxed{m} + \boxed{n}(x-1) + \boxed{o}(x-1)^2 + \boxed{p}(x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$$

This limit converges for $\alpha = \boxed{\mathbf{q}}, \beta = \boxed{\mathbf{r}}.$ $\boxed{\mathbf{q}}$:

m:	
<u> </u>	
m:	
NUMERICAL 1 point	
$0 \checkmark$	

 $\exp(2(x-1)^3) = \underline{m} + \underline{n}(x-1) + \underline{o}(x-1)^2 + \underline{p}(x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$

4

e :

0.10 penalty CLOZE

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{|\mathbf{a}|}{|\mathbf{b}|}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$. Let us study the following series $\sum_{n=0}^{\infty} \frac{n}{(1+x)^{2n}}$, with various

x.

This series makes sense also for $x \in \mathbb{C}$. For x = i, calculate the partial sum $\sum_{n=0}^{2} \frac{n}{(1+x)^{2n}} = \frac{\boxed{a}}{\boxed{b}} + \frac{\boxed{c}}{\boxed{d}}i$.

In order to use the ratio test for $x \in \mathbb{R}, x \neq -1$, we put $a_n = \frac{n}{(1+x)^{2n}}$. Complete the formula.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{e}{|f| + x|g|}$$

e	
NUMERICAL 4 points	
1 🗸	
f:	
NUMERICAL 2 points	
1 🗸	
g:	
NUMERICAL 2 points	
2 🗸	
Therefore, by the ratio test	, the series converges absolutely
for $x < \lfloor \mathbf{h} \rfloor, \lfloor \mathbf{i} \rfloor < x$.	
<u>h</u> :	
NUMERICAL 2 points	
-2 🗸	
i:	
NUMERICAL 2 points	
0 🗸	
For the case $x = -2$, the ser	ries
MULTI 4 points Single	
• converges absolutely.	

 $\mathbf{6}$

- converges but not absolutely.
- diverges. \checkmark

Calculate the following series.

$$\sum_{n=0}^{\infty} \frac{5}{3^n} = \frac{\left| j \right|}{\left| k \right|}$$

$$j:$$

$$\boxed{\text{NUMERICAL}} \quad 2 \text{ points}$$

$$\boxed{15 \checkmark}$$

$$\boxed{k:}$$

$$\boxed{\text{NUMERICAL}} \quad 2 \text{ points}$$

$$2 \checkmark$$

$$4) \mathbf{Q2}$$

(4)

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{|\mathbf{a}|}{|\mathbf{b}|}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$. Let us study the following series $\sum_{n=0}^{\infty} \frac{n}{(x-1)^{2n}}$, with various

x.

This series makes sense also for $x \in \mathbb{C}$. For x = i, calculate the partial sum $\sum_{n=0}^{2} \frac{n}{(x-1)^{2n}} = \frac{\boxed{a}}{\boxed{b}} + \frac{\boxed{c}}{\boxed{d}}i$.

a :	
NUMERICAL 1 point	
-1 🗸	
b:	
NUMERICAL 1 point	
$2 \checkmark$	
C:	
NUMERICAL 1 point	
1 🗸	
d:	
NUMERICAL 1 point	
$2 \checkmark$	

In order to use the ratio test for $x \in \mathbb{R}, x \neq 1$, we put $a_n = \frac{n}{(x-1)^{2n}}$. Complete the formula.

(5) **Q3**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us consider the following function

$$f(x) = \exp\left(\frac{1-x^3}{(x-3)^2}\right).$$

The function f(x) is not defined on the whole real line \mathbb{R} (with this expression). Choose all the points that are **not** in the natural domain of f(x).

MULTI
 4 points
 Single

 • -3 (-100%)
 • -2 (-100%)

 • -1 (-100%)
 •
$$-\frac{1}{2}$$
 (-100%)

 • $-\frac{1}{2}$ (-100%)
 • 0 (-100%)

 • 1 (-100%)
 • 2 (-100%)

 • 2 (-100%)
 • 2 (-100%)

 • 2 (-100%)
 • 2 (-100%)

 • 2 (-100%)
 • 2 (-100%)

 • $y = -e$ (-100%)
 • $y = -e$ (-100%)

 • $y = -1$ (-100%)
 • $y = -1$ (-100%)

 • $y = 0 \checkmark$
 • $y = 1$ (-100%)

 • $y = 0 \checkmark$
 • $y = 1$ (-100%)

 • $y = 0 \checkmark$
 • $y = 1$ (-100%)

 • $x = -2$ (-100%)
 • $x = -\sqrt{3}$ (-100%)

 • $x = -\sqrt{2}$ (-100%)
 • $x = -\sqrt{2}$ (-100%)

 • $x = 0$ (-100%)
 • $x = 1$ (-100%)

 • $x = \sqrt{2}$ (-100%)
 • $x = \sqrt{2}$ (-100%)

 • $x = \sqrt{2}$ (-100%)
 • $x = \sqrt{2}$ (-100%)

•
$$x = 2 (-100\%)$$

• $y = x/2 (-100\%)$
• $y = x/2 (-100\%)$
• $y = -x/2 (-100\%)$
• $y = -x/2 (-100\%)$
• $y = -2x (-100\%)$
One has
 $f'(1) = \boxed{a}$.
a:
NUMERICAL 4 points
-3 \checkmark
b:
NUMERICAL 4 points
4 \checkmark
The function $f(x)$ has C stationary point(s) in the domain.
(Hint: no need to find it (them) explicitly)
C:
NUMERICAL 4 points
3 \checkmark
Choose the behaviour of $f(x)$ in the interval $(-1, 0)$.
MULTI 4 points Single
• monotonically decreasing
• monotonically increasing
• neither decreasing nor increasing \checkmark
(6) Q3
Ctoze 0.10 penalty
If not specified otherwise, fill in the blanks with integers (pos-
rible 0 or negative) \land fraction should be reduced (for our

sibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\boxed{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Let us consider the following function

$$f(x) = \exp\left(\frac{x^3 - 1}{(x+3)^2}\right).$$

The function f(x) is not defined on the whole real line \mathbb{R} (with this expression). Choose all the points that are **not** in the natural domain of f(x).

MULTI 4 points Single • -3 √ • -2(-100%)• -1 (-100%)• $-\frac{1}{2}$ (-100%) • 0 (-100%)• $\frac{1}{2}$ (-100%) • $\bar{1}$ (-100%) • 2(-100%)• 3(-100%)Choose all asymptotes of f(x). MULTI 4 points Single • $y = -e \ (-100\%)$ • $y = -1 \ (-100\%)$ • $y = 0 \checkmark$ • $y = 1 \ (-100\%)$ • y = e (-100%)• $x = -2 \ (-100\%)$ • $x = -\sqrt{3} \ (-100\%)$ • $x = -\sqrt{2} \ (-100\%)$ • $x = -1 \ (-100\%)$ • $x = 0 \ (-100\%)$ • $x = 1 \ (-100\%)$ • $x = \sqrt{2} \ (-100\%)$ • $x = \sqrt{3} (-100\%)$ • $x = 2 \ (-100\%)$ • $y = x/2 \ (-100\%)$ • y = x (-100%)• $y = 2x \ (-100\%)$ • $y = -x/2 \ (-100\%)$ • $y = -x \ (-100\%)$ • $y = -2x \; (-100\%)$ One has $f'(1) = \frac{\boxed{\mathbf{a}}}{\boxed{\mathbf{b}}}.$ a : NUMERICAL 4 points 3 🗸

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_0^1 \frac{1}{3^x + 2} dx.$$

Let us change the variables $3^x = t$. Complete the formula

$$\int_{0}^{1} \frac{1}{3^{x} + 2} dx = \int_{\boxed{a}}^{\boxed{b}} \frac{1}{\log \boxed{c} (t^{2} + \boxed{d} t + \boxed{e})} dt$$
a:
NUMERICAL [1 point]

By continuing, we get

$$\int_0^1 \frac{1}{3^x + 2} dx = \frac{\log \left[\frac{f}{g} \right]}{\log \left[1 \right]}.$$

0.10 penalty CLOZE

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_0^1 \frac{1}{5^x + 2} dx.$$

Let us change the variables $5^x = t$. Complete the formula

(10) **Q4**

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_1^2 \frac{1}{5^x + 2} dx.$$

Let us change the variables $5^x = t$. Complete the formula

$$\int_{1}^{2} \frac{1}{5^{x}+2} dx = \int_{\boxed{\mathbf{a}}}^{\boxed{\mathbf{b}}} \frac{1}{\log \boxed{\mathbf{c}} (t^{2}+\boxed{\mathbf{d}} t+\boxed{\mathbf{e}})} dt$$

f: NUMERICAL 4 points

(11) $\overline{\mathbf{Q5}}$

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following improper integral based on definition.

$$\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} dx$$

We split the integral into two parts: $\int_{-\infty}^{0} \frac{x^2}{x^6+1} dx + \int_{0}^{\infty} \frac{x^2}{x^6+1} dx$ Choose a primitive of the integrated function.

- 0.1 (-100%)
 0.2 (-100%)
 0.3 (-100%)
- 0.4 (−100%)
- 0.5 (-100%)
- 0.6 ✓
- 0.7 ✓
- 0.8 ✓
- 0.9 ✓
- 1 **√**
- 1.5 ✓
- 2 **√**
- 3 ✓

Consider the following three improper integrals.

0.10 penalty CLOZE

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{|\mathbf{a}|}{|\mathbf{b}|}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following improper integral based on definition.

$$\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} dx$$

We split the integral into two parts: $\int_{-\infty}^{1} \frac{x^2}{x^6+1} dx + \int_{1}^{\infty} \frac{x^2}{x^6+1} dx$ Choose a primitive of the integrated function.

$$\frac{\text{MULTI}}{4 \text{ points}} \frac{4 \text{ points}}{2}$$

- $\arctan(x^3)/3 \checkmark$ • $3 \arctan(x^3 + 1)$
- $(x^6+1)^{\frac{1}{2}}$
- $3x(x^6+1)^{\frac{1}{2}}$
- $3\log(x^6+1)$
- $3x^2 \log(x^6)$

•
$$1/(x^6 + 1)^2$$

• $x^2/(x^6 + 1)^2$
Calculate $\int_{-\infty}^{1} \frac{x^2}{x^6+1} dx = \boxed{a}\pi$
[a]:
NUMERICAL 1 point
1 \checkmark
b]:
NUMERICAL 3 points
4 \checkmark
Altogether, the integral $\int_{-\infty}^{\infty} \frac{x^2}{x^6+1} dx$
MUERICAL 3 points
4 \checkmark
Altogether, the integral $\int_{-\infty}^{\infty} \frac{x^2}{x^6+1} dx$
MUERICAL 3 points
(Applied Applied Applie

- 0.4 ✓
- 0.1 **∨**
- 0.6 ✓

- 0.7 ✓
- 0.8 ✓
- 0.9 ✓
- 1 **√**
- 1.5 ✓
- 2 **√**
- 3 🗸

Consider the following three improper integrals.

Total of marks: 288