
Mathematical Analysis I, 2023/24 First semester

Yoh Tanimoto
Dipartimento di Matematica, Università di Roma Tor Vergata

Via della Ricerca Scientifica 1, I-00133 Roma, Italy
email: hoyt@mat.uniroma2.it

The course follows a similar way as “Mathematical Analysis 1” by Claudio Canuto, Anita
Tabacco, Pearson, but it is not necessary to buy it. Also “Calculus” Vol. I by Tom M. Apostol,
Wiley, will be useful.

From Monday to Thursday we have lectures, and on Friday we usually do exercises.

• Lecture notes:

http://www.mat.uniroma2.it/~tanimoto/teaching/2023MA1/2023MA1.pdf

• Exercises:

http://www.mat.uniroma2.it/~tanimoto/teaching/2023MA1/2023MA1ex.pdf

• Office hours: Tuesday 14:00–15:00 online, or send me a message on Teams

• Supplementary course: Basic Math

• Self-assessment test

Some tips

• Writing math.

– LATEX. You can try it here, and you can install the full set afterwards. You need to
learn some commands, but once you know it it’s very powerful. All my lecture notes
and slides are written in LATEX

– Word processor (MS Word, Apple Pages, Open Office, Libre Office (Insert → Objects
→ Formula)...).

• Doing quick computations.

– Wolfram Math Alpha You can just type some formulas in and it shows the result.

– Programming languages. Python (I used it to make the graph of the SIR model),
Java, C,· · ·

Sep 25. Overview of the course, integers and rational numbers

Mathematical Analysis I

Summary of the course

• properties of real numbers, concept of sets.

• mathematical induction. the summation notation.
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Figure 1: Left: A graph can be used to study changing quantities. Right:the SIR model.

• functions. limit of functions, continuity.

• trigonometric functions (cosx, sinx), exponential function ex, logarithmic function log x.

• differential calculus and applications.

• Taylor’s formula, approximation of functions

• integral of functions. the relation between integration and differentiation.

• basic differential equations.

• numerical seqeunces and series, complex numbers

What is analysis and why study it

In a real-world science, it is crucial to study quantitative aspects of the subject. When a
quantity changes by time, one can study its change in a short time (⇒ differentiation) and then
sum it up (⇒ integration). Another important problem is optimization: maximizing benefit or
minimizing cost.

• Mechanics, the equation of motion F (x, t) = md2x
dt2

(= ma)

• Electrodynamics, thermodynamics, fluid mechanics (Mathematical Analysis II)

• Statistics, machine learning (Mathematicala Analysis II, Linear Algebra)

• Epidemiology (the SIR model dS
dt = −βS(t)I(t)

N , dIdt = βS(t)I(t)
N − γI(t), dRdt = γI(t))

Mathematical symbols

We use symbols for general mathematical objects. Before using a symbol, we declare what
kind of object it is. For example,

• x, y, z, a, b, c often for numbers (but be careful of the declaration)

• f, g, h, F,G,H often for “functions” (which we will study later)

A symbol might be “recycled”, that is, can be declared to be something different (unfortunately,
we have only 26× 2 alphabets).

Symbols are very useful because we can express general properties of certain mathematical
objects at the same time, without specifying them every time.
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Integers and rational numbers

We assume that we know

• integers: 0, 1, 2, 3, · · · , 100, 101, · · · , 492837498 · · · ,−1,−2,−3, · · ·

• rational numbers: 1
2 ,

2
3 , · · · ,

23
62518 ,−

3028746
26543 , · · · (integers are also rational numbers)

• calculations between them (sum, difference, product, division, order)

On rational numbers, we have the set of operations + (summation), · (product): For x, y, z
rational numbers (declaration), x+ y and x · y are again rational numbers and they satisfy

• (commutativity) x+ y = y + x, x · y = y · x

• (associativity) (x+ y) + z = x+ (y + z), (x · y) · z = x · (y · z)

• (distributive law) (x+ y) · z = xz + yz

• (zero and unity) There are special distinct rational numbers, called 0 and 1, such that
x+ 0 = x and x · 0 = 0. And x · 1 = x.

• (negative) There is only one rational number, which we call −x, such that x+ (−x) = 0.

• (inverse) If x ̸= 0, there is only one rational number, which we call x−1, such that x·x−1 = 1.

We often simply write xy for x · y and x− y for x+ (−y). xy−1 is also written as x
y .

Exercises Take concrete rational numbers and check these properties!
Other properties of rational numbers can be derived from these. Indeed, we can prove the

following1

Theorem 1. Let a, b, c, d be rational numbers.

• if a+ b = a+ c, then b = c.

• −(−a) = a.

• a(b− c) = ab− ac.

• a · 0 = 0 · a = 0.

• if ab = ac and a ̸= 0, then b = c.

• if a ̸= 0, then a−1 ̸= 0 and (a−1)−1 = a.

• if ab = 0, then a = 0 or b = 0.

• (−a)b = −(ab) and (−a)(−b) = ab.

• if b ̸= 0, d ̸= 0, then a
b +

c
d = ad+bc

bd .

• if b ̸= 0, d ̸= 0, then a
b ·

c
d = ac

bd .

• if a ̸= 0, b ̸= 0, then (ab )
−1 = b

a .
1statements that can be proven are called theorems, and the properties that we assume are called axioms.
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Figure 2: A geometric representation of integers and rational numbers.
.

Proof. We only prove a few of them and leave the rest as exercises.
Let us assume that a+ b = a+ c. Then, we take −a and

(a+ b) + (−a) = a+ (b+ (−a)) (associativity)
= a+ ((−a) + b) (commutativity)
= (a+ (−a)) + b (associativity)
= 0 + b (definition of 0)
= b (property of 0)

Similarly, (a+c)+(−a) = c. But as a+b = a+c, we have b = (a+b)+(−a) = (a+c)+(−a) = c.
Assume that a ̸= 0. We show that a−1 ̸= 0 by contradiction. Indeed, if we had a−1 = 0, then

we would have 0 · a = a−1 · a = 1, contradiction. Therefore, a−1 ̸= 0 and 1 = a · a−1 = a−1 · a,
hence a = (a−1)−1.

If ab = 0 and a ̸= 0, then we can take a−1 and 0 = a−10 = a−1ab = 1 · b = b.

Integers and rational numbers can be represented on a line.

Sep 27. Concept of sets, set of numbers

Order in rational numbers

There is also an order relation < (“x is larger than y”: y < x) which satisfies, for x, y, z rational,

• if 0 < x, 0 < y, then 0 < xy and 0 < x+ y.

• if x < y, then x+ z < y + z.

• if x ̸= 0, either 0 < x or x < 0 but not both.

• It is not true that 0 < 0.

x < y and y > x have the same meaning.
We say that x is positive if 0 < x and x is negative if x < 0. If x is not positive, then

either x = 0 or x < 0 and in this case we say x is nonpositive and write x ≤ 0 (again, x ≥ 0
and 0 ≤ x mean the same thing). Similarly, if x > 0 or x = 0, we say x is nonnegative and
write x ≥ 0.

In addition to the “axioms”, we also use the logic that, if an equality or inequality holds for
some x and if x = y, then it also holds for y. Example: if x < z and x = y, then y < z.

Notation: for any number x, we write x2 = x · x. Similarly, x3 = x · x · x, and so on.
With the properties above, we can prove the following.

Theorem 2. Let a, b, c, d rational numbers. Then

• a < b if and only if a− b < 0.

• one and only one of the following holds: a < b, b < a, a = b.
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• if a < b, b < c then a < c.

• if a < b and c > 0, then ac < bc.

• if a ̸= 0, then a2(= a · a) > 0.

• 1 > 0.

• if a < b and c < 0, then ac > bc.

• if a < b, then −a > −b.

• if ab > 0, then either a > 0, b > 0 or a < 0, b < 0.

• if a < c and b < d, then a+ b < c+ d.

Proof. We only prove a few of them and leave the rest as exercises. In general, to show “A if and
only if B”, it is enough to show that “if A, then B” and “if B, then A”, this is because “A only if
B” implies that “if not B, then not A”, and by contradiction, “if A, not not B”, but “not not B”
means B.

If a < b, then by adding −b to both sides, we get a − b < 0. Conversely, if a − b < 0, by
adding b to both sides we get a < b.

If a = b, then b− a = 0 and we know that both b− a > 0 and b− a < 0 are false and hence
b > a and b < a are false. If a < b, then a− b < 0 and a− b = 0 is false, and hence a = b is false.

If a < b, then 0 < b− a and 0 < c · (b− a) = bc− ac, hence ac < bc.
If a ̸= 0, then either a > 0 or a < 0. For the case a > 0, we have a2 = a · a > 0. For the case

a < 0, we have −a > 0 and a2 = (−a)2 > 0.

All these “theorems” about rational numbers should be well-known to you. But it is important
that we could prove them from a few axioms, which we assume to be true.

Exercises Check the remaining statements.

Naive set theory

It is very often convenient to consider sets of numbers. For example, we may consider the set
Q+ of positive rational numbers, or the set of multiples of 2, and so on. In mathematics, a set is
a collection of mathematical objects. The most precise treatment of sets requires a theory called
axiomatic set theory, but in this lecture we think of a set simply as a collection of known objects.

We often use capital letters A,B,C, · · · for sets, but in any case we declare that a symbol is
a set. For a set S, we denote by x ∈ S the statement “x is an element of S”. We have already
seen examples of sets: let us give them special symbols.

• Q: the set of rational numbers

• Z: the set of integers

In general, we can consider two ways of constructing sets.

• By nomination. We can nominate all elements of a set. For example, A = {0, 1, 2, 3} and
B = {1, 10, 100, 1000} are sets.

• By specification. We include all elements of an existing set with specific properties. For
example, A = {x ∈ Z : there is y ∈ Z such that x = 2y} (read that “A is the set of
integers such that there is an integer y such that x = 2y”) is the set of multiples of 2 (we
recycled the symbol A. When we do this, we shall always declare it).
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For a set constructed by nomination, the order and repetition do not matter: {0, 1, 2, 3} =
{0, 3, 2, 1} = {0, 0, 1, 1, 1, 2, 3}. In other words, a set is defined by its elements.

A construction by specification appears very often. Let us introduce a more symbol.

• N = {x ∈ Z : x > 0} is called the set of natural numbers.

• ∅ is the set that contains nothing and called the empty set. ∅ is a subset of any set: if A
is a set, the statement “if x ∈ ∅ then x ∈ A” is satisified just because there is no such x!

Subsets

Let B be a set. We say that A is a subset of B if all elements of A belong to B, and denote
this by A ⊂ B. It holds that A ⊂ A for any set A.

Example 3. • Let A = {1, 2, 3} and B = {0, 1, 2, 3, 4}. Then A ⊂ B.

• N ⊂ Z.

• Let A = {1, 2, 3, 4, 5, 6}. Then A ⊂ N.

It may happen that A ⊂ B and B ⊂ A, that is, all elements of A belong to B and vice versa.
This means that A and B are the same as sets, and in this case we write A = B.

The definition by specification A = {x ∈ B : x satisfies the property XXX...} gives always a
subset, in this case of B. Note also that x in this definition has no meaning (“dummy”). One
can write it equivalently A = {y ∈ B : y satisfies the property XXX...}.

For x ∈ A, the set {x} that contains only x should be distinguished from x. It is a subset of
A: {x} ⊂ A.

Unions, intersections, complements

If A and B are sets, then we can consider the set which contains the elements of A and B, and
nothing else. It is called the union of A and B and denoted by A ∪B.

Example 4. • Let A = {1, 2, 3} and B = {0, 1, 3, 4}. Then A ∪B = {0, 1, 2, 3, 4}.

Similarly, we can consider the set of all the elements which belong both to A and B, and
nothing else. It is called the intersection of A and B and denoted by A ∩B.

Example 5. • Let A = {1, 2, 3} and B = {0, 1, 3, 4}. Then A ∩B = {1, 3}.

Furthermore, the difference of B with respect to A is all the element of A that do not belong
to B and is denoted by A \B (note that this is different from B \A).

Example 6. • Let A = {1, 2, 3} and B = {0, 1, 3, 4}. Then A \B = {2}.

We can consider the union of more than two sets: A∪ (B ∪C). By considering the meaning,
this set contains all the elements which belong either A or B ∪ C, which is to say all elements
which belong either A or B or C. Therefore, the order does not matter and we can write A∪B∪C.
Similarly, A ∩B ∩ C is the intersection of A,B and C.

We may consider a family of sets {Ai}i∈I indexed by another set I. For example, we
can take N as the index set and An = {m ∈ Z : m is a multiple of n}. For a family of set, we
can define the union and the intersection analogously and we denote them by⋃

i∈I
Ai,

⋂
i∈I

Ai,

respectively.
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Sep 28. Sets and logic

Sets by specification

Let us recall that, if we fix a set A, we can define a subset of A by specification: it is the subset
of elements x of A that satisfy a certain condition φ(x):

{x ∈ A : φ(x)},

where φ(x) is a condition on x. For example, {x ∈ Z : x > 10} is the set of integers larger than
10.

On one hand, we can consider the combined conditions: for example, the condition that
x > 10 and the condition that x < 15 can be considered at the same time. The set of integers
that satisfy both of the condition is

{x ∈ Z : x > 10 and x < 15} = {11, 12, 13, 14}.

On the other hand, we observe that this set is the intersection of two sets:

{x ∈ Z : x > 10} = {10, 11, 12, 13, 14, 15, 16, 17, · · · },
{x ∈ Z : x < 15} = {−2,−1, 0, 1, · · · , 10, 11, 12, 13, 14, 15}.

This can be generalized as follows. If B = {x ∈ A : φ(x)}, C = {x ∈ A : ψ(x)}, then B ∩ C =
{x ∈ A : φ(x) and ψ(x)}.

Similarly, the union of two sets is related with “or” as follows. For example,

B = {x ∈ Z : x > 15} = {16, 17, 18, · · · },
C = {x ∈ Z : x < 10} = {· · · − 2,−1, 0, 1, · · · , 8, 9}.

We observe that B ∪ C = {· · · − 2,−1, 0, 1, · · · , 8, 9, 16, 17, 18, · · · }, which is B ∪ C = {x ∈
Z : x > 15 or x < 10}. In general, if B = {x ∈ A : φ(x)}, C = {x ∈ A : ψ(x)}, then
B ∪ C = {x ∈ A : φ(x) or ψ(x)}.

Let us the consider the negation. For example,

B = {x ∈ Z : x > 15} = {16, 17, 18, · · · }.

Because the negation of x > 15 is x ≤ 15, we have

Z \B = {· · · − 2,−1, 0, 1, · · · , 14, 15} = {x ∈ Z : x ≤ 15}.

In general, if ¬φ(x) is the negation of φ(x), then it holds that, for B = {x ∈ A : φ(x)},
A \B = {x ∈ A : ¬φ(x)}.

Let us consider the set {x ∈ Q : (x− 1)(x− 3) > 0}. To understand better this set, we need
to understand the condition (x− 1)(x− 3) > 0. The left-hand side is a product of two rational
numbers. The product of two rational numbers is positive if and only if one of the following
cases is true.

• x− 1 > 0 and x− 3 > 0

• x− 1 < 0 and x− 3 < 0.

They are further equivalent to

• x > 1 and x > 3

• x < 1 and x < 3.
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Note that x > 1 is true if x > 3. Similarly, x < 3 is true if x < 1. Therefore, these conditions
are equivalent to

• x > 3

• x < 1

Altogether, we have

{x ∈ Q : (x− 1)(x− 3) > 0} = {x ∈ Q : x > 3 or x < 1} = {x ∈ Q : x > 3} ∪ {x ∈ Q : x < 1}.

The set of subsets, the set of pairs, graphs

We can consider also certain sets of sets.

Example 7. • {1, 2, 3}, {2}, {1, 4, 6, 7} are sets. We can collect them together

{{1, 2, 3}, {0, 2}, {1, 4, 6, 7}}.

This is a set of sets. It is different from the set of their elements {1, 2, 3, 4, 6, 7}.

• Let A = {1, 2, 3}. We can collect all subsets of A:

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

• One can also consider the set of all subsets of N,Z,Q, but we cannot name all the elements:
they are infinite. For example, for N = {1, 2, 3, 4, · · · }, the set of subsets of N is infinite.

For sets A,B, we can consider ordered pairs of elements in A and B.

Example 8. • Let A = {1, 2, 3}, B = {3, 4}. Then the sef A × B of the ordered pairs of
A,B is

A×B := {(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)}.

• If we take N, then N × N is the set of all ordered pairs of natural numbers. N × N =
{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), · · · }.

Ordered pairs can be described using graphs. If A,B ⊂ Z have finitely many points, say
m,n respectively, then there are m · n ordered pairs. We take the horizontal axis for A and the
vertical axis for B.

To obtain the graph of A × B, we should mark the point (x, y) if and only if x ∈ A and
y ∈ B. For any subset X of A × B, we should mark the point (x, y) if and only if (x, y) ∈ X.
See Figure 3.

The graph of a relation can be understood in terms of ordered pairs. Let A = {1, 2, 3, 4, 5, 6},
and B = {(x, y) ∈ A×A : y = 2x}. Let us give all elements of B and draw its graph. We check
all 6× 6 = 36 elements. See Figure 4, it is {(1, 2), (2, 4), (3, 6)}. Notice that it is on a straight
line!

Oct 2. Real numbers

Are rational numbers all we need?

It is true that, in the real world, we can measure quantities to a certain accuracy, so we get
numbers in a decimal representation:

• c = 299792458[m · s−1] (the speed of light)
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Figure 3: Left: the set of all ordered pairs {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5}. Right: a subset
{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} ⊂ {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5}.
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Figure 4: The set of all ordered pairs (x, y) ∈ {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} with y = 2x.
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1

√
2

1

2π

Figure 5: Left: the right triangle with equal sides 1. By the Pytagoras’ theorem, the longest side
is

√
12 + 12 =

√
2. Right: the unit circle with radius 1 (diameter 2). The length of the circle

(the circumference) is 2π.

• G = 0.0000000000667430(15)[m3kg−1s−2] (the gravitational constant), where (15) means
these digits might be incorrect.

• Any other measured quantity in the real world.

And any experiment has a certain accuracy, so it makes sense only to write a certain number of
digits, so rational numbers seem to suffice.

But for certain cases, we know that we should consider irrational numbers. For example,

•
√
2 = 1.41421356 · · · , the number x such that x2 = 2.

• π = 3.1415926535 · · · , the circumference of the circle with diameter 1.

• e = 2.718281828 · · · , Napier’s number (we will define it in the lecture).

• Any decimal number which is not repeating.

For the next theorem, we need a proof by contradiction: by assuming the converse of the
conclusion, we derive a contradiction, then we can conclude that the converse of the conclusion
is false, that is, the conclusion is correct.

Recall that an integer p is even if it is a multiple of 2 (there is another integer r such that
p = 2r), and p is odd if it is not even.

Theorem 9.
√
2 is not a rational number.

Proof. We prove this by contradiction, that is, we assume that
√
2 is a rational number. So there

are integers p, q such that
√
2 = p

q . We may assume that this is already reduced (that is, not a
fraction like 4

8 but like 1
2 . It’s the form which you cannot simplify further).

As
√
2 ·

√
2 = 2, we have p

q ·
p
q = p2

q2
= 2, hence p2 = 2q2. As p

q is reduced, there are two cases.

• if p is odd, then the equality p2 = 2q2 is even = odd, contradiction.

• if p is even, then q is odd and we can write is as p = 2r, with another integer r, and
p2 = 4r2 = 2q2, and 2r2 = q2. This is even = odd, contradiction.

So, in all cases we arrived a contradiction from the assumption that
√
2 is rational. This means

that
√
2 is irrational.
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Exercise. Prove that 2
√
2 is irrational.

It has been proven that π and e are irrational, but they are more difficult. Instead, it can be
easily proven that any nonrepeating decimal number cannot be rational. This means there are
many irrational numbers.

In other words, the set of rational numbers have “many spaces between them”. We should fill
them in with irrational numbers, so that the set of real numbers is a “continuum”.

The axioms of the real numbers

Here we start the study of Mathematical Analysis, based on the set of real numbers. Our
approach is synthetic, in the sense that we take the axioms for real numbers for granted, and
develop the theory on them. It is also possible to “costruct” real numbers from rational numbers,
and rational numbers from integers, integers from natural numbers, and so on, but at some point
we have to assume certain axioms for simpler objects. If you are interested, look at “Dedekind’s
cut” (for real numbers), or “Peano’s axioms” (for natural numbers).

We assume that, the set R of real numbers is equipped with operations + (summation), ·
(product) and for x, y, z real numbers, x + y and x · y are again real numbers and they satisfy
(just the same properties for rational numbers Q)

• (commutativity) x+ y = y + x, x · y = y · x

• (associativity) (x+ y) + z = x+ (y + z), (x · y) · z = x · (y · z)

• (distributive law) (x+ y) · z = xz + yz

• (zero and unity) There are special distinct rational numbers, called 0 and 1, such that
x+ 0 = x and x · 0 = 0. And x · 1 = x.

• (negative) There is only one real number, which we call −x, such that x+ (−x) = 0.

• (inverse) If x ̸= 0, there is only one real number, which we call x−1, such that x · x−1 = 1.

There is also an order relation < which satisfies, for x, y, z real,

• if 0 < x, 0 < y, then 0 < xy and 0 < x+ y.

• if x < y, then x+ z < y + z.

• if x ̸= 0, either 0 < x or x < 0 but not both.

• 0 ̸< 0

We can prove Theorems for real numbers corresponding to Theorems 1, 2. Therefore, the real
numbers have the same properties as the rational numbers, concerning the sum, product and
order.

We say that S ⊂ R is bounded above if there is x ∈ R such that for any y ∈ S it holds
that y ≤ x, and we write S ≤ x. S is said to be bounded below if there is x ∈ R such that for
any y ∈ S it holds that y ≥ x, and we write S ≥ x.

If S is both bounded above and below, we say that S is bounded.
If S is bounded above, then any x ∈ R such that S ≤ x is called an upper bound of S.

Similarly, if x ≤ S, then x is said to be a lower bound of S.
If S has a least upper bound, that is there is x such that S ≤ x and x ≤ y for any upper

bound y of S, then x is called the supremum of S and we denote it by x = supS. Similarly, if
S has a largest lower bound x, then it is called the infimum of S and we denote it by x = inf S.

R includes Z and Q: 1 ∈ R, hence 2 = 1 + 1, 3 = 1 + 1 + 1, · · · and −1,−2, · · · ∈ R. Also, if
p, q ∈ Z, pq ∈ R.

What distinguishes R from Q is the following.
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1 1.4 1.41 1.414 1.5

Figure 6: The set S approximating
√
2, which is bounded by 1.5.

n− 3 n− 2 n− 1 nx

0 1 2x1
n

Figure 7: Any x ∈ R falls between n − 1 and n (including equality) for some n ∈ N. For any
x > 0, there is n ∈ N such that 1

n < x.

• (the least upper bound axiom, or the completeness axiom) every nonempty subset S of R
which is bounded above has a supremum: there is B ∈ R such that B = supS.

This should imply that
√
2 = 1.41421356 · · · belongs to R! Indeed, let us take, by chop-

ping the digits of
√
2, S = {1, 1.4, 1.41, 1.414, 1.4142, · · · }. S is bounded above, indeed, 1.5 >

1, 1.4, 1.41, 1.414, · · · . On the other hand, if x has a decimal representation, e.g. 1.415, then
there is a smaller number x′ = 1.4149. So, supS should be exactly

√
2. We will see this more

precisely later.
(A lemma is a theorem (a consequence of axioms) used to prove a more important theorem)

Lemma 10. If S ⊂ R is bounded above and B = supS, then for any ϵ > 0, there is x ∈ S such
that B − ϵ < x.

Proof. By contradiction, assume that there is ϵ > 0 such that B − ϵ ≥ x for all x ∈ S. Then B
is not the least upper bound, because B − ϵ is an upper bound of S and B − ϵ < B.

Theorem 11 (Archimedean property). The set N = {1, 2, 3, · · · } is not bounded above.

Proof. By contradiction, assume that N were bounded above. Then by the completeness axiom,
there is x = supN. By the lemma above, for ϵ = 1

2 , there is n ∈ N such that x − 1
2 < n. But

then x < n+ 1
2 < n+ 1 ∈ N, and this contradicts the assumption that x were the upper bound

of N. This implies that N is not bounded above.

(A corollary is a theorem which follows easily from a more complicated theorem)

Corollary 12. For any x ∈ R, there is n ∈ N such that x < n. For any y, z ∈ R and z > y,
there is n ∈ N such that 1

n < z − y.

Proof. By the theorem above, x is not an upper bound of N, so there is n such that x < n. By
applying this to 1

z−y , there is n such that 1
z−y < n, which implies that 1

n < z − y.

Therefore, we can represent the set of real numbers by a straight line, and any point x ∈ R
is on the line and it falls between an integer n and another n− 1 (possibly x = n). Conversely,
any point on the line gives an element in R.

Any real number R has a decimal representation (next lecture).
Note that Q does not have the completeness property!

Proposition 13. Let A = {x ∈ R : x2 < 2} ⊂ R. Then A is bounded above, and s2 = 2, where
s = supA.

Proof. A is bounded above, indeed, if x2 < 2, then x2 < 4 = 22, and hence x < 2.
Let s = supA ∈ R. Then s > 0. Indeed, 1 ∈ A, thus s ≥ 1 > 0.
We prove s2 = 2 by contradiction.
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• if s2 < 2, then we take ϵ > 0 such that 0 < ϵ < 2−s2

s (or sϵ < 2 − s2) and ϵ < s. Then
(s+ ϵ

4)
2 = s2 + s ϵ2 +

ϵ2

16 < s2 + sϵ
2 + sϵ

2 < s2 + sϵ < 2, therefore, s is not an upper bound of
A (because s+ ϵ

4 ∈ A), contradiction.

• if s2 > 2, then we take ϵ > 0 such that 0 < ϵ < s2−2
s (or sϵ < s2 − 2) and ϵ < s. Then

(s − ϵ
4)

2 = s2 − s ϵ2 + ϵ2

16 > s2 − sϵ > 2, therefore, s is not the least upper bound of A
(because s− ϵ

4 ∈ A is another upper bound, smaller than s), contradiction.

But we know that there is no rational number s ∈ Q such that s2 = 2. Hence s = supA /∈ Q.

This also says that s =
√
2 belongs to R.

Oct 4. Some sets in real numbers.

Intervals

In the set of real numbers, we can consider intervals: let a, b ∈ R and a < b. We introduce

• (a, b) = {x ∈ R : a < x, x < b} (an open interval)

• (a, b] = {x ∈ R : a < x, x ≤ b}

• [a, b) = {x ∈ R : a ≤ x, x < b}

• [a, b] = {x ∈ R : a ≤ x, x ≤ b} (a closed interval)

• (a,∞) = {x ∈ R : a < x}

• [a,∞) = {x ∈ R : a ≤ x}

• (−∞, b) = {x ∈ R : x < b}

• (−∞, b] = {x ∈ R : x ≤ b}

Remember that, a, b are given numbers, and x is a “dummy” number. You can write them
in a different way, without using x:

• (a, b) is the set of all numbers larger than a and smaller than b

• [a, b] is the set of all numbers larger than or equal to a and smaller than or equal to b

Example 14. Consider (0, 1).

• 0.1, 0.2, 0.5, 0.999 ∈ (0, 1).

• 0, 1, 2, 3, 10,−1,−2 /∈ (0, 1).

• sup(0, 1) = 1.

• inf(0, 1) = 0.

Consider [0, 1].

• 0, 0.1, 0.2, 0.5, 0.999, 1 ∈ [0, 1].

• 2, 3, 10,−1,−2 /∈ [0, 1].

• sup[0, 1] = 1.

• inf[0, 1] = 0.

13



( )

0 10.4−1 3

[ ]

0 10.4

Figure 8: Open and closed intervals (0, 1) and [0, 1]. The open interval does not include the
edges 0, 1, while the closed interval [0, 1] does.
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1 2

A x

3

( )

4 5

A+ x

( )

1 2

A

[ ]

2.4 2.6

B

( )

3.4 4.6

A+B

[ )

−1 1

A (the smaller)
[ )

−2 2
2A (the larger)

Figure 9: Intervals and their operations. Top: (1, 2) + 3 = (4, 5). Middle: (1, 2) + [2.4, 2.6] =
(3.4, 4.6). Bottom: 2[−1, 1) = [−2, 2).

Operations on sets

Let A,B be subsets of R and a ∈ R. We denote various subsets R as follows.

• A+ a = {x ∈ R : x = y + a for some y ∈ A} = {y + a : y ∈ A}

• A− a = {x ∈ R : x = y − a for some y ∈ A} = {y − a : y ∈ A}

• aA = {x ∈ R : x = ay for some y ∈ A} = {ay : y ∈ A}

• A+B = {x ∈ R : x = y + z for some y ∈ A, z ∈ B} = {y + z : y ∈ A, z ∈ B}

• A−B = {x ∈ R : x = y − z for some y ∈ A, z ∈ B} = {y − z : y ∈ A, z ∈ B}

• AB = {x ∈ R : x = yz for some y ∈ A, z ∈ B} = {yz : y ∈ A, z ∈ B}

We write a < x < b as a shorthand notation for a < x and x < b.

Example 15. • Consider A = (0, 1), a = 2. Then A+ a = (2, 3), because if 0 < y < 1, 2 <
y + 2 < 3. Note that the boundary 2, 3 is not included.

• Consider A = [1, 2], B = (2.4, 2.6). Then A+ B = (3.4, 4.6). Note that the boundary 2, 3
is not included, because there is no x ∈ A, y ∈ B such that x+ y = 3.4 or 4.6.

• Consider A = [−1, 1), a = 2. Then 2A = [−2, 2).

14



Some properties of upper and lower bounds

Note that supA, inf A are only defined for nonempty sets (otherwise the definition is meaning-
less).

Lemma 16. If x, y ∈ R and x− ϵ < y for any ϵ > 0, then x ≤ y.

Proof. By contradiction. If x > y, then by Archimedean property, we have n such that 1
n < x−y,

in other words, x− 1
n > y, which contradicts the assumption that x−ϵ < y for arbitrary ϵ > 0.

Theorem 17. Let A,B ⊂ R and define C = A+B.

• if A,B are bounded above, then A+B is bounded above and supA+ supB = supC.

• if A,B are bounded below, then A+B is bounded below and inf A+ inf B = inf C.

Proof. We prove only the first one, because the second one is analogous.
By the completeness axiom, A and B have the supremum supA, supB. As supA and supB

are upper bounds of A and B respectively, for any element z ∈ C we have x ∈ A, y ∈ B such
that z = x + y and x ≤ supA, y ≤ supB hence z = x + y ≤ supA + supB. In particular,
supA+ supB is an upper bound of C, hence supC ≤ supA+ supB.

Conversely, we know from Lemma 10 that, for any ϵ > 0, there is x ∈ A (and y ∈ B) such
that supA− ϵ

2 < x (and supB− ϵ
2 < y). Therefore, supA+supB− ϵ

2 −
ϵ
2 = supA+supB− ϵ <

x + y ≤ supC for arbitrary ϵ > 0, hence by Lemma 16, supA + supB ≤ supC. Altogether,
hence supC = supA+ supB.

Remember that supA is the least (smallest) upper bound and inf B is the greatest (largest)
lower bound.

Theorem 18. Let A,B ⊂ R. If for any x ∈ A and y ∈ B it holds that x < y, then supA ≤ inf B.

Proof. Any y ∈ B is an upper bound of A, hence supA ≤ y. This means that supA is a lower
bound of B, hence supA ≤ inf B.

We also have the following.

Theorem 19. Let A ⊂ R be nonempty. If A is bounded above, then −A is bounded below and
inf(−A) = − supA.

Proof. Assume that A ≤ x. Then −x ≤ −A, thus −A is bounded below by −x. Thus − supA
is a lower bound of −A. Furthermore, for another lower bound x of −A, we have x ≤ −A, thus
A ≤ −x. As supA is the least upper bound of A, supA ≤ −x, which implies that x ≤ − supA,
showing that − supA is the greatest lower bound of −A, which is inf(−A).

The square roots of (positive) real numbers

Theorem 20. For any a ∈ R, a > 0, there is s ∈ R, s > 0 such that s2 = a.

Proof. Let A = {x ∈ R : x2 < a} ⊂ R. Then A is bounded above: Indeed, as x2 < a, there are
two cases:

• if a > 1, then x2 < a2 and hence x < a.

• if a ≤ 1, then x2 < 1 and hence x < 1.

In either case, A is bounded.
Note that A is not empty, because 0 ∈ A. Let s = supA ∈ R. s ̸= 0 because we can take

n large enough by the Archimedean property that 1
n < a, therefore, ( 1n)

2 < a (because 1
n < 1),

therefore, 1
n ≤ s.

We prove s2 = a by contradiction.
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• if s2 < a, then we take ϵ > 0 such that 0 < ϵ < a−s2

s (or sϵ < a − s2) and ϵ < s. Then
(s+ ϵ

4)
2 = s2 + s ϵ2 +

ϵ2

16 < s2 + sϵ
2 + sϵ

2 < s2 + sϵ < a, therefore, s is not an upper bound of
A (because s+ ϵ

4 ∈ A), contradiction.

• if s2 > a, then we take ϵ > 0 such that 0 < ϵ < s2−a
s (or sϵ < s2 − a) and ϵ < s. Then

(s − ϵ
4)

2 = s2 − s ϵ2 + ϵ2

16 > s2 − sϵ > a, therefore, s is not the least upper bound of A
(because s− ϵ

4 ∈ A is another upper bound, smaller than s), contradiction.

We denote it by s =
√
a.

For any n ∈ N, we can define the n-th root of any positive number a and we denote it by a
1
n .

The existence can be proved similarly.

Decimal representation of real numbers

We denote N0 = N ∪ {0}.
Any (positive) real number x ∈ R can be written in the form x = a0 +

a1
10 +

a2
100 + · · · , where

a0 is an integer and a1, a2, · · · are integers between 0 and 9 (negative numbers can be most
commonly written as −

√
2 = −1.41421 · · · , although an analogous representation can apply to

negative numbers).
Examples:

• 1
3 = 0.33333 · · ·

•
√
2 = 1.41421 · · ·

• π = 3.14159 · · ·

Indeed, let x ∈ R be a real number and x > 0. By the Archimedean property, there is a
natural number n ∈ N0 such that n − 1 ≤ x < n (this is possible, because any subset of N has
the minimal element, which we prove below). We take a0 = n− 1.

Note that 0 ≤ x− a0 < 1. Therefore, 0 < 10(x− a0) < 10. Take a1 ∈ N0 the largest natural
number such that a1 ≤ 10(x− a0). As it is the largest, we have again 0 < 10(x− a0)− a1 < 1.

We can repeat this procedure and obtain an, and it always hold that x − a0.a1 · · · an <
0.0 · · · 01︸ ︷︷ ︸

n-digits

.

Let A = {a0, a0.a1, a0.a1a2, a0.a1a2a3, · · · }. This A is bounded (by a0 + 1), hence it has the
supremum s. Note that x is un upper bound of A, hence supA ≤ x. On the other hand, if for any
ϵ = 0.0 · · · 01︸ ︷︷ ︸

n-digits

, we have x− ϵ < a0.a1 · · · an ∈ A, therefore, x ≤ supA. Altogether, x = supA = s.

Proposition 21. A real number that is has nonrepeating decimal representation is irrational.

Proof. We prove that any (positive) rational number has a repeating decimal representation.
Then the claim follows by contradiction.

Let x = a0.a1a2 · · · = p
q , p, q ∈ N. We can write p = nq + r, where n, r ∈ N and 0 ≤ r < q

(division with remainder). We set a0 = n. Then we write 10r = n1q+r1 again, and wet a1 = n1.
In this way, we obtain the decimal representation of p

q , but there are only finitely many possible
values 0, 1, · · · q − 1 of r1 because we are doing the division with remainder by q. This means
that the numbers repeat after at largest q digits.

The converse of this (any irrational number has a nonrepeating decimal representation) will
be proven later.
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Oct 5 (14:00). Natural numbers and induction.

The Peano axioms

The set N of natural numbers can be caracterized by the Peano axioms:

• 1 ∈ N

• For every n ∈ N, n+ 1 ∈ N

• For every n ∈ N, n+ 1 ̸= 1 (this means 0 /∈ N)

• Let S ⊂ N. If 1 ∈ S and n+ 1 ∈ S for any n ∈ S, then S = N.

In other words, N consists of 1 and all other numbers obtained by adding 1 repeatedly to 1, and
that is all. This is the precise definition of N.

Mathematical induction

With this characterization, we obtain the mathematical induction. Let φ(n) be a set of proposi-
tions depending on n ∈ N. If φ(1) is true, and if we can prove φ(n+ 1) from φ(n), then φ(n) is
true for all natural numbers. Indeed, let S = {n ∈ N : φ(n) is true }. S is a subset of N, 1 ∈ S
and if n ∈ S, then n + 1 ∈ S. From the Peano axioms, we have S = N. In other words, φ(n)
holds for all n ∈ N.

Example 22. n2 ≥ 2n− 1 for all n.
Indeed, we apply mathematical induction to φ(n) = “n2 ≥ 2n − 1”. With n = 1, we have

1 ≥ 2 · 1− 1 = 1.
If we assume that this holds for n, then (n + 1)2 = n2 + 2n + 1 ≥ 2n − 1 + 2n + 1 = 4n =

2n+2n ≥ 2n+1 = 2(n+1)− 1, therefore, we proved φ(n+1) from φ(n). We can now conclude
that φ(n) is true for all n ∈ N.

Exercise: prove that n > 0 for all n ∈ N.

The well-ordering principle

First we need the following.

Lemma 23. Let m,n ∈ N, m > n. Then m− n ∈ N.

Proof. This is proved by a double induction. Let φ(m,n) = “if m > n, then m− n ∈ N”. Let us
first set n = 1, m = 1. In this case, m > n is not true, so we do not have to prove anything.

Assume that φ(m, 1) is true, that is, if m > 1, then m−1 ∈ N. To prove φ(m+1, 1), assume
that m+ 1 > 1, but m+ 1− 1 = m ∈ N. By induction, φ(m, 1) is true for all m ∈ N.

Assume that φ(m,n) is true for all m ∈ N. Assume that m > n+ 1. This does not happen
if m = 1, 2, thus these cases are ok. For m > 2, we have m − 1 > n > 0, and m − 1 ∈ N by
φ(m, 1). Then by φ(m− 1, n), m− (n+1) = m− 1−n ∈ N. that is, we proved φ(m,n+1).

We combine a proof by contradiction and mathematical induction.

Theorem 24. For any nonempty subset S ∈ N, there is the smallest element in S. That is,
there is n ∈ S such that n ≤ m for all m ∈ S.

Proof. Let us call A the assumption that S is not empty.
Let us assume the contrary, that S does not admit the smallest element (call this assumption

B). It means that, for any n ∈ S, there is m ∈ S such that m < n.
Let T = {n ∈ N : m > n, for all m ∈ S}. We show that T = N by induction.
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• First, 1 ∈ T . To prove this, assume that 1 /∈ T (call this C1). Then, there must be m ∈ S
such that m ≤ 1. This means 1 ∈ S. But 1 is always the smallest element of any subset of
N, contradicting B. Therefore, C1 is false and we obtain 1 ∈ T .

• Next, let n ∈ T and we prove that n+1 ∈ T . Assume that n+1 /∈ T (call this Cn). Then,
there is m ∈ S such that m ≤ n+1, but since n ∈ T , it must hold that n < m. This means
that m = n + 1 by the previous lemma, and any ℓ ≤ n does not belong to S. Therefore,
m = n+1 would be the smallest element of S, contradicting B. Therefore, Cn is false and
we obtain n+ 1 ∈ T .

Then by induction (the Peano axioms) we have T = N. This implies that for any m ∈ S it it
holds for m < n for all n ∈ T = N. But there is no such m (larger than any natural number),
hence S = ∅. This contradicts the assumption A of the theorem. Therefore, the assumption B
made in the proof is wrong. That is, S admits the smallest element.

Alternatively, this can be proved as follows, but using the axiom of the least upper bound
(the proof above uses only the Peano axioms). As N is bounded below, S is bounded below
as well. Let a = inf S. We show that a ∈ S. If not, for ϵ = 1

2 , there is m ∈ S such that
m < a + 1

2 . If m = a, then a ∈ S and it is the smallest element, If not, there is n ∈ S such
that n < a + (m − a) = m. By the previous lemma, m − n ∈ N, but a < n < m < a + 1

2 , thus
m− n < 1

2 , contradiction.

Corollary 25. Let x ∈ R, x > 1. There is n ∈ N such that n− 1 ≤ x < n.

Proof. By the Archimedean principle, there is n such that x < n. Therefore, the set S = {m ∈
N : x < m} is nonempty, and by the well-ordering principle, it has the smallest element n. As
this is the smallest element, n− 1 ≤ x (otherwise n− 1 would be in S, because 1 < x < n thus
2 ≤ n and n− 1 ∈ N, contradicting the conclusion that n was the smallest of S).

We have used this property before to find the decimal representation of x.

The summation and product notations

Assume that we have a sequence of numbers, that is a family {an}n∈S of real numbers indexed
by S ⊂ N. This means that we have numbers a1, a2, a3, · · · . Sometimes we start the index from
0, and have a0, a1, a2, · · · .

Example 26. • a1 = 1, a2 = 2, a3 = 3, · · ·

• a1 = 1, a2 = 4, a3 = 9, · · ·

• a1 = 4, a2 = 2534, a3 =
3

361 (a finite sequence stops at some n ∈ N)

When we have a (finite) sequence, we can sum all these numbers up: a1+ · · ·+an. We denote
this by the following symbol.

n∑
k=1

ak = a1 + · · ·+ an

In this symbol, k is a dummy index and plays no specific role. We have
n∑

k=1

ak =

n−1∑
k=0

ak+1 = a1 + · · ·+ an.

On the other hand, the number on the top (n in this example) is where the sequence stops.
Similarly, we can define

∑n
k=m ak = am + am+1 + · · ·+ an for n ≥ m.

More precisely, this is a recursive definition: We define
∑1

k=1 = a1 and
∑n+1

k=1 ak =
∑n

k=1 ak+
an+1 Similarly to mathematical induction, we define in this way

∑n
k=1 ak for all natural numbers

n ∈ N.
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Example 27. • a1 = 1, a2 = 2, a3 = 3.
∑3

k=1 ak = 1 + 2 + 3 = 6.

• a1 = 1, a2 = 4, a3 = 9, a4 = 16.
∑4

k=1 ak = 1 + 4 + 9 + 16 = 30.

Let us also introduce a symbol for product.
n∏

k=1

ak = a0 · a1 · · · · · an

Example 28. • a1 = 1, a2 = 2, a3 = 3.
∏3

k=1 ak = 1 · 2 · 3 = 6.

• a1 = 1, a2 = 4, a3 = 9, a4 = 16.
∏4

k=1 ak = 1 · 4 · 9 · 16 = 576.

In particular, we denote

• For a ∈ R, an =
∏n

k=1 a. For example, a1 = a, a2 = a · a, a3 = a · a · a. By convention, for
a ̸= 0, we set a0 = 1.

• n! =
∏n

k=1 k = 1 · 2 · · · · · n. By convention, we set 0! = 1.

For example, 2! = 2, 3! = 6, 4! = 24, · · · .
n! is the number of all possible ordering of n objects. One can see this by observing that
in the first place there are n candidates, then in the second place there are n−1 remaining
candidates, and so on.

• For n, k ∈ N, n ≥ k, we define
(
n
k

)
= n!

k!(n−k)! . For example,
(
4
2

)
= 4!

2!2! = 6.(
n
k

)
is the number of all possible combinations of choosing k objects out of n objects. One

can see this by observing that, there are n! orderings, and we can decided to pick the first
k objects, but their order and the order of the remaining objects do not matter, thus we
need to divide by k! and (n− k)!.

Oct 5. Some useful formulae.

Some useful formulas

The summation formulas

Proposition 29. We have the following.

•
∑n

k=1 k = n(n+1)
2 .

•
∑n

k=1 k
2 = n(n+1)(2n+1)

6 .

• For a ̸= 1,
∑n

k=1 a
k = a(1−an)

1−a .

Proof. We prove them by induction.

•
∑1

k=1 k = 1 = 1·2
2 = 1 is correct. Assume the formula

∑n
k=1 k = k(k+1)

2 for n, then

n+1∑
k=1

k =
n∑

k=1

k + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
(n
2
+ 1
)
(n+ 1)

=
(n+ 2)(n+ 1)

2
.

Then by induction the formula holds for all n ∈ N.
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•
∑1

k=1 k
2 = 12 = 1·2·3

6 = 1 is correct. Assume the formula
∑n

k=1 k = n(n+1)(2n+1)
6 for n,

then
n+1∑
k=1

k2 =
n∑

k=1

k2 + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=

(
n(2n+ 1)

6
+ (n+ 1)

)
(n+ 1)

=
(2n2 + n+ 6n+ 6)(n+ 1)

6

=
(2n+ 3)(n+ 2)(n+ 1)

6

=
(2(n+ 1) + 1)((n+ 1) + 1)(n+ 1)

6
.

Then by induction the formula holds for all n ∈ N.

•
∑1

k=1 a
k = a = a(1−a)

1−a is correct. Assume the formula
∑n

k=1 a
k = a(1−an)

1−a for n, then

n+1∑
k=1

ak =

(
n∑

k=1

ak

)
+ an+1

=
a(1− an)

1− a
+ an+1

=
a− an+1 + an+1 − an+2

1− a

=
a(1− an+1)

1− a

Then by induction the formula holds for all n ∈ N.

The binomial theorem

Lemma 30.
(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
for n ≥ k.

Proof. We calculate (
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− (k − 1))!
+

n!

k!(n− k)!

=
n!

(k − 1)!(n− k)!

(
1

n− k + 1
+

1

k

)
=

n!

(k − 1)!(n− k)!

k + n− k + 1

k(n− k + 1)

=
n!

(k − 1)!(n− k)!

n+ 1

k(n− k + 1)

=
(n+ 1)!

k!(n− k + 1)!
=

(
n+ 1

k

)
.

Theorem 31. For any a, b ∈ R, n ∈ N, (a + b)n =
∑n

k=0

(
n
k

)
akbn−k, where in this theorem we

mean 00 = 1.
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Proof. By induction. For n = 0, this holds in the sense of 1 = 1.
Assume that this holds for n. Then,

(a+ b)n+1 = (a+ b)n · (a+ b)

= (a+ b)
n∑

k=0

(
n

k

)
akbn−k

=
n∑

k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn−k+1

=

n+1∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=0

(
n

k

)
akbn−k+1

=

n∑
k=1

((
n

k − 1

)
+

(
n

k

))
akbn+1−k + an+1b0 + a0bn+1

=
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k

For example, we have

• (x+ y)2 = x2 + 2xy + y2

• (x+ y)3 = x3 + 3x2y + 3xy2 + y3

• (x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

and so on.

Oct. 6. Functions, domains and ranges.

Functions

By a function we usually mean “a map” which assigns to a number x another number f(x), or
an assignment

x 7−→ f(x).

There are many “real-world” examples of functions: When a quantity changes with time, you can
use x as time (or often you denote it by t) and the quantity by f(x). Or we can plot a set of data
that depend on a parameter (more concretely: when a car is running, we can determine how far
the car is from the starting point at each moment t, put the distance as f(t). In chemistry, water
can solve various substance, and the solubility depends on the temperature. In economics, in a
market, when the price of a product rises, the demand falls, called the demand curve).

More precisely, we can consider it as follows: for each number x there is another number
f(x), and nothing else. We can express this situation using ordered pairs.

Let us assume that we know the correspondence x 7−→ f(x), defined on a subset (“domain”)
S. Then we can draw the graph, namely, the subset {(x, y) ∈ S × R : y = f(x)}, or in other
words, we collect all points (x, y) where y = f(x).

More generally we can define a function to be a subset f of R×R such that for each x ∈ f
there is one and only one y. Also in this case we denote the relation by y = f(x). In this sense,
the graph and the function are the same thing.

Let us introduce some terminology.
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x
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x
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Figure 10: Left: the graph of y = x. Right: the graph of y = x2.

• {x ∈ R : there is some (x, y) ∈ f} is called the domain of f .

• {y ∈ R : there is some (x, y) ∈ f} is called the range of f .

Example 32. • f(x) = x. Namely, f = {(x, y) ∈ R × R : y = x}. The domain is R, the
range is R.

• f(x) = x2. Namely, f = {(x, y) ∈ R× R : y = x2}. The domain is R, the range is [0,∞).

• f(x) = x5 − 2x3 + 1. f = {(x, y) ∈ R×R : y = x5 − 2x3 + 1}. The domain is R, the range
is R.

• f(x) =
√
x for x ≥ 0. Namely, f = {(x, y) ∈ R × R : x ≥ 0, y =

√
x}. The domain is

[0,∞), the range is [0,∞).

• f(x) =
√
1− x for 1− x ≥ 0, or x ≤ 1. Namely, f = {(x, y) ∈ R×R : x ≤ 1, y =

√
1− x}.

The domain is (−∞, 1], the range is [0,∞).

The set {(x, y) ∈ R× R : x2 + y2 = 1} is not a function. Indeed, for each x ∈ (−1, 1), there are
two numbers y =

√
1− x2,−

√
1− x2 that satisfy the equation x2 + y2 = 1.

Let us introduce the absolute value of x ∈ R:

|x| :=

{
x if x ≥ 0

−x if x < 0

where := means we define the left-hand side by the right-hand side. This is also a function with
the domain R and the range [0,∞).

We define the sign of x ∈ R:

signx :=


1 if x > 0

0 if x = 0

−1 if x < 0

22



x

y

x

y

Figure 11: Left: the graph of y = x5 − 2x3 + 1. Right: the graph of y =
√
x.
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Figure 12: Left: the graph of x2 + y2 = 1, not a function of x. Right: the graph of y =
√
1− x2.
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Figure 13: Left: the graph of y = |x|. Right: the graph of y = signx, with a “jump” at x = 0.

x

y

Figure 14: The graphs of y = 1
x on (−∞, 0) ∪ (0,∞).

We define the factorial of x ∈ N0: f(n) = n!. The domain is N0.

Operations on functions

When we have two or more functions, we can produce more functions. Let f(x) be a function
with domain S and g(x) a function with domain T .

• Sum. We can define the sum h(x) = f(x) + g(x), defined on S ∩ T .

Example: with f(x) = x, g(x) = x2, h(x) = x+ x2.

• Product. We can define the product h(x) = f(x) · g(x), defined on S ∩ T .

Example: with f(x) = x, g(x) = x2, h(x) = x3.

• Division. We can define the division h(x) = f(x)
g(x) defined on S ∩ {x ∈ T : g(x) ̸= 0}.

Example: with f(x) = x + 1, g(x) = (x + 2)(x − 1), h(x) = x+1
(x+2)(x−1) , defined on R \

{1,−2} = (−∞,−2) ∪ (−2, 1) ∪ (1,∞).

• Composition. We can define the composed function h(x) = f(g(x)), defined on {x ∈ T :
g(x) ∈ S}.
Example: with f(x) =

√
x, g(x) = x+ 1, h1(x) =

√
x+ 1, defined on {x ∈ R : x+ 1 ≥ 0}.

Note that this is different from the composition in the reversed order: h2(x) = g(f(x)) =√
x+ 1, defined on [0,∞).
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x

y

Figure 15: The graphs of y =
√
x and y = x2 on [0,∞).

We say that a function f(x) is injective if for any pair x1 ̸= x2 in the domain, it holds that
f(x1) ̸= f(x2). Similarly, we say that a function f(x) is surjective (to R) if the range is R. A
function which is both injective and surjective is said to be bijective.

For example, f(x) = x is injective and surjective (hence bijective), but f(x) = x2 is neither
injective nor surjective. But if we consider f(x) = x2 with the restricted domain [0,∞), it is
injective: for positive numbers x1 ̸= x2, x21 ̸= x22.

For an injective function f(x), we can define the inverse function f−1: the domain of f−1

is the range R of f , and it assigns to f(x) the number x: it is characterized by f−1(f(x)) = x.
Its graph (its formal definition) is given by {(x, y) ∈ R×R : x ∈ R, x = f(y)}. The range of f−1

is the domain of f .
For example, consider f(x) = x2 on the domain [0,∞). The range of f is [0,∞), hence the

domain of f−1 is [0,∞). For any x ∈ [0,∞), we should have f−1(f(x)) = f−1(x2) = x, therefore,
f−1(x) =

√
x.

The triangle inequality

Lemma 33. Let x, a ∈ R, a ≥ 0. Then |x| ≤ a if and only if −a ≤ x ≤ a.

Proof. Assume that x ≥ 0.

• If |x| = x ≤ a, then −a < 0 ≤ x ≤ a.

• If −a ≤ x ≤ a, then |x| = x ≤ a.

Instead, if we assume that x < 0, then

• If |x| = −x ≤ a, then −a ≤ x < 0 ≤ a.

• If −a ≤ x ≤ a, then |x| = −x ≤ a.

Theorem 34. For any x, y ∈ R, it holds that |x+ y| ≤ |x|+ |y|.

Proof. We have −|x| ≤ x ≤ |x|,−|y| ≤ y ≤ |y| by Lemma, therefore, −|x|−|y| ≤ x+y ≤ |x|+|y|,
and again by Lemma this implies that |x+ y| ≤ |x|+ |y|.

Corollary 35. For any x1, x2, · · · , xn ∈ R, it holds that |
∑n

k=1 ak| ≤
∑n

k=1 |ak|.
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Proof. By induction. For n = 1,
∣∣∣∑1

k=1 a1

∣∣∣ = |a1| =
∑1

k=1 |ak| is obvious. Assuming the
inequality for n, we have∣∣∣∣∣

n+1∑
k=1

ak

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ak + an+1

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣+ |an+1| by Theorem

≤
n∑

k=1

|ak|+ |an+1| by induction hypothesis

=

n+1∑
k=1

|ak|

which concludes the induction.

Oct 9. Sequence and convergence of sequence.

Convergence of sequences

We saw sequences of real numbers a1, a2, · · · . A sequence can be infinite, that is, it continues
infinitely. For example,

• a1 = 1, a2 = 2 and in general, an = n.

• a1 = 1, a2 = 4 and in general, an = n2.

A sequence can be considered as a function with the domain N.
Among sequences, we have seen the following:

• a1 = 1, a2 =
1
2 and an = 1

n .

• a1 =
1
2 , a2 =

3
4 and an = 1− 1

2n .

Intuitively, the first of them gets closer and closer to 0, while the second one gets closer and
closer to 1. But what does it mean that it gets closer to a number?

We make precise the notion that a sequence get “arbitrarily” close to a number as follows.

Definition 36. Let {an} be a sequence of real numbers. If there is L ∈ R such that for each
ϵ > 0 there is Nϵ such that for n ≥ Nϵ it holds that |an − L| < ϵ, we say that {an} converges
to L. In this case, L is called the limit of the sequence {an}.

We write this situation as limn→∞ an = L, or simply an → L.

Example 37. Let us see some convergent sequences.

• a1 = 1, a2 = 1
2 and an = 1

n . We expect that this sequence converges to 0. Indeed, for any
ϵ > 0, there is Nϵ such that 1

Nϵ
< ϵ (the Archimedean property). Furthermore, if n > Nϵ,

then | 1n − 0| = 1
n <

1
Nϵ

< ϵ, therefore, with L = 0, we have that {an} converges to 0.

• a1 =
1
2 , a2 =

3
4 and an = 1− 1

2n . We expect that this sequence converges to 1. Indeed, for
any ϵ > 0, there is Nϵ such that 1

Nϵ
< ϵ and note that 1

2Nϵ
< 1

Nϵ
. Furthermore, if n > Nϵ,

then 1
2n <

1
Nϵ

and hence |1− 1
2n − 1| = 1

2n <
1
Nϵ

< ϵ, therefore, with L = 1, we have that
{an} converges to 1.
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Figure 16: Up: the sequence an = 1
n plotted on the line. Bottom: the sequene an = 1

n as a
function on N.
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1

0.5

1 2 3 4 5 10

Figure 17: The sequence an = 1
2(1− (−1)n) as a function on N.

a2 = b1a4 = b2a8 = b30

Figure 18: The subsequence a2n of the sequence an = 1
n .

• The sequence an = 1√
n

converges to 0. Indeed, for each ϵ, there is Nϵ such that 1
Nϵ

< ϵ,
and hence if n > N2

ϵ , then 1√
n
< 1√

N2
ϵ

= 1
Nϵ

< ϵ.

Note that

• If {an} converges to L, then it does not converge to any other number. Indeed, if x ̸= L,
then take N such that |an − L| < 1

2 |L − x| for n > N . Then by the triangle inequality
|L − x| < |an − x| + |an − L|, and hence |an − x| > |x − L| − |an − L| > 1

2 |L − x| ̸= 0.
Therefore, {an} does not converge to x.

• The sequence a1 = 1, a2 = 0, a3 = 1, · · · , an = 1
2(1 − (−1)n) does not converge to any

number.

• The sequence a1 = 1, a2, · · · , an = n does not converge to any number.

• In general, if for any x there is an Nx ∈ N such that for n > Nx it holds that |an| > x,
then we say that {an} diverges.

• The sequence an = 2n diverges.

Some properties of convergent sequences

Given a sequence {an}, one can take a subsequence of it. That is, we take an increasing
sequence of natural numbers m1 < m2 < m3 < · · · and define a new sequence bn = amn .

Example 38. Given an = 1
n and mn = 2n, the subsequence is a2n = 1

2n .

If {an} is convergent to L, then any subsequence {amn} is convergent to L. Indeed, as
m1 < m2 < m3 · · · , we have n ≤ mn and hence, for any ϵ > 0, we take N such that |an −L| < ϵ
for n > N , hence all n > N , |amn − L| < ϵ.

We say that {an} is nondecreasing (respectively nonincreasing) if an ≤ an+1 (respectively
an ≥ an+1) holds for all n ∈ N. A sequence {an} is said to be bounded above (respectively
bounded below) if there is M ∈ R such that an ≤M (respectively an ≥M) for all n ∈ N).

Lemma 39. Let {an} be a nondecreasing sequence and bounded above. Then an converges to a
certain real number L ∈ R.

Proof. Let A = {an : n ∈ N}. As {an} is bounded above, A is bounded above. We put L = supA.
By Lemma 10, for each ϵ > 0, there is N ∈ N such that L − ϵ < aN . As an is nondecreasing,
we have L − ϵ < an for all n > N . On the other hand, we have an ≤ L because L = supA.
Altogether, |an − L| < ϵ for such n. As n was arbitrary, an converges to L.
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Note that |ab| = |a||b|.

Theorem 40. The following hold.

• If an → L, then there is L̃ such that |an| < L̃ for all n.

• If an → L, bn → M , then an + bn → L +M,an · bn → LM . If M ̸= 0, then bn ̸= 0 for
sufficiently large n and an

bn
→ L

M .

• If an > 0 diverges, then 1
an

converges to 0.

Proof. • Assume that an → L. Given, say 1, there is N such that |an − L| < 1 for n > N ,
hence −1− |L| ≤ −1− L < an < L+ 1 ≤ |L|+ 1, and |an| < |L|+ 1 for n > N . Then, we
can take a number L̃ such that |a1|, · · · , |aN−1| < L̃ and L+ 1 < L̃.

• Let ϵ > 0 be arbitrary. There are N1, N2 ∈ N such that for n > N1 (respectively n > N2)
it holds that |an − L| < ϵ

2 (respectively |bn −M | < ϵ
2). Let N be the largest of N1, N2.

Then we have

|an + bn − L−M | ≤ |an − L|+ |bn −M | < ϵ

2
+
ϵ

2
= ϵ.

hence an + bn converges to L+M .

As for the product, given ϵ > 0, we take N such that |an−L| < ϵ
2(|M |+1) , |bn−M | < ϵ

2(|L|+1)

and |bn| < |M |+ 1 for n > N (this can be done as in the case of sum). Then

|anbn − LM | = |anbn − bnL+ bnL− LM | ≤ |(an − L)bn)|+ |(bn −M)L|

≤ |an − L||bn|+ |bn −M ||L| ≤ ϵ

2
+
ϵ

2
= ϵ,

which shows the desired convergence.

We prove 1
bn

→ 1
M . If bn → M and M ̸= 0, then |bn −M | < |M |

2 for sufficiently large n,
and hence |M | = |bn− bn+M | ≤ |bn|+ |bn−M | < |bn|+ |M |

2 , thus |bn| > |M |
2 , in particular

bn ̸= 0. We can now show that 1
bn

→ 1
M . Indeed, by taking N such that |bn −M | < ϵM2

2∣∣∣∣ 1bn − 1

M

∣∣∣∣ = |M − bn|
|M ||bn|

<
ϵM2

2
M2

2

= ϵ,

which shows 1
bn

→ 1
M . Now an

bn
→ L

M follows from this and the product with an.

• For any ϵ > 0, there is N such that for n > N it holds that |an| > 1
ϵ , that is 1

an
< ϵ, hence

1
an

converges to 0.

We denote a−n = 1
an .

Proposition 41. The following hold.

• Let a > 1. Then an diverges.

• Let 0 < a < 1. Then an converges to 0.

• Let 0 < a < 1. Then bn =
∑n

k=1 a
k converges to a

1−a .
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Proof. • If a > 1, we can write a = 1 + y where y > 0. By the binomial theorem, we have

an = (1 + y)n =
n∑

k=0

(
n

k

)
1kyn−k > 1 + ny,

by only taking the terms k = n, n− 1. Now it is clear that for any x there is large enough
n such that 1 + ny > x, therefore, x < 1 + ny < an, that is, an diverges.

• If 0 < a < 1, then 1
a > 1 and ( 1a)

n diverges. Therefore, an = ( 1a)
−n converges to 0.

• We know that bn =
∑n

k=1 a
k = a(1−an)

1−a , and an → 0.

Oct. 11. Continuity of functions.

Decimal representation of real numbers

Now that we have defined convergence of sequences, we can make sense of all decimal represen-
tations as real numbers.

Theorem 42. Let an ∈ N0 and 0 ≤ an ≤ 9. Then bn =
∑n

k=0 ak10
−k converges to a real

number.

Proof. Let bn =
∑n

k=0 ak10
−k. This is nondecreasing and bounded above by a0 + 1. By Lemma

39, this converges to a real number.

When the sequence converges, it converges to only one number. In this way, we can say that
a decimal representation a0.a1a2a3 · · · defines a real number.

Now we can prove that any repeating decimal representation gives a rational number. For
example consider 0.123123123 · · · . This can be written as

0.1 + 0.02 + 0.003 + 0.0001 + 0.00002 + 0.000003 + · · · =
n∑

k=0

ak10
−k,

where a1 = 1, a2 = 2, a3 = 3, a4 = 1, a5 = 2, a6 = 3, · · · . It is easy to see that this is equal to
0.123 + 0.000123 + · · · =

∑n
k=1(100a3k+1 + 10a3k+2 + a3k+3)1000

−k. We know that this sum
converges and compute

n∑
k=1

(100a3k+1 + 10a3k+2 + a3k+3)1000
−k = 123

n∑
k=1

1000−k

→ 123
1000−1

1− 1000−1
=

123

999
.

Proposition 43. Any real number given by a repeating decimal representation is rational.

Proof. Indeed, let us take a repeating sequence 0 ≤ an ≤ 9 as above. That is, there is m ∈ N
such that an+m = am.

Then, for j, ℓ ∈ N,
jℓ∑

k=0

ak = a0 +

ℓ∑
j=1

10−jm
m∑
k=1

ak10
m−k

= a0 + (

m∑
k=1

ak10
m−k)

10−m(1− 10−jℓ)

1− 10−m

→ a0 + (

m∑
k=1

ak10
m−k)

10−m

1− 10−m
= a0 + (

m∑
k=1

ak10
m−k)

1

10m − 1

as ℓ→ ∞. The last expression is evidently rational.
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L+ ϵ

L− ϵ

a+ ϵa− ϵ

Figure 19: The limit limx→a f(x).

Theorem 44. For any real number a there is a sequence an of rational numbers such that
an → a.

Proof. Take the decimal representation of a, truncate it to the n-th digit, and call it an. Then
{an} are rational and an → a.

Continuity of functions

Let us go back to studying functions. Among functions, we saw the sign function

signx :=


1 if x > 0

0 if x = 0

−1 if x < 0

and its graph (Figure 13) has a “jump” at x = 0.
Intuitively, the “jump” means that, the value at x = 0 is 0, but if one approaches to 0 from

the right, the value of the function remains 1, while it is −1 from the left.
Let us make this precise.

Definition 45. Let f be a function defined on S (the domain), and let a ∈ R such that there is
a sequence xn ∈ S, xn ̸= a such that xn → a. We write

lim
x→a

f(x) = L

if for any ϵ > 0 there is δ > 0 such that |f(x)− L| < ϵ for any x ̸= a, |x− a| < δ.

Example 46. Let f(x) =

{
1 if x ̸= 0

0 if x = 0
.
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x

y

Figure 20: The graph of y =

{
1 if x ̸= 0

0 if x = 0
.

• Consider a = 2. Then, for any ϵ, we can take δ = 1
2 and |f(x) − 1| = |1 − 1| = 0 for any

x ∈ (2 − δ, 2 + δ) = (32 ,
5
2). Therefore, limx→2 f(x) = 1. A similar situation holds for any

x ̸= 0.

• Consider a = 0. Then, for any x ̸= 0, f(x) = 1, hence again we have limx→0 f(x) = 1,
although f(0) = 0 by definition.

• For the function signx (Figure 13), there is no limit limx→0 f(x) at x = 0.

The limit makes precise the concept of “approaching a point”. The absence of “jump” can
also be formalized using limit.

Definition 47. Let f be a function defined on S (the domain), and let a ∈ S (this time a is in
the domain) such that there is a sequence xn ∈ S, xn ̸= a such that xn → a. We say that f is
continuous at a if limx→a f(x) = f(a). We say that f is continuous on S if it is continuous at
each point in S.

Now we can understand the “jumps” in terms of limit and continuity.

Example 48. • The function signx is not continuous at x = 0, because it does not have
limx→0 signx.

• The function f(x) =

{
1 if x ̸= 0

0 if x = 0
is not continuous at x = 0, because limx→0 f(x) = 1 ̸=

0 = f(0).

• The function f(x) = c is continuous. Indeed, let us fix a ∈ R. For any ϵ, |f(x) − c| =
|c− c| = 0 < ϵ, hence limx→a f(x) = c = f(a).

• The function f(x) = x is continuous. Indeed, let us fix a ∈ R. Then, for each ϵ > 0, we
take δ = ϵ and for |h| < δ = ϵ it holds that |f(a + h) − a| = |a + h − a| = |h| < δ = ϵ,
therefore, limx→a f(x) = a = f(a).

Theorem 49. Let f, g be functions defined on S, and let a such that there is {xn} ⊂ S, xn ̸=
a, xn → a. Assume that limx→a f(x) = L and limx→a g(x) =M . Then

• There is δ > 0 such that if |x− a| < δ, x ̸= a then |g(x)| ≤ |M |+ 1.

• limx→a(f(x) + g(x)) = L+M and limx→a(f(x)g(x)) = LM .

32



• Assume that M ̸= 0, then there is δ > 0 such that, if |x − a| < δ, then |g(x)| > |M |
2 for x

such that |x− a| < δ, x ̸= a.

• If M ̸= 0, then limx→a
f(x)
g(x) = L

M .

Furthermore, if a ∈ S and if f, g are continuous at a, then f + g, fg are continuous at a. If
g(a) ̸= 0, then f

g is continuous at a.

Proof. The proof is similar to that of Theorem 40.

• Let δ > 0 such that |g(x)−M | < 1 for x such that |x−a| < δ, x ̸= a. Then |g(x)| < |M |+1.

• For a given ϵ > 0, let δ > 0 such that |f(x)−L| < ϵ
2 , |g(x)−M | < ϵ

2 for |x− a| < δ, x ̸= a.
Then |f(x) + g(x)− L−M | < ϵ

2 + ϵ
2 = ϵ, which shows the desired limit.

For the product, for a given ϵ > 0, let δ > 0 such that |f(x)− L| < ϵ
2(|M |+1) , |g(x)−M | <

ϵ
2(|L|+1) and |g(x)| < |M | + 1 for |x − a| < δ, x ̸= a. Then |f(x)g(x) − LM | = |f(x) −
L||g(x)|+ |g(x)−M ||L| < ϵ(|M |+1)

2(|M |+1) +
ϵ|L|

2(|L|+1) < ϵ, which shows the desired limit.

• Let δ > 0 such that |g(x) −M | < |M |
2 for x such that |x − a| < δ, x ̸= a. Then, by the

triangle inequality, |g(x)| ≥ |M | − |g(x)−M | > |M |
2 .

• We show that limx→a
1

g(x) = 1
M . Then the general case follows from this and the limit of

product. Assume M ̸= 0, and let ϵ > 0. Then there is δ > 0 such that |g(x)−M | < |M |
2 for

x ̸= a, |x−a| < δ and hence |g(x)| > |M |
2 , in particular g(x) ̸= 0. Now, there is δ̃ > 0, δ̃ < δ

such that for x ̸= a, |x− a| < δ̃ it holds that |g(x)−M | < ϵM2

2 . Then∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ = |M − g(x)|
|M ||g(x)|

<
ϵM2

2
M2

2

= ϵ,

which shows the desired limit.

If f, g are continuous, then limx→a f(x) = f(a), limx→a g(x) = g(a), hence limx→a(f(x)+g(x)) =

f(a) + g(a), limx→a f(x)g(x) = f(a)g(a), limx→a
f(x)
g(x) = f(a)

g(a) .

From this, we know that

• If f(x) = a0 + a1x
1 + · · · anxn (a polynomial), then f is continuous. f(x) = x2, f(x) =

x5 + 34x3 − 454...

• If f(x) = P (x)
Q(x) and P (x), Q(x) are polynomial, then f is continuous at x if Q(x) ̸= 0.

f(x) = x−2
x2 is continuous on x ̸= 0 (actually defined on {x ∈ R : x ̸= 0}, f(x) = x3

x2−1
=

x3

(x−1)(x+1) is continuous on x ̸= −1, 1.

Oct. 11 (14:00). Properties of continuous functions.

Sequences and continuity of functions

We can use sequences to study functions, especially regarding continuity. Let f be a function
defined on a certain domain S and {xn} a sequence in S. Then we can construct a new sequence
by {f(xn)}.

Theorem 50. Let f be a function defined on S. f is continuous at a ∈ S, that is, limx→a f(x) =
f(a) if and only if it holds that f(xn) → f(a) for all sequences {xn} in S such that xn → a.
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Proof. Assume that limx→a f(x) = f(a). Then, for each ϵ > 0, there is δ > 0 such that if
|x − a| < δ, then it holds that |f(x) − f(a)| < ϵ. Let us take any sequence {xn} such that
xn → a. This means that, for δ above, there is N such that |xn−a| < δ for n > N . Then by the
observation above, we have |f(xn)− f(a)| < ϵ (if xn = a, we just have |f(xn)− f(a)| = 0 < ϵ).
This shows that, for n > N , we have |f(xn)− f(a)| < ϵ. Therefore, for the given ϵ we found N
such that |f(xn)− f(a)| < ϵ for n > N . This means that f(xn) → f(a).

Conversely, assume that f(xn) → f(a) for all sequences {xn} such that xn → a. To do a
proof by contradiction, let us assue that there is ϵ > 0 for which for all δ there is x ∈ S, x ̸= a
such that |x − a| < δ but |f(x) − f(a)| ≥ ϵ. Let us take δn = 1

n . For each δn there is xn ∈ S
such that |xn − a| < 1

n , x ̸= a but |f(xn) − f(a)| ≥ ϵ. Then, it is clear that xn → a, but
f(xn) is not converging to f(a), which contradicts the assumption. Therefore, it must hold that
limx→a f(x) = f(a).

Lemma 51. Let a, x, xn ∈ R and assume that xn → x and xn ≤ a. Then x ≤ a.

Proof. Assume the contrary, that is, x > a. Then there is N such that |xn − x| < ϵ = x − a.
There is N such that xn− a = xn−x+x−a > |x− a| − |x− a| = 0 for n ≥ N . This contradicts
xn ≤ a. Therefore, x ≤ a.

It also holds that, if xn → x and xn ≥ a, then x ≥ a.
We can show that, if A ⊂ [a, b], then supA ∈ [a, b]: indeed, we can take a sequence {xn} ⊂ A

such that xn ̸= supA but xn → supA by Lemma 10.

Theorem 52 (the intermediate value theorem). Let f be a continuous function on a closed
interval [a, b]. Assume that f(a) < f(b). Then, for any value c ∈ (f(a), f(b)), there is z ∈ (a, b)
such that c = f(z).

Proof. Let c ∈ (f(a), f(b)), and we define A = {x ∈ [a, b] : f(x) < c}. A is bounded above,
because it is contained in [a, b], therefore, we can take z = supA. By Lemma 10, for each
n, there is xn ∈ A such that z − 1

n < xn, hence xn → z. Since f is continuous, we have
f(z) = limn→∞ f(xn). On the other hand, xn ∈ A, hence f(xn) < c and hence f(z) ≤ c by
Lemma 51.

We have z ̸= b because f(b) > c ≥ f(z). Therefore, we can take a sequence xn > z, xn → z
in the interval (z, b], and then f(xn) ≥ c because xn /∈ A. By continuity of f , we have f(z) =
limn f(xn) ≥ c. Altogether, we have f(z) = c.

Composition and inverse functions

Let f, g be two functions, f defined on S and g defined on the image (range) of f : f(S) = {y ∈
R : there is x ∈ S, y = f(x)}. Recall that we can compose two functions: for x ∈ S, g(f(x))
gives a number, hence the correspondence x → g(f(x)) is a function on S. We denote this
composed function by g ◦ f .

Theorem 53. In the situation above, if f and g are continuous, then g ◦f is continuous as well.

Proof. Let a ∈ S, xn ∈ S, xn → x. Then by the continuity of f , we have f(xn) → f(x). Then
by the continuity of g, we have g(f(xn)) → g(f(x)). This shows that g ◦ f is continuous at
x ∈ S.

Definition 54. Let f be a function on S. We say that f is monotonically increasing (non-
decreasing, decreasing, nonincreasing, respectively) if for each x1, x2 ∈ S, x1 < x2 it
holds that f(x1) < f(x2) (f(x1) ≤ f(x2), f(x1) > f(x2), f(x1) ≥ f(x2), respectively).

Example 55. (Non)examples of monotonic functions.
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x

y = f(x)

f(a) + ϵ

f(a)− ϵ

a+ δa− δ xn

a

y = f(x)

f(a)

[
a

f(b)

]

b

c

x

Figure 21: Left: continuity of f and a sequence xn → a. Right: the intermediate value c is taken
at x.

• f(x) = x is monotonically increasing.

• f(x) = x2 is not monotonically increasing on R, but it is so on R+.

• f(x) = signx is monotonically nondecreasing.

If a function f is monotonically increasing (or decreasing), it is injective: for x1 ̸= x2, it holds
that f(x1) ̸= f(x2). Therefore, we can consider its inverse function.

Theorem 56. Let f be a monotonically increasing continuous function on an interval [a, b]. Then
the inverse function f−1 defined on [f(a), f(b)] is monotonically increasing and continuous.

Proof. Note that the domain of f−1 is [f(a), f(b)] by the intermediate value theorem (continuity
of f is needed here).

Let us first show that f−1 is monotonically increasing. For each y1 < y2, y1, y2 ∈ [f(a), f(b)],
there are x1, x2 ∈ S such that y1 = f(x1) and y2 = f(x2) by the intermediate value theorem and
we have x1 < x2 by monotonicity of f . This means that f−1(y1) = x1 < x2 = f−1(y2), that is,
f−1 is monotonically increasing.

Let x0 ∈ (a, b). For a given ϵ > 0, we take δ as the smaller of f(x0 + ϵ) and f(x0 − ϵ) (if
x0 ± ϵ are not in S, replace them by a or b). Then for any y ∈ (f(x0) − δ, f(x0) + δ), we have
f−1(y) ∈ S ∩ (x0 − ϵ, x0 + ϵ) by monotonicity of f . This is the continuity of f−1.

If x0 = a or b, then we only have to consider one side.

Roots and power functions

Let n ∈ N and consider f(x) = xn defined on [0,∞). This is monotonically increasing (because,
if x1 < x2, then xn2 = (x1+(x2−x1))n > xn by the binomial theorem). Therefore, we can define
the inverse function f−1(x) and denote it by x

1
n . This shows that, for any x ∈ R+∪{0}, there is

one and only one y such that yn = x. The function g(x) = x
1
n is monotonically increasing and

continuous by Theorem 56.
Let p, q ∈ N, x ≥ 0. Note that we have (xp)q = xpq = (xq)p. Then it is easy to see

that (xp)
1
q = (x

1
q )p: if y = (xp)

1
q , then yq = xp = ((x

1
q )q)p = (x

1
q )pq and hence y = (x

1
q )p.

Furthermore, let m ∈ N. Then for y = (xmp)
1

mq we have (yq)m = ymq = xmp = (xp)m, and hence
yq = xp and y = (xp)

1
q .
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y = f(x)

y = f−1(x)

)

)

x− ϵ x+ ϵ

y − δ
y + δ

Figure 22: The continuity of the inverse function. For a given ϵ, we can take δ.

Therefore, we can write y = x
p
q and no confusion arises.

Oct. 12. Exponential functions.

For a > 0 and p, q ∈ N, we have defined a
p
q . We also define a−

p
q = 1

a
p
q
. Then the natural question

arises whether ax can be defined for real numbers x.
For a fixed a > 0, we can consider f(x) = ax as a function defined on the set of rational

numbers Q.

Lemma 57. We have the following.

• For p, q, r, s ∈ N, we have a
p
q a

r
s = a

p
q
+ r

s .

• For p, q, r, s ∈ N, we have (a
p
q )

r
s = a

pr
qs .

• If a > 1, then f(x) = ax is monotonically increasing (as a function on Q).

• If 0 < a < 1, then f(x) = ax is monotonically decreasing.

Proof. • Recall that we have a
p
q = a

ps
qs and a

r
s = a

qr
qs , and hence

a
p
q a

r
s = a

ps
qs a

qr
qs = (a

1
qs )ps(a

1
qs )qr = (a

1
qs )ps+qr = a

ps+qr
qs = a

p
q
+ r

s .

• We will prove this as an exercise.

• Let us take a > 1. First, for any q ∈ N, a
1
q > 1, indeed, if a

1
q ≤ 1, we would have

a = (a
1
q )q ≤ 1, contradiction.

If x1, x2 ∈ Q and x1 < x2, we may assume that x1 = p
q , x2 =

r
q and p < r. Then

ax1 = a
p
q = (a

1
q )p < (a

1
q )r = a

r
q = ax2 .
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• The case 0 < a < 1 is similar.

We would like to define ax by limn→∞ axn , where xn ∈ Q and xn → x ∈ R. For this purpose,
we need some properties of sequences.

Lemma 58. If an ≤ bn and an → L, bn →M , then L ≤M .

Proof. Consider bn − an ≥ 0. By Lemma 51, bn − an →M − L ≥ 0, hence M ≥ L.

We write an → ∞ if for any x ∈ R there is N such that an > x for n > N .

Theorem 59 (Squeezing). Let an ≤ bn ≤ cn be three sequences. If an → L and cn → L, then
bn → L. Similarly, if an → ∞, then also bn → ∞.

Proof. For a given ϵ > 0, we take N such that for n > N it holds that |an − L| < ϵ and
|cn − L| < ϵ. For a fixed n > N , this means that L − ϵ < an ≤ bn ≤ cn < L + ϵ, and hence
|bn − L| < ϵ. This means that bn → L.

If an → ∞, then for a given x there is N such that x < an ≤ bn, hence bn → ∞.

For a statement like “there is N such that for n > N ...” we say simply that “for sufficiently
large n...”.

Proposition 60. We have the following.

• For a > 1, p ∈ N, we have an

np diverges.

• It holds that n
1
n → 1.

• For a > 1, we have a
1
n → 1.

Proof. • Let us consider first p = 1. Then, writing a = 1+ y with y > 0, we have, for n ≥ 2,

an = (1 + y)n =
n∑

k=0

(
n

k

)
1kyn−k > 1 +

n(n− 1)

2
y2,

and hence an

n > (n−1)y2

2 . As (n−1)y2

2 → ∞, so does it hold an

n → ∞.

For a general p ∈ N, we take a
1
p , then 1 < a

1
p and a

n
p

n → ∞, hence an

np =

(
a
n
p

n

)p

→ ∞.

• Let ϵ > 0. We need prove that n
1
n < 1 + ϵ for sufficiently large n. Equivalently, n <

(1 + ϵ)n. This follows from the previous point that (1+ϵ)n

n → ∞, in particular, (1+ϵ)n

n > 1
for sufficiently large n.

• 1 < a
1
n < n

1
n for a < n, therefore the claim follows from Theorem 59.

Definition 61. A sequence an is said to be a Cauchy sequence if for each ϵ > 0 there is N ∈ N
such that |am − an| < ϵ for m,n > N .

Differently from the convergence to a number L, this says that two elements in the sequence
are close to each other for large enough m,n.

Lemma 62. A sequence an is convergent if and only if it is a Cauchy sequence.
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ϵ

sup{ak : k ≥ 5}

inf{ak : k ≥ 6}

Figure 23: A Cauchy sequence.

Proof. If an → L, then for any ϵ > 0 we can take N such that |an−L| < ϵ
2 for n > N , therefore,

if n,m > N , then |am − L| < ϵ
2 as well and hence |am − an| ≤ |am − L|+ |L− an| < ϵ.

Conversely, if an is Cauchy, then it is bounded. Indeed, we take N such that |am − aN+1| <
1, then this means that |am| < |aN+1| + 1. Then we can take the largest number among
|a1|, · · · , |aN |, |aN+1|+ 1 as a bound. Next, we consider the sequence

bn = inf{ak : k ≥ n}.

This is well-defined because {ak : k ≥ n} is bounded. Furthermore, this sequence is increasing
because {ak : k ≥ n+ 1} ⊃ {ak : κ ≥ n}. Therefore, bn converges to some number L. Similarly,
with cn = sup{ak : k ≥ n}, this is bounded and decreasing, hence converges to M .

Note that bn ≤ an ≤ cn, therefore, L ≤M . Actually, we have L =M . Indeed, for given ϵ > 0,
we can find sufficiently large ℓ,m, n such that |cn−M | < ϵ

5 , |aℓ−cn| <
ϵ
5 , |bn−L| <

ϵ
5 , |am−bn| < ϵ

5
and |aℓ−am| < ϵ

5 . This implies that |M −L| < ϵ for arbitrary ϵ > 0, hence it must hold M = L.
Now, as bn, cn → L =M and bn ≤ an ≤ cn, we have an → L by Theorem 59.

Finally, we can define ax for all real number x.

Proposition 63. Let a > 0, xn ∈ Q, xn → x. Then axn converges. If yn ∈ Q, yn → x, then
limn→∞ axn = limn→∞ ayn.

Proof. Note that {xn} is bounded, hence {axn} is bounded as well, say by M , because the
exponential function on Q is monotonic. We show that axn is convergent. To see this, it is
enought to see that axn is Cauchy by Lemma 62.

For a given ϵ > 0, we take δ > 0 such that |az − 1| < ϵ
M for 0 < z < δ. For sufficiently large

m,n, we have |xm − xn| < δ and in that case,

|axm − axn | = |axm ||1− axn−xm | ≤M |1− axn−xm | < M
ϵ

M
= ϵ.

This means that {axn} is a Cauchy sequence, and hence it converges to a certain real number,
which we call ax.

If {yn} is another sequence converging to x, then we can consider a further new sequence
x1, y1, x2, y2, · · · , and this converges to some number. But the subsequence {xn} converges to
ax, and hence the whole sequence and hence {yn} must converge to ax as well.

As we said in the proof, for an arbitrary real number x ∈ R, we define the exponential
function by

ax := lim
n→∞

axn , where xn ∈ Q, xn → x.
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y = 2xy = 3x

y = 0.7x

Figure 24: The exponential functions.

The exponential functions appear in various natural phenomena. It happens typically when
we consider a collection of objects that increase or decrease independently (such as colonies of
bacteria, radioactive nuclei, and so on). See Figure 24.

Oct. 16. Logarithm.

Some properties of exponential functions

Proposition 64. We have the following.

• For a > 1, f(x) = ax is monotonically increasing and continuous.

• axay = ax+y.

• (ax)y = axy.

Proof. • Let x < y. Then we take sequences xn → x, yn → y, where xn, yn ∈ Q. Then
for sufficiently large n we have xn < z1 < z2 < yn where z1, z2 ∈ Q, and therefore,
ax ≤ az1 < az2 ≤ ay.

As for continuity, let us take x, xn ∈ R and xn → x. Then there is yn ∈ Q such that
|axn − ayn | < 1

n and |xn − yn| < 1
n . Then yn → x as well, hence ayn → ax, while

ayn − 1
n < axn < ayn + 1

n , therefore, axn → ax.

• Take sequences xn → x, yn → y, xn, yn ∈ Q. We have axnayn = axn+yn , and xn+yn → x+y,
therefore, axay = ax+y.

• Take sequences xn → x, yn → y, xn, yn ∈ Q. For fixed m, we have (axn)ym → (ax)ym and
this is equal to axnym → axym . Now we take the limit m → ∞ and obtain (ax)y = axy by
continuity.
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Napier’s number

Let us introduce Napier’s number. We take

en =

(
1 +

1

n

)n

, En =

(
1 +

1

n

)n+1

=

(
1 +

1

n

)
en

Lemma 65. For x ≥ −1, we have (1 + x)n ≥ 1 + nx for all n.

Proof. By induction. With n = 0, 1, we have (1 + x)0 = 1 = 1 and 1 + x = 1 + x. Assuming
that this holds for n, we expand

(1 + x)n+2 = (1 + x)n(1 + x)2 ≥ (1 + nx)(1 + x)2

= 1 + nx+ 2x+ x2 + 2nx2 + nx3 = 1 + (n+ 2)x+ x2(1 + 2n+ nx) ≥ 1 + (n+ 2)x

because 1 + 2n+ nx ≥ 0. This completes the induction for even and odd numbers.

Theorem 66. en and En converge to the same number2 e.

Proof. The proof of this theorem requires several steps.

• We have 1 < en < En. Indeed, 1 < 1 + 1
n , and this follows easily.

• en is monotinically nondecreasing, that is, en ≤ en+1. Indeed,

en
en−1

=
(1 + 1

n)
n

(1 + 1
n−1)

n−1
=

(1 + 1
n)

n

( n
n−1)

n−1
= (1 + 1

n)
n · (n−1

n )n−1

=
(1 + 1

n)
n · (n−1

n )n

n−1
n

=
(1 + 1

n)
n · (1− 1

n)
n

n−1
n

=
(1− 1

n2 )
n

n−1
n

≥
1− 1

n

1− 1
n

= 1.

Similarly En is monotonically decreasing. Indeed.

En

En−1
=

(1 + 1
n)

n+1

(1 + 1
n−1)

n
=

1 + 1
n

( n
n−1)

n( n
n+1)

n
=

1 + 1
n

( n2

n2−1
)n

=
1 + 1

n

(1 + 1
n2−1

)n
≤

1 + 1
n

1 + n
n2−1

<
1 + 1

n

1 + 1
n

= 1.

• Now we have that {en} and {En} are convergent. Note also that En−en = en(1+
1
n −1) =

en · 1
n → 0, because en is bounded, say by M , and 1

n → 0, therefore, En − en ≤ M
n → 0.

We call this limit e, the Napier’s number (sometimes Euler’s number). The function ex

plays a special role in analysis, as we will see below.
2This proof is take from L. Chierchia “Corso di analisi. Prima parte.” McGrow Hill.
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y = log x

y = ex

Figure 25: The logarithm and the exponential.

Logarithm

Let a > 0, a ̸= 1. We have defined the exponential function f(x) = ax, and we have seen that it
is continuous, monotonically increasing if a > 1. If 0 < a < 1, it is monotonically decreasing.

Let a > 1. We know that an diverges, and hence a−n → 0. By the intermediate value
theorem, we see that the range of ax is R+. Now we can define the inverse function (everything
is analogous for 0 < a < 1).

Definition 67. The logarithm of x to base a, loga x, is the inverse function f(y) = ay:
loga : R+ 7−→ R and it holds that

loga a
x = x = aloga x.

We denote log x = loge x = lnx.

Example 68. log2 8 = 3, log9 3 = 1
2 , log2(

1
2) = −1.

We say that limx→∞ f(x) = ∞ if for each Y > 0 there is X > 0 such that if x > X then
f(x) > Y . Similarly, we define limx→±∞ f(x) = ±∞.

Proposition 69. Let a, b > 0, a ̸= 1 ̸= b, x, y > 0, t ∈ R. Then

(i) loga a = 1, loga 1 = 0.

(ii) loga(xy) = loga x+ loga y.

(iii) loga(x
t) = t loga x.

41



(iv) loga−1 x = − loga x.

(v) loga x = loga b · logb x.

(vi) Let a > 1. Then f(x) = loga x is monotonically increasing and continuous. loga x > 0 if
and only if x > 1.

(vii) Let a > 1, α > 0. Then limx→+∞
xα

loga x = +∞.

Proof. (i) a1 = a, a0 = 1.

(ii) aloga x+loga y = aloga xaloga y = xy.

(iii) at loga x = (aloga x)t = xt.

(iv) (1/a)− loga x = 1/a− loga x = 1/(aloga x)−1 = 1/x−1 = x.

(v) aloga b·logb x = (aloga b)logb x = blogb x = x.

(vi) This follows from Theorem 56.

(vii) First we show that limn→∞
(an−1)α

loga(a
n) = ∞. This is straightforward because (an−1)α

loga(a
n) =

a(n−1)α

n → ∞. To show the given limit, we take for y > 0 n ∈ N such that n − 1 ≤
y < n. Then (ay)α

loga ay > (an−1)α

loga(a
n) , and hence the left-hand side grows as y grows. That is,

limy→∞
(ay)α

loga ay = ∞. Finally, recall that x = ay is monotonic, and x grows infinitely as y

grows. That is, given Z > 0, there is Y > 0 such that (ay)α

loga ay > Z for y > Y , which implies
that xα

loga x > Z for x > aY . This means that limx→∞
xα

loga x = ∞.

Logarithm is extremely useful in natural science. When we have a data which grows expo-
nentially, we can take the log of the value and plot it to a plane, then they lie on a straight line.
The exponent can be read from the slope of the line (this is called the logarithmic scale). In that
case, the logarithm base 10 is often used.

When y = xp, then we can consider z = log y, w = log x, hence ez = y, ew = y. We have
ez = y = xp = (ew)p = ewp. By taking log of both side, we obtain z = pw. That is, by the
log-log plot, a power relation y = xp is translated into a linear relation z = pw.

Oct. 18. Notable limits, hyperbolic functions.

Some notable limits

Proposition 70. Let a ∈ R. The function f(x) = xa defined on R+ satisfies xaya = (xy)a and
is continuous.

Proof. Note that these properties hold if f(x) = xq, where q is rational.
Let x, y > 0. For a rational q we have (xy)q = xqyq and hence by taking qn → a we have

(xy)a = xaya.
As for continuity, assume a > 0 (the case a < 0 is similar). Let x ̸= y, then take a < q ∈ Q.

We have |f(y)−f(x)| = xa|yax−a−1| = xa
∣∣( y

x

)a − 1
∣∣ < xa

∣∣( y
x

)q − 1
∣∣ and limy→x

∣∣( y
x

)q − 1
∣∣ = 0

by the continuity of the rational case. Therefore, by squeezing we have limy→x f(y) = f(x).

Let L ∈ R, and f is a function defined on (a,∞). If for each ϵ > 0, there is X such that
|f(x)− L| < ϵ for x > X, then we write that limx→∞ f(x) = L.

Example 71. limx→∞
1
x = 0. limx→∞

x
x−1 = 1.
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y = log(2x) = log 2 · x

y = log(3x) = log 3 · x

y = 3x

y = 2x

Figure 26: The exponential functions composed with the logarithm.

y = x
1
3

y = x2

z = w
3

w = 2w

Figure 27: The log-log plot of the relation y = xp.
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Let f(x) be defined on (a, b) and L ∈ R. If for each ϵ > 0 there is δ such that |f(x)−L| < ϵ for
x ∈ (a, a+ δ), we denote it by limx→a+ f(x), and we call it the right limit of f at a. Similarly,
we write limx→b− f(x) for the left limit.

Example 72. Let f(x) = signx. limx→0+ f(x) = 1, limx→0− f(x) = −1.

If f(x) is defined on (b, a) ∪ (a, c), limx→a f(x) = L exists if and only if both the left and
right limits exist and limx→a+ f(x) = limx→a− f(x) and it is L. We leave the proof to the reader.

Lemma 73. • Let f be a function on S, limy→y0 f(y) = L. Assume that g is a function on
T , there is {xn}, xn ∈ T, xn → x0 and limx→x0 g(x) = y0, but g(x) ̸= y0 for |x − x0| < ϵ
for some ϵ. Then limx→x0 f(g(x)) = limy→y0 f(y) = L. In particular, if f is continuous at
y0 and limx→x0 g(x) = y0, limx→x0 f(g(x)) = f(y0).

• With a similar assumption on domains, if limy→∞ f(y) = L and limx→x0 g(x) = ∞, then
limx→x0 f(g(x)) = L.

• With a similar assumption on domains, if limy→∞ f(y) = L and limx→∞ g(x) = ∞, then
limx→∞ f(g(x)) = L.

• With a similar assumption on domains, if limy→y0 f(y) = L and limx→∞ g(x) = y0 while
g(x) ̸= y0 for x sufficiently large, then limx→∞ f(g(x)) = L.

Proof. • (This proof is similar to that of the continuity of composed functions of two continu-
ous functions) Let ϵ > 0. There is δ1 > 0 such that |f(x)−L| < ϵ for y ∈ S, y ̸= y0, |y−y0| <
δ1. Furthermore, there is δ2 > 0 such that |g(x)− y0| < δ2 for x ∈ T, x ̸= x0, |x− x0| < δ2.
Then for such x, |f(g(x))− L| < ϵ. That is, limx→x0 f(g(x)) = L.

• For a given ϵ we take Y such that |f(y) − L| < ϵ for y > Y . Then, there is X such that
g(x) > Y for x > X. Altogether, |f(g(x))− L| < ϵ if x > X.

• Similar to the above case.

We call this the change of variables, in the sense that we can calculate limy→y0 f(y) by
calculating limx→x0 f(g(x)) and vice versa.

For x ∈ R, we denote by [x] the largest integer n such that n ≤ x, and call it the integer
part of x. For example, [

√
2] = 1, [π] = 3, and so on.

In this Proposition, n ∈ N and x ∈ R.

Proposition 74. We have the following.

(i) limn→∞
(
1− 1

n

)n
= e−1.

(ii) limn→∞
(
1 + 1

n2

)n
= 1.

(iii) limx→∞
(
1 + 1

x

)x
= e.

(iv) limx→0 (1 + x)
1
x = e.

(v) limx→0
log(1+x)

x = 1.

(vi) limx→∞
(
1 + t

x

)x
= et.

(vii) limx→0
ex−1
x = 1.
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Proof. (i) Note that(
1− 1

n

)n

=

(
n− 1

n

)n

=

(
1 +

1

n− 1

)−n

=

(
1 +

1

n− 1

)−1 1(
1 + 1

n−1

)n−1

Note that 1
x is continuous at x = 1, e, and hence

(
1 + 1

n−1

)−1
→ 1 and 1

(1+ 1
n−1)

n−1 → 1
e .

Altogether,
(
1− 1

n

)n
= 1

e = e−1.

(ii) limn→∞
(
1 + 1

n2

)n
= limn→∞

((
1 + 1

n2

)n2
) 1

n . As limn→∞
(
1 + 1

n2

)n2

= e, this sequence is

bounded by, say M . Then 1 <
(
1 + 1

n2

)n
< M

1
n but M

1
n → 1, then by squeezing we have(

1 + 1
n2

)n → 1.

(iii) Note that, if an → a, then bn = an+1 → a as well. Furthermore, if a < b < c and if
|a − x| < ϵ, |c − x| < ϵ, then by the triangle inequality we have −ϵ < a − x < ϵ, hence
a− ϵ < x < a+ ϵ. Similarly, c− ϵ < x < c+ ϵ, and therefore, b− ϵ < x < b+ ϵ and hence
|b− x| < ϵ.

We know that limn→∞
(
1 + 1

n

)n
= limn→∞

(
1 + 1

n+1

)n+1
= e. Let n = [x], then n ≤ x <

n+ 1 and (
1 + 1

n+1

)n+1

1 + 1
n+1

<

(
1 +

1

x

)x

<

(
1 +

1

n

)n+1

=

(
1 +

1

n

)n

·
(
1 +

1

n

)
.

Note that the left-hand side and the right-hand side tend to e, because 1+ 1
n+1 → 1, 1+ 1

n →

1. This means that, for a given ϵ,
∣∣∣∣(1+ 1

n+1)
n+1

1+ 1
n+1

− e

∣∣∣∣ < ϵ,
∣∣(1 + 1

n

)n ·
(
1 + 1

n

)
− e
∣∣ < ϵ for

sufficiently large n. This implies that
∣∣(1 + 1

x

)x − e
∣∣ < ϵ.

Altogether, this says that, if x is sufficiently large, then we apply this argument with n = [x],
and obtain that

∣∣(1 + 1
x

)x − e
∣∣ < ϵ. This is limx→∞

(
1 + 1

x

)x
= e.

(iv) By the previous point and a change of variables (f(x) = (1 + 1
x)

x, g(x) = 1
x), note that

1
x > 0, limx→0+ (1 + x)

1
x = e.

We have limx→0− (1 + x)
1
x = e as well. So we have checked both the right and left limits.

(v) As log y is continuous at y = e,

lim
x→0

log(1 + x)

x
= lim

x→0
log(1 + x)

1
x = log lim

x→0
(1 + x)

1
x = log e = 1,

where we used limx→0 (1 + x)
1
x = e and the change of variables (f(x) = log x, g(x) =

(1 + x)
1
x ).

(vi) Note that limx→∞
(
1 + t

x

)x
t = e by the change of variables (f(x) =

(
1 + t

x

)x
t , g(x) =

xt). Then limx→∞
(
1 + t

x

)x
= limx→∞

((
1 + t

x

)x
t

)t
= et, where we used the continuity of

g(a) = at and the change of variables (f(x) = xt, g(x) =
(
1 + t

x

)x
t ).

(vii) With y = ex − 1, we have log(y + 1) = x and limy→0
ey−1
y = limx→0

x
log(1+x) = 1 by the

change of variables (f(x) = x
log(1+x) , g(x) = ex − 1).
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Hyperbolic functions

Definition 75. • sinhx = ex−e−x

2

• coshx = ex+e−x

2

• tanhx = sinhx
coshx

Proposition 76. (i) cosh(x+ y) = coshx cosh y + sinhx sinh y.

(ii) sinh(x+ y) = coshx sinh y + sinhx cosh y.

(iii) (coshx)2 − (sinhx)2 = 1.

Proof. (i) coshx cosh y + sinhx sinh y = 1
4(e

x + e−x)(ey + e−y) + 1
4(e

x − e−x)(ey − e−y) =
1
4(2e

x+y + 2e−x−y) = cosh(x+ y).

(ii) analogous.

(iii) analogous.

Proposition 77. (i) sinh−1(x) = log(x+
√
x2 + 1).

(ii) cosh−1(x) = log(x+
√
x2 − 1) for x > 1.

Proof. (i)

sinh(log(x+
√
x2 + y)) =

1

2

(
(x+

√
x2 + 1)− 1

x+
√
x2 + 1

)
=

1

2

(x+
√
x2 + 1)2 − 1

x+
√
x2 + 1

=
1

2

x2 + 2x
√
x2 + 1 + x2 + 1− 1

x+
√
x2 + 1

= x.

(ii) analogous.

Definition 78. (i) Arcsinhx = sinh−1(x) = log(x+
√
x2 + 1).

(ii) Arccoshx = cosh−1(x) = log(x+
√
x2 − 1) for x > 0.

Oct. 19. Review of trigonometric functions and some limits.

Trigonometric functions

The functions sin θ and cos θ are usually defined as the length of the horizontal and vertical sides
of the right triangle obtained from a point p on the unit circle (the circle centered at (0, 0) with
radius 1) such that the x-axis and the segment from the point of origin to p makes an angle of
degree θ. However, to make this definition precise, we would first need to define the angle, that
is the length of the arc on the unit circle, then consider the right triangle...

That is possible, but we would have to wait until we define integral before define trigonometric
functions (or define the trigonometric function by something called power series). In this lecture,
we prefer practicality, therefore,

• We assume that there are functions called sin θ, cos θ.

• We use the figures and the elementary geometry to derive their elementary properties.
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y = sinhx

y = tanhx

y = coshx

Figure 28: The hyperbolic functions.
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cos θ

sin θ

θ

(cos θ, sin θ)

θ

Figure 29: The trigonometric functions and their values for general angle θ.

• Then we study their analytic aspects: limit, derivative, integral, Taylor expansion, and so
on.

Now, to obtain cos θ and sin θ, we draw the unit circle, and take the point p on the unit circle
such that the x-axis and the segment from the point of origin to p makes an angle of degree θ
going anticlockwise, 0 ≤ θ ≤ 90 (degrees). Then cos θ is defined to be the x-coordinate of the
point p, and sin θ is defined to be the y-coordinate of p.

We can make a right triangle by drawing the vertical line from this point. If 0 ≤ θ ≤ 90
(degrees), then cos θ is the length of the horizontal side of the triangle, while sin θ defined to be
the length of the vertical side. When θ ≥ 90 (degrees), then cos θ becomes negative.

There are various ways to represent the angle. Often we use the degrees, which devide the
circle into 360 degrees. Another is called the radian, which defines the angle by the lenght of
the arc on the unit circle. In radian, we have 360 (degrees) = 2π (radian), 180 (degrees) = π
(radian), 90 (degrees) = π

2 (radian), 45 (degrees) = π
4 (radian) and so on. In this lecture, from

this point we use radian, unless otherwise specified.
Some important values:

• sin 0 = 0, cos 0 = 1.

• sin π
6 = 1

2 , cos
π
6 =

√
3
2 .

• sin π
4 = 1√

2
, cos π

4 = 1√
2
.

• sin π
3 =

√
3
2 , cos

π
3 = 1

2 .

• sin π
2 = 1, cos π

2 = 0.

We can extend cos θ and sin θ to all real numbers, considering that for θ > 2π we go around the
circle more than once, and for θ < 0 we go around the circle clockwise. With this understanding,
we have

• cos(θ + 2π) = cos θ

• sin(θ + 2π) = sin θ.
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cos θ

sin θ

− sin θ

cos θ
θ

θ + π
2

Figure 30: A relation cos(θ + π
2 ) = − sin θ and sin(θ + π

2 ) = cos θ.

• cos(−θ) = cos θ

• sin(−θ) = − sin θ.

In this way, we can consider cos and sin as functions on R. They are continuous, because
if we change slightly the degree, the point p moves only slightly (we do not prove this, as we
introduce these functions only by geometry, without defining the arg length).

They are related by the formulas cos(θ+ π
2 ) = − sin θ and sin(θ+ π

2 ) = cos θ (see Figure 30).
We introduce also tan θ = sin θ

cos θ .

Some formulas

We often write cos2 θ = (cos θ)2, sin2 θ = (sin θ)2, cos3 θ = (cos θ)3, sin3 θ = (sin θ)3, etc.

• cos2 θ + sin2 θ = 1. This is because of the Pytagorean theorem: cos θ and sin θ are the
length of the horizontal and vertical sides of the right triangle, while the length of the
longest side is 1.

• sin(α+ β) = sinα cosβ + cosα sinβ. See Figure 32

• cos(α+ β) = cosα cosβ − sinα sinβ.

From these formulas, we can derive various useful formulas.

• cos 2θ = 2 cos2 θ− 1 = 1− 2 sin2 θ. Indeed, cos 2θ = cos θ cos θ− sin θ sin θ = cos2 θ− sin2 θ
and use cos2 θ + sin2 θ = 1.

• sin 2θ = 2 sin θ cos θ. Indeed, sin 2θ = sin θ cos θ + cos θ sin θ.

• sinα cosβ = 1
2 (sin(α+ β) + sin(α− β)). Indeed,

1

2
(sin(α+ β) + sin(α− β))

=
1

2
((sinα cosβ + cosα sinβ) + (sinα cos(−β) + cosα sin(−β)))

=
1

2
(sinα cosβ + cosα sinβ + sinα cosβ − cosα sinβ)

= sinα cosβ.
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y = sin θy = cos θ

y = tan θ

Figure 31: The graphs of cos θ, sin θ and tan θ.

sinβB

A
cosβ

α

α

β

Figure 32: The formula sin(α + β) = sinα cosβ + cosα sinβ. A = cosβ sinα,B = sinβ cosα
and A+B = sin(α+ β).

50



θ

(1, sin θ
cos θ )

Figure 33: By comparing the areas of the triangles and the sector, we see 1
2 cos θ sin θ <

θ
2 <

1
2
sin θ
cos θ .

• cosα sinβ = 1
2 (sin(α+ β)− sin(α− β)).

• cosα cosβ = 1
2 (cos(α+ β) + cos(α− β)).

• sinα sinβ = 1
2 (− cos(α+ β) + cos(α− β)).

For example, we can compute cos π
8 . Indeed, 2 cos2 π

8 − 1 = cos(π8 · 2) = cos π
4 = 1√

2
, and

hence cos π
8 =

√
1√
2
+1

2 .

Some limit

By comparing the areas of the triangles of the sector, we see 1
2 cos θ sin θ < θ

2 < 1
2
sin θ
cos θ (see

Figure 33), and hence cos θ < θ
sin θ <

1
cos θ . As we assumed that sin and cos are continuous, and

cos 0 = 1, we obtain limθ→0
sin θ
θ = limθ→0 cos θ = limθ→0

1
cos θ = 1 by squeezing.

Oct. 23. Open and closed sets, Bolzano-Weierstrass theorem.

Definition 79. Let O ⊂ R. We say that O is open if for any p ∈ O there is ϵ > 0 such that
(p−ϵ, p+ϵ) ⊂ O (this ϵ depends on p). Let F ⊂ R. We say that F is closed if for any convergent
sequence {an} ⊂ F, an → a, it holds that a ∈ F .

Example 80. • Consider the open interval A = (0, 1). This is open, because for any point
p ≤ 1

2 we can take ϵ = p
2 and (p2 ,

3p
2 ) ⊂ (0, 1). If p > 1

2 , we can take ϵ = 1−p
2 . On the other

hand, (0, 1) is not closed. Indeed, the sequence an = 1
n belongs to A = (0, 1), but the limit

0 does not belong to A.

• Consider the closed interval B = [0, 1]. This is closed. Indeed, for any convergent sequence
{an} ⊂ B, an → a, it holds that 0 ≤ an ≤ 1 and hence 0 ≤ a ≤ 1. On the other hand, for
p = 0, for any ϵ, (−ϵ, ϵ) ̸⊂ B, therefore, B is not open.

Therefore, the terminology “open” and “closed” for intervals are consistent with those for
general sets we have just introduced.

For any set A ⊂ R, we denote its complement by Ac = R \A.

Lemma 81. O ⊂ R is open if and only if Oc is closed.

Proof. Let O be open and assume that Oc is not closed. That is, there is a sequence {an} ⊂ Oc

that converges to a, but a ∈ Oc. Therefore, it must holds a ∈ O. But we can take ϵ > 0 such
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( )( )

[ ]( )

Figure 34: Open and closed intervals. An open set include a small “neighbourhood” of any point
in it, but a sequence in it might converge to a point outside. A closed subset contains the limit
of any sequence in it, but a point might “touch” other points outside.

( )( )

[ ]( )

Figure 35: Any point in an open set is “protected” from outside. On the other hand, if a set is
not open, there is a point which is not “protected”.

that (a− ϵ, a+ ϵ) ⊂ O, and if an → a, it would have to hold that an ∈ (a− ϵ, a+ ϵ) ⊂ O, which
contradicts the assumption that {an} ⊂ Oc. Therefore, Oc is closed.

Conversely, let Oc be closed, and assume that O is not open. As O is not open, there is
a ∈ O such that for any 1

n > 0 there is an such that |an − a| < 1
n , but an /∈ O. Hence an ∈ Oc.

But with this condition an → a, which contradicts the assumption that Oc is closed. Therefore,
O must be open.

It is not difficult to prove that any union (even if infinite!) of open sets is again open.
Similarly, any intersection of closed sets is again closed.

Let us recall that a sequence {an} is called Cauchy if for any given ϵ > 0 there is N such
that for m,n > N it holds that |am − an| < ϵ.

Furthermore, we said that bn is a subsequene of an if there is a growing sequence Nn ∈ N such
that bn = aNn , that is, bn is obtained by skipping some elements in an. Recall that we consider
infinite sequences, that is, the sequence does not stop at any an, but continues infinitely.

Theorem 82 (Bolzano-Weierstrass). Let {an} be a bounded sequence. Then there is a convergent
subsequence of {an}.

Proof. As {an} is bounded, we can find M sufficiently large such that an ∈ [−M,M ]. As
the sequence {an} infinitely many elements, one of the intervals [−M, 0], (0,M ] must contain
infinitely many of them. Therefore, we can take a subsequence bn = amn such that bn are
contained one of them. To fix the idea, assume that bn ∈ (0,M ] (the other case is just analogous).

As (0,M ] = (0, M2 ] ∪ (M2 ,M ], one of them must contain infinitely many elements of bn.
Therefore, we can take a subsequence cn = bkn such that cn are contained one of them.

By continuing this procedure, for each n we obtain a subsequence that is contained in an
interval of length M

2n−1 , and the later one is a subsequence of the former. Let us take a subsequence
a1, b2, c3, · · · of the original sequence. Then, for n,m > N , any two elements are contained in an
interval of length M

2N−1 . Therefore, this subsequence is Cauchy. Then it is a convergent sequence
by Lemma 62.

Example 83. Let an = (−1)n. This is not convergent, but is bounded by −1 and 0. By
the Bolzano-Weierstrass theorem, this has a convergent subsequence. Indeed, one can take
bn = a2n = (−1)2n = 1, or bn = a2n+1 = (−1)2n+1 = −1 are constant sequences and thus
convergent.

It is important that an is bounded. Indeed, if not, it is obviously impossible in general to
extract a convergent sequence: consider an = n, which is not bounded and not convergent to
any point. In addition, the possibility to extract a convergent subsequence does not mean that
the original sequence is convergent, or there is only one convergent subsequence.
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[ ][ ]
[ ]

Figure 36: Nested invertals. As the sequence {an} contains infinitely many points, one of two
intervals must contain infinitely many of them.

[ ]

Figure 37: A continuous function on a bounded closed interval is bounded. If either of these
conditions are violated, then function can be unbounded.

Theorem 84. Let f be a continuous function defined on a bounded closed set (or interval) F .
Then f is bounded, that is, there is M > 0 such that |f(x)| < M for x ∈ F .

Proof. Let us suppose the contrary, that for any n > 0 there is xn ∈ F such that |f(xn)| ≥ n.
As {xn} is a sequence in a bounded set F , we can take a convergent subsequence {yn} of {xn}.
As F is closed, yn → y and y ∈ F . By assumption f is continuous, therefore, it must hold that
limn→∞ f(yn) = f(y). But this is impossible because |f(yn)| ≥ n by our choice. Therefore, f is
bounded.

Example 85. • Consider the function f(x) = 1
x defined on R \ {0}. This is not bounded,

but when we restrict it to an interval [ 1n , n], it is bounded by n.

• Consider the function f(x) =

{
1
x if x ∈ [−1, 1], x ̸= 0

0 x = 0
. This is defined on a closed interval

[−1, 1], but not continuous. Therefore, the previous theroem does not apply. Indeed, it is
not bounded.

Oct. 25. Maximum and minimum of functions, the Weierstrass
theorem, uniform continuity.

The maximum and minimum of functions

Definition 86. Let f be a function defined on S.

• We say that f takes its maximum at x0 if f(x0) ≥ f(x) for all x ∈ S.

• We say that f takes its minimum at x0 if f(x0) ≤ f(x) for all x ∈ S
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Figure 38: Left: y = x on x > 0. There are no minimum or maximum. Right y = x2 on R. The
minimum is 0 at x = 0, but there is not maximum. When restricted to [a, b], either a2 or b2 is
the maximum.

Figure 39: The graph of the function y = x − [x], the decimal part of x. This is bounded, but
has no maximum. The minimum is 0 at x ∈ Z.

Example 87. Note that a function does not necessarily admit maximum or minimum. If it has,
they may depend on the domain.

• f(x) = x, defined on [0, 1], has the maximum at x = 1 and minumum at x = 0.

• f(x) = x, defined on x > 0, has no maximum or minimum. Indeed, for any x > 0,
f(x2 ) =

x
2 < x and f(2x) = 2x > x.

• f(x) = x2, defined on x ∈ R, has no maximum but the minimum is at x = 0 with f(0) = 0.
If it is restricted to the interval [a, b], then the maximum is the larger one of a2, b2.

Theorem 88 (Weierstrass). Let F ⊂ R be a bounded closed set (or interval), and f be a
continuous function on F . Then f admits both a maximum and a minimum in F .

Proof. By Theorem 84, f is bounded, say −M < f(x) < M . Then the image A = {f(x) : x ∈ F}
is a bounded set in R, therefore, it admits supA and inf A. Let us prove that f admits a maximum
(the case for minimum is analogous). For each n there is xn ∈ F such that supA− 1

n < f(xn).
As F is bounded, xn admits a convergent subsequence yn, yn → y and y ∈ F because F is

closed. Now, as f is continuous, we have f(y) = limn→∞ f(yn). As yn is a subsequence, it holds
that supA− 1

n < f(yn) ≤ supA. This implies that f(y) = supA. That is, f attains a maximum
at y.

Example 89. (and non example)

• f(x) = x2 is continuous, hence on any closed and bounded F f admits a maximum and a
minimum. But not on the whole real line R, which is not bounded.

• f(x) = x − [x] is not continuous, and indeed it does not admit a maximum on [0, 1],
although [0, 1] is close and bounded.

Often it is said that a closed and bounded set F ⊂ R is compact. We have seen that in
any sequence {an} in a compact set admits a convergent subsequence (the Bolzano-Weierstrass
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Figure 40: Functions continuous but not uniformly continuous.

theorem), and the limit is in F . Conversely, if a set A has a property that any sequence in it has
a convergent subsequence with the limit in A, then it is compact (bounded and closed): indeed,
A must be bounded because otherwise we could take an unbounded sequence. Furthermore, A
must be closed, because if an ∈ A is a convergent sequence, we can take a convergent subsequence
with the limit a in A, but there is only one limit for an, hence an → a ∈ A, that is, A is closed.

Let us see another strong property of continuous functions defined on bounded and closed
sets.

Definition 90. Let S ⊂ R, f : S → R. f is said to be uniformely continuous on S if, for
any ϵ > 0, there is δ > 0 such that |f(x)− f(y)| < ϵ for all x, y ∈ S, |x− y| < δ.

Note the difference with the continuity: a function f is continuous if for each x ∈ S and for
each ϵ there is δ such that |f(y) − f(x)| < ϵ if |y − x| < δ. In other words, the number δ may
change from point x to others.

On the other hand, uniform continuity asserts that for each ϵ > 0 there is δ that applies to
all x, y ∈ S, hence uniformly in S.

Example 91. (functions that are not uniformly continuous)

• f(x) = 1
x is continuous on (0,∞). However, it is not uniformly continuous. Indeed, for

ϵ = 1 for any δ > 0, we can take N such that 1
N < δ and N > 2. Then x = 1

N , y = 2
N ,

hence f(y)− f(x) = N
2 > 1 = ϵ but x− y = 1

N < δ.

• f(x) = sin 1
x is continuous on (0,∞) but not uniformly continuous. Indeed, for ϵ = 1

2 for
any δ > 0, we can take N such that 2

πN < δ and N odd. Then x = 2
πN , y = 1

πN , hence
|f( 1

πN )− f( 2
πN )| = | sin(πN)− sin(πN2 )| = 1 > ϵ but x− y = 1

πN < δ.

Note that the function f(x) = |x| is continuous. Indeed, if x > 0, then f(x) = x and this is
continuous at x. Similarly, f is continuous at x < 0. Finally, if x = 0, for any ϵ > 0, we take
δ = ϵ. Then if |y − x| = |y − 0| < δ, then |y| − |0| = |y − 0| < δ = ϵ.

Theorem 92 (Heine-Cantor). Let F bounded and closed, f : F → R a continuous function.
Then f is uniformly continuous.

Proof. To prove this by contradiction, assume that there is ϵ > 0 such that for any δ > 0 there
are x, y ∈ F, |x− y| < δ but |f(x)− f(y)| > ϵ. In particular, for δ = 1

n > 0 there are xn, yn ∈ F
such that |xn − yn| < 1

n but |f(xn) − f(yn)| > ϵ. Let xNn be a convergent subsequence of
xn (which exists by Theorem 82) to x̃ ∈ F . Let us extract a subsequence {yNn} of {yn}. As
|x̃− yNn | ≤ |x̃− xNn |+ |xNn − yNn | → 0, also {yNn} must be convergent to x̃ ∈ F .

Then limn→∞ |f(xNn) − f(yNn)| = |f(x̃) − f(x̃)| = 0, as f is continuous (note that the
absolute value is continuous). But this contradicts the assumption that |f(xNn)− f(yNn)| > ϵ.

Therefore, for all ϵ there exists δ such that for all x, y ∈ F, |x−y| < δ vale |f(x)−f(y)| < ϵ.
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y = sin θ y = tanhx

Figure 41: Functions defined on R but uniformly continuous.

Figure 42: The slope at a point as the limit of the slopes of secant lines.

Until now, we have studied continuity of functions. A function f is continuous at point x if
for each ϵ > 0 there is δ such that |f(y) − f(x)| < ϵ for y such that |y − x| < δ. This tells us
that “the graph is connected”, but does not tell us how fast the function f changes.

We would like to know such information. For example, if f represents the motion of a car (in
one direction), then how can we determine the speed of the car? Or if f represents the height of
the mountain in a path and x represents the distance from the starting point, what is the slope
of the mountain?

In the case of the speed, if the car has travelled 100km in two hours, then the average speed
is 50km/h per hour. But it might be that the car travelled with the constant speed 50km/h, or
it travelled with 40km/h in the first one hour and then 60km/h in the second one hour. Is it
possible to determine the speed at a moment? In the case of a mountain, what is the slope at a
point?

They should be approximated by secant lines.

Oct. 25 (14:00). Derivative. First examples.

Derivative

As we discussed, we can define the average speed of a car, or the average slope of a curve in an
interval. By taking the limit of the interval that tends to 0, we should obtain the speed or the
slope at one point.
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10.5

0.5A
A

Figure 43: The slope of the straight line at a point as the limit of the slopes of secant lines.

Definition 93. Let I ⊂ R an open interval, f a function defined on I.

• Let x0 ∈ I and h small such that x0 + h ∈ I.
f(x0 + h)− f(x0)

h

is called the average rate of change of f between x0 and x0 + h.

• the function f is said to be differentiable at x0 if the following limit exists:

lim
h→0

f(x0 + h)− f(x0)

h
.

If this limit exists, it is called the derivative of f at x0 and it is denoted by f ′(x0) =

limh→0
f(x0+h)−f(x0)

h , Df(x0) or df
dx(x0).

The derivative at the point x0 is defined to be the limit of average rates of change. In this
sense, the derivative represents the rate of change af the point x0. If f(t) represents the position
of a car at time t, then f ′(t) is the speed of the car at time t.

Derivatives of elementary functions.

• Let f(x) = c for x ∈ R (constant). For any x ∈ R, f(x+h)−f(x)
h = c−c

h = 0, therefore,
f ′(x) = 0.

• Let A ∈ R and f(x) = Ax for x ∈ R (a straight line). For any x ∈ R, f(x+h)−f(x)
h =

A(x+h)−Ax
h = Ah

h = A, f ′(x) = A.

• Let A ∈ R and f(x) = Ax2 for x ∈ R (parabola). For any x ∈ R, f(x+h)−f(x)
h =

A(x+h)2−Ax2

h = A(2xh+h2)
h = A(2x+ h), therefore, f ′(x) = limh→0A(2x+ h) = 2xA.

• Let n ∈ N and f(x) = Axn for x ∈ R. It holds that (x + h)n =
∑n

k=0

(
n
k

)
xkhn−k =

xn + nxn−1h+ n(n−1)
2 xn−2h2 + . . . . For any x ∈ R,

f(x+ h)− f(x)

h
=
A(x+ h)n −Axn

h
=
A(xn + nxn−1h+ n(n−1)

2 xn−2h2 + . . . hn − xn)

h

= Anxn−1 +A · n(n− 1)

2
xn−2h+ · · ·hn−1,
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therefore, f ′(x) = limh→0A(nx
n−1 + n(n−1)

2 xn−2h+ · · ·hn−1) = Anxn−1.

• Let f(x) = 1
x for x ∈ R, x ̸= 0. For any x ∈ R, x ̸= 0,

f(x+ h)− f(x)

h
=

1
x+h − 1

x

h
=
x− (x+ h)

hx(x+ h)
= − 1

x(x+ h)

therefore, f ′(x) = limh→0− 1
x(x+h) = − 1

x2 .

• Let f(x) = log x, x > 0. Then

log(x+ h)− log x

h
= log

(
1 +

h

x

) 1
h

=
1

x
log

(
1 +

h

x

) x
h

,

therefore, f ′(x) = limh→0
1
x log(1 + h

x)
x
h = limy→0

1
x log(1 + y)

1
y = 1

x (this is one of the
notable limits we have learned)

• Let f(x) = ex, x ∈ R. Then
ex+h − ex

h
= ex

eh − 1

h
,

therefore, f ′(x) = limh→0 e
x eh−1

h = ex (this is one of the notable limits).

• f(x) = sinx, x ∈ R. Recall the formula cosα sinβ = 1
2(sin(α + β) − sin(α − β)). Then,

with α = x+ h
2 , β = h

2 , we have sin(x+ h)− sinx = 2 cos(x+ h
2 ) sin

h
2 , therefore,

f ′(x) = lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

2 cos(x+ h
2 ) sin

h
2

h

= lim
h→0

cos

(
x+

h

2

)
lim
h→0

sin h
2

h
2

= cosx · 1 = cosx

(by the continuity of cosx and one of the notable limits limh→0
sinh
h = 1 and the change of

variable h
2 replacing h.

• f(x) = cosx, x ∈ R. Recall the formula − sinα sinβ = 1
2(cos(α + β) − cos(α − β)) Then,

with x+ h
2 , β = h

2 , we have cos(x+ h)− cosx = −2 sin(x+ h
2 ) sin

h
2

f ′(x) = lim
h→0

cos(x+ h)− cosx

h

= lim
h→0

−2 sin(x+ h
2 ) sin

h
2

h

= − lim
h→0

sin

(
x+

h

2

)
lim
h→0

sin h
2

h
2

= − sinx · 1 = − sinx

(by the continuity of sinx and limh→0
sinh
h = 1 and the change of variables).

Lemma 94. If f(x) is differentiable at x0, then f is continuous at x0.
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x

y

Figure 44: The graph of y = |x|, which has left and right derivatives, but they do not coincide.

Proof. We compute the limit:

lim
x→x0

f(x)− f(x0) = lim
h→0

f(x0 + h)− f(x0) = lim
h→0

f(x0 + h)− f(x0)

h
· h = f ′(x0) · 0 = 0.

That is, limx→x0 f(x) = f(x0).

Definition 95. Let f : [x0−δ, x0] → R where δ > 0. If the following limit limh→0−
f(x0+h)−f(x0)

h
exists (from the left), f is said to be left-differentiable at x0, and this limit is denoted byD−f(x0),
the left derivative. Similarly, we define the right derivative.

Example 96. Let f(x) = |x|, x0 = 0. D−f(0) = limh→0−
|0+h|−0

h = limh→0−
−h
h = −1, while

D+f(0) = limh→0+
h
h = 1.

Definition 97. Let f be defined on an open interval I. If f is differentiable at each point x of
I, then x 7→ f ′(x) defines a new function I. This is called the derivative of f(x).

Example 98. • The derivative of f(x) = C (constant) is f ′(x) = 0.

• The derivative of f(x) = x is f ′(x) = 1.

• The derivative of f(x) = x2 is f ′(x) = 2x.

• The derivative of f(x) = sinx is f ′(x) = cosx.

Oct. 26. More examples of derivatives.

For a function f defined on an open interval I and x ∈ I, we have defined the derivative
f ′(x) = limh→0

f(x+h)−f(x)
h , and we say that f is differentiable at x if this limit exists. Sometimes

we denote this as f ′(x) = (Df)(x).
This is equivalent to write Df(x) = f ′(x) = limw→x

f(w)−f(x)
w−x .

Let f, g be functions. We write this x 7→ f(x). We denote by f + g the function that maps
x 7→ f(x) + g(x). Similarly, f · g is the function x 7→ f(x)g(x), f

g is the function x 7→ f(x)
g(x) , and

the composition is f ◦ g that is given by x 7→ f(g(x)).

Theorem 99. Let f, g be functions on open intervals. The following hold if f, g are differentiable
at x (or f at g(x) for the chain rule):

• For a, b ∈ R, D(af + bg)(x) = aDf(x) + bDg(x) (linearity).

• D(fg)(x) = Df(x)g(x) + f(x)Dg(x) (Leibniz rule).

• If g(x) ̸= 0, then D(fg )(x) =
Df(x)g(x)−f(x)Dg(x)

g(x)2
.
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• D(f ◦ g)(x) = Dg(x)Df(g(x)) (the chain rule).

• If Df(x) ̸= 0 and f is monotonically increasing or decreasing and continuous on (x−ϵ, x+ϵ)
for some ϵ > 0. Then f−1 is differentiable at y = f(x) and D(f−1(y)) = 1

Df(x) .

Proof. • This is straightforward from the algebra of limits:

lim
h→0

af(x+ h) + bg(x+ h)− af(x)− bg(x)

h

= lim
h→0

a
f(x+ h)− f(x)

h
+ lim

h→0
b
g(x+ h)− g(x)

h

= a lim
h→0

f(x+ h)− f(x)

h
+ b lim

h→0

g(x+ h)− g(x)

h

= aDf(x) + bDg(x).

• Note that f(x+h)g(x+h)− f(x)g(x) = f(x+h)g(x+h)− f(x)g(x+h)+ f(x)g(x+h)−
f(x)g(x), and g is continuous at x because it is differentiable there:

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)

h
+ lim

h→0

f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
lim
h→0

g(x+ h) + f(x) lim
h→0

g(x+ h)− g(x)

h

= Df(x)g(x) + f(x)Dg(x).

• As g(x) ̸= 0, we have limh→0
1

g(x+h) =
1

g(x) and

lim
h→0

f(x+h)
g(x+h) −

f(x)
g(x)

h

= lim
h→0

f(x+ h)g(x)− f(x)g(x+ h)

g(x+ h)g(x)h

= lim
h→0

f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

g(x+ h)g(x)h

= lim
h→0

(f(x+ h)− f(x))g(x)− f(x)(g(x+ h)− g(x))

g(x+ h)g(x)h

=
Df(x)g(x)− f(x)Dg(x)

g(x)2
.

• Note first that the difference u(k) = f(g(x)+k)−f(g(x))
k −Df(g(x)) tends to 0 as k → 0. Let us

also set u(0) = 0, then u is continuous around 0. We can write this as f(g(x)+k)−f(g(x)) =
k(Df(g(x)) + u(k)), and this holds also for k = 0.
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We compute

lim
h→0

f(g(x+ h))− f(g(x))

h

= lim
h→0

f(g(x) + (g(x+ h)− g(x)))− f(g(x))

h

= lim
h→0

(g(x+ h)− g(x))(Df(g(x)) + u(g(x+ h)− g(x)))

h

= lim
h→0

g(x+ h)− g(x)

h
·Df(g(x)) + lim

h→0

g(x+ h)− g(x)

h
· u(g(x+ h)− g(x))

= Dg(x)Df(g(x)),

because g(x+ h) tends to g(x), u(k) is continuous and u(0) = 0.

• Let us assume that f is monotonically increasing and continuous on (x− ϵ, x+ ϵ). Then,
with y = f(x),

lim
h→0

f−1(y + h)− f−1(y)

h
= lim

z→y

f−1(z)− f−1(y)

z − y

= lim
w→x

f−1(f(w))− f−1(f(x))

f(w)− f(x)

= lim
w→x

w − x

f(w)− f(x)
=

1

Df(x)
,

where in the second equality we used the change of variables z = f(w). The case where f
is monotonically decreasing is analogous.

Example 100. • Let f(x) = x4 + 3x2 − 34. Then Df(x) = 4x3 + 6x.

• Let f(x) = x2+1
x−2 . Then, for x ̸= 2, Df(x) = 2x(x−2)−(x2+1)·1

(x−2)2
= x2−4x−1

(x−2)2
.

• Let f(x) = sinx, g(x) = x2. By linearity, D(sinx+ x2) = cosx+ 2x.

By Leibniz rule, D(x2 sinx) = 2x sinx+ x2 cosx.

Let us take the composition sin(x2) = f(g(x)). By the chain rule, D(sin(x2)) = D(x2) ·
(D sin)(x2) = 2x · cos(x2). For (sinx)2 = g(f(x)), D((sinx)2) = D(sinx) · 2(sinx) =
2 sinx cosx.

• By the chain rule, D(exp(−x)) = D(−x) · (D exp)(−x) = − exp(−x). By linearity,
D sinhx = D(12(e

x − e−x)) = 1
2(e

x + e−x) = coshx. Analogously, D coshx = sinhx.

• For a > 0, it holds that ax = (elog a)x = elog a·x. Indeed, by the chain rule,

D(ax) = D(exp(log a ·x)) = D(log a ·x) · (D exp)(log a ·x) = log a ·exp(log a ·x) = log a ·ax.

• Let a > 0 and f(x) = xa for x > 0. f(x) = exp(log x · a), and by the chain rule,

Df(x) = D(log x · a)D(exp)(log x · a) = a

x
· exp(log x · a) = a

x
· xa = axa−1.

For a < 0, we consider f(x) = xa = 1
xa and we obtain the same formula f ′(x) = axa−1.

For a = 0, because xa = 1, we have D(x0) = D(1) = 0.

• D tanx = D( sinx
cosx) =

cosx·cosx−sinx·(− sinx)
cos2 x

= 1
cos2 x

.
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x1x0

y = y1−y0
x1−x0

(x− x0) + y0

y1

y0

Figure 45: The slope of the straight line is y1−y0
x1−x0

.

• f(y) = arctan y. That is, f(y) = g−1(y), where g(x) = tanx restricted to [−π
2 ,

π
2 ]. By the

formula for the inverse function, we have Df(y) = 1
Dg(x) = cos2 x, where y = g(x) = tanx.

Therefore, y2 = sin2 x
cos2 x

= 1−cos2 x
cos2 x

, and cos2 x = 1
1+y2

. By substituting this in the previous
result, D arctan y = Df(y) = 1

1+y2
.

• f(x) = tanhx. f ′(x) = 1
cosh2 x

.

• f(x) = arcsinx (the inverse function of sinx restricted to [−π
2 ,

π
2 ]). f

′(x) = 1√
1−x2

.

Nov. 6. Meaning of derivative, some applications.

Tangent line

We defined derivative as the limit of average slope of a graph, and expected that it should
represent the slope at one point. If we have the slope at one point, then we should be able to
draw the tangent line to the graph at that point.

Recall that the slope of a segment (x0, y0)–(x1, y1) is defined by y1−y0
x1−x0

. The graph of y =
Ax+B has the slope A. Therefore, if the graph of the function y = f(x) passes the point (x0, y0)
and the derivative is f ′(x0), the tangent line should be

y = f ′(x0)(x− x0) + y0 = f ′(x0)x+ y0 − f ′(x0)x0.

Indeed, this is of the form y = Ax+ B with A = f ′(x0) and B = y0 − f ′(x0)x0, and passes the
point (x0, y0).

When the slope is positive, the line goes upwards (when one goes to the right), while the line
goes downwards when the slope is negative. When the slope is 0, it is a holizontal line. The
vertical line is represented by the equation x = a, and this is not of the form y = Ax+B.

If we draw these lines, they are almost always indeed tangent, but in some cases they closs
the graph.

Extrema and stationary points

Definition 101. Let x ∈ R. For ϵ > 0, we call the interval (x− ϵ, x+ ϵ) the ϵ-neighbourhood
of x.

Let f be defined on an interval I. We say that f takes a local minimum or relative
minimum (local maximum or relative maximum , respectively) at x ∈ I if there is an ϵ > 0
of x such that x is the minimum (maximum, respectively) of f in (x− ϵ, x+ ϵ) ∩ I.
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Figure 46: The tangent lines to the graphs of x2, cosx. Their equations are y = 2(x−1)+1, y =
−(x− π

2 ), respectively.

[ ]

Figure 47: Left:The graph of y = x3 − x. The local maximum and minimum are x = 1√
3
,− 1√

3
,

respectively. When restricted to a closed bounded interval, it has global maximum and minimum.
Right: The graph of y = f(x) = x3. f ′(x) = 3x2, hence x = 0 is a stationary point.

If x is the minimum (maximum) of f on I we may say that x is the global or absolute
maximum (minimum), to distinguish them from local (relative) minimum (maximum).

Example 102. Let f(x) = x3−x. When we consider this as a function on R, there is no global
maximum or mininum, but there are local minimum and maximum at x = 1√

3
,− 1√

3
, respectively

(we will see why they are these points later). If we restrict the funcion to [−2, 2], then −2, 2 are
the global minimum and the global maximum, respectively.

Theorem 103. Let f be defined on an open interval I and assume that f takes a local minimum
(or a local maximum) at the point c ∈ I. If f is differentiable at c, then f ′(c) = 0.

Proof. Let c be a local maximum (the case for minimum is analogous). Then f(x) ≤ f(c) for all
x ∈ (c − ϵ, c + ϵ). As f(x) is differentiable at x = c, both of its left and right derivatives must
coincide.

On the other hand, limh→0+
f(c+h)−f(c)

h ≤ 0, and limh→0−
f(c+h)−f(c)

h ≥ 0, therefore, f ′(c) =
0.
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Definition 104. A local minimum or a local maximum of a function f is called an extremum.
A point x where f ′(x) = 0 holds is called a stationary point.

Any extremum of a differentiable function is a stationary point by Theorem 103, but a
stationary point is not necessarily an extremum. Rather, an extremum is a candidate for (local)
minimum or maximum.

Example 105. • y = f(x) = x3. Then f ′(x) = 3x2, hence x = 0 is a stationary point, but
as f(x) is monotonically increasing, it is not an extremum.

• y = f(x) = x3 − x. Then f ′(x) = 3x2 − 1, hence x = ± 1√
3

are stationary points. They are
local maximum and minimum, respectively.

• y = |x|. This function has the minimum at x = 0, but the function does not have derivative
there. In particular, it does not hold f ′(0) = 0 there (f ′(0) has no meaning there).

Concrete situation of composed function

Imagine that we have a balloon and a gas is pumped into it at a rate of 50cm3/s. If the pressure
remains constant, how fast is the radius of the balloon increasing when the radius is 5cm?

• The volume V (t) of the balloon at time t (second): V (t) = 50tcm3. This implies dV
dt =

50cm3/s.

• The radius r(t) of the sphere with volume V (t): 4πr(t)3

3 = V (t), By differentiating both
sides by t, 4π dr

dt (t)r(t)
2 = dV

dt .

• By solving this with r(t0) = 5, dr
dt (t0) =

50
4π52

= 1
2π .

Some shape can be represented by an equation, and the equation may define a function
implicitly. For example, we know that the circle centered at (0, 0) with radius r is given by

x2 + y2 = r2.

As we saw before, if we consider only the part y ≥ 0, it defines the function y =
√
r2 − x2.

It is not always possible to find an explicit expression for y of a given equation. Yet, an
equation may define a function in an abstract way. Let us write it y(x).

With the explicit expression, y(x) =
√
r2 − x2 = (r2 − x2)

1
2 , therefore,

y′(x) =
1

2

−2x√
r2 − x2

= − x√
r2 − x2

.

It holds that y(x)y′(x) = −x.
This last relation can be also derived as follows: by taking the derivative of x2 + y(x)2 = r2,

we obtain 2x+ 2y(x)y′(x) = 0, hence y(x)y′(x) = −x.
If we know some concrete values of y, x (even if we do not know the general formula), then

we can compute y′(x) at that point.

The inverse trigonometric functions

sinx, cosx, tanx are injective on certain domains, and hence have the inverse functions. The
standard choices are the following.

• sinx: consider the interval [−π
2 ,

π
2 ]. The range is [−1, 1]. The inverse function is denoted

by arcsinx, defined on [−1, 1].
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Figure 48: A non constant function, continuous on [a, b] and differentiable on (a, b), must have
a stationary point.

• cosx: consider the interval [0, π]. The range is [−1, 1]. The inverse function is denoted by
arccosx, defined on [−1, 1].

• tanx: consider the interval [−π
2 ,

π
2 ]. The range is R. The inverse function is denoted by

arctanx, defined on R.

Let us compute the derivative of arcsin y by putting y = sinx. Then D(sinx) = cosx =√
1− sin2 x =

√
1− y2. By the general formula, D(arcsin y) = 1

D(sinx) =
1

cosx = 1√
1−y2

.

Nov. 8. More applications of derivative.

Theorem 106 (Rolle). Let f be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b),
then there is x0 ∈ (a, b) such that f ′(x0) = 0.

Proof. If f is constant, then f ′(x) = 0 for all x ∈ (a, b).
If f is not constant, then by Theorem 88 of Weierstrass, f has a minimum and a maximum.

As f is not constant, one of them must be different from f(a) = f(b). Therefore, we take x0
that is either minimum or maximum, and a ̸= x0 ̸= b. Let us take an open interval containing
x0. Now by Theorem 103, f ′(x0) = 0.

Proposition 107 (Lagrange’s mean value theorem). Let f be continuous on [a, b] and differen-
tiable on (a, b). Then there is x0 ∈ (a, b) such that f(b)−f(a)

b−a = f ′(x0).

Proof. Let g(x) = f(x) − (f(b)−f(a))x
b−a , which is continuous on [a, b] and differentiable on (a, b).

Then g(a) = f(a)b−f(b)a
b−a = g(b), and by Theorem 106 there is x0 such that g′(x0) = 0. This

implies f ′(x0)− f(b)−f(a)
b−a = 0.

Corollary 108. Let f be continuous on [a, b] and differentiable on (a, b). If f ′(x) = 0 for all
x ∈ (a, b), then f is constant.

Proof. Let x1, x2 ∈ [a, b], x1 < x2. By Theorem 107, there is x0 ∈ (x1, x2) such that f(x2)−f(x1)
x2−x1

=
f ′(x0) = 0, therefore, f(x1) = f(x2).

Corollary 109. Let f be continuous on [a, b] e derivabile in (a, b).

• If f ′(x) ≥ 0 (> 0, respectively) for all x ∈ (a, b), then f is monotonically non decreasing
(increasing, respectively).

• If f ′(x) ≤ 0 (< 0, respectively) for all x ∈ (a, b), then f is monotonically non increasing
(decreasing, respectively).
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Figure 49: A function continuous on [a, b] and differentiable on (a, b), must have a point where
the deriative is equal to the mean slope.

Figure 50: A function and its derivative. When the derivative is positive (negative) in an interval,
the function is increasing (decreasing).

Proof. Let x1, x2 ∈ [a, b], x1 < x2. By Theorem 107, there is x0 ∈ (x1, x2) such that f(x2)−f(x1)
(x2−x1)

=

f ′(x0). If f ′(x0) ≥ 0(> 0), then f(x2)−f(x1) ≥ 0(> 0), that is f is monotonically non decreasing
(increasing, respectively).

The case f ′(x) ≤ 0(< 0) is analogous.

Example 110. • f(x) = x2. f ′(x) = 2x, hence f is decreasing if x < 0, x = 0 is the only
one stationary point, and is increasing if x > 0.

• f(x) = sinx. f ′(x) = cosx, hence f is increasing if x ∈ (−π
2 + 2πn, π2 + 2πn) for n ∈ Z,

x = π
2 +2πn,−π

2 +2πn are stationary points, and f is decreasing if x ∈ (π2 +2πn, 3π2 +2πn).

Theorem 111. Let f be continuous on [a, b] and differentiable on (a, b). Let c ∈ (a, b).

• If f ′(x) > 0 for x ∈ (a, c) and f ′(x) < 0 for x ∈ (c, b), then f has a maximum at c.

• If f ′(x) < 0 for x ∈ (a, c) and f ′(x) > 0 for x ∈ (c, b), then f has a minimum at c.

Proof. If f ′(x) > 0 for x ∈ (a, c), then it is increasing there and continuous at c, therfore, for
any x ∈ (a, b) it holds that f(c) ≥ f(x). On the other hand, as f ′(x) < 0 for x ∈ (c, b), and
f(c) ≥ f(x) for x ∈ (c, b).

The second case is analogous.
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Figure 51: A function f such that f ′(0) > 0 but is not monotonically increasing in any interval
containing x = 0.

Example 112. • f(x) = x3−x. f ′(x) = 3x2−1, and f ′(x) > 0 if and only if x < − 1√
3
, 1√

3
<

x, and f ′(x) < 0 if and only if − 1√
3
< x < 1√

3
. Therefore, x takes a local maximum at

x = − 1√
3

and a local minimum x = 1√
3
. As f is differentiable on R, there is no other local

maximum or minimum.

• f(x) = coshx. f ′(x) = sinhx, and f ′(x) > 0 if and only if x > 0, and f ′(x) < 0 if and
only if x <. Therefore, x takes a minimum at x = 0 and no other minimum or maximum.

• f(x) = sinhx. f ′(x) = coshx and coshx > 0, and hence f(x) is monotonically increasing.

Note that, even if f ′(x0) > 0 at one point, it does not mean that f is monotonically increasing
in a neighbourhood of x0. Indeed, a counterexample is given by

f(x) =

{
x2 sin

(
1
x

)
+ x

2 for x ̸= 0

0 for x = 0
.

As we have seen, this function without the part x
2 is differentiable, and it has the derivative 0 at

x = 0. Therefore, with x
2 , it is still differentiable and f ′(0) = 1

2 > 0.
Yet, f is not monotonically increasing in any interval (−ϵ, ϵ). To see this, note that

f ′(x) =

{
2x sin

(
1
x

)
− x2

x2 cos
(
1
x

)
+ 1

2 = 2x sin
(
1
x

)
− cos

(
1
x

)
+ 1

2 for x ̸= 0
1
2 for x = 0

.

and for any ϵ > 0, there is x < ϵ such that f ′(x) < 0: for example, one can take x = 1
2πn for

sufficiently large n. Then the term 2x sin 1
x = 0, while − cos 1

x = −1, and then f ′(x) = −1
2 .

Note that the derivative f ′(x) is discontinuous in this case.

Proposition 113 (Cauchy’s mean value theorem). Let a < b, f, g be continuous on [a, b] and
differentiable on (a, b). Then there is x0 ∈ (a, b) such that f ′(x0)(g(b) − g(a)) = g′(x0)(f(b) −
f(a)).

Proof. Let h(x) = f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)), then h(x) is continuous on [a, b] and
differentiable on in (a, b). h(a) = f(a)g(b) − f(b)g(a) = h(b). By Rolle’s theorem 106, there is
x0 ∈ (a, b) such that 0 = h′(x0) = f ′(x0)(g(b)− g(a))− g(x0)(f(b)− f(a)).

Nov. 9. Higher derivatives, convexity and concavity, asymptotes.

Higher derivatives

As we saw before, if f is defined on an open interval and is differentiable on each point of I, then
f ′ defines a new function on I, the (first) derivative. It may happen that f ′ is again differentiable
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on each point of I, and it defines a further new function f ′′, the second derivative. If f ′′ is
again differentiable, one can also define the third derivative, and so on. We denote the n-th
derivative by f (n), or Dnf, d

nf
dxn .

Example 114. • If f(x) = x4, then f ′(x) = 4x3, f ′′(x) = 12x2, f (3)(x) = 24x, and so on.
This f is infinitely many times differentiable.

• If f(x) = sinx, then f ′(x) = cosx, f ′′(x) = − sinx, f (3)(x) = − cosx, f (4)(x) = sinx and
so on. Again this is infinitely many times differentiable.

• Let f(x) =

{
x2 sin

(
1
x

)
+ x

2 for x ̸= 0

0 for x = 0
, then we have

f ′(x) =


2x sin

(
1
x

)
− x2

x2 cos
(
1
x

)
+ 1

2

= 2x sin
(
1
x

)
− cos

(
1
x

)
+ 1

2 for x ̸= 0
1
2 for x = 0

and this derivative is not continuous. In particular, f is only once differentiable.

The second derivative is useful to study whether the stationary point (or a critical point)
is a maximum or a minimum, and also to study the shape of the graph.

Lemma 115. Suppose that f is differentiable on an open interval I and at x0 it is twice differ-
entiable.

• If x0 is a stationary point and f ′′(x0) > 0 (f ′′(x0) < 0, respectively), then f takes a local
minimum (a local maximum, respectively) at x0 in a strict sense, that is, there is ϵ > 0 and
f(x0) < f(x) (respectively f(x0) > f(x)) for x ∈ (x0 − ϵ, x0 + ϵ).

• If x0 is a local minimum (a local maximum, respectively), then f ′′(x0) ≥ 0 (f ′′(x0) ≤ 0,
respectively).

Proof. • Let f ′′(x0) > 0. Then there is ϵ > 0 such that f ′(x0+h)−f ′(x0)
h = f ′(x0+h)

h > 0 for
|h| < ϵ. This means that f ′(x0 + h) > 0 for h > 0 and f ′(x0 + h) < 0 for h < 0, and hence
f is monotonically decreasing in (x0 − ϵ, x0) and increasing in (x0, x0 + ϵ), that is, f takes
a minimum at x0.

• If x0 a local minimum and suppose that f ′′(x0) < 0, then x0 would be a local maximum
and it would contradict the previous point.

• Other cases are analogous.

Example 116. • Let f(x) = x2. We have f ′(x) = 2x and x = 0 is a stationary point. As
f ′′(x) = 2, x is a minimum.

• Let f ′(x) = x3 − 3x. We have f ′(x) = 3x2 − 3 and x = 1,−1 are stationary points. As
f ′′(x) = 6x, f takes a maximum at x = −1 and a minimum at x = 1.

Convexity and concavity

Note that, for a, b ∈ R and t ∈ [0, 1]. Then ta+ (1− t)b is a point between a, b. Indeed, if a < b,
then a = ta+ (1− t)a < ta+ (1− t)b < tb+ (1− t)b = b (the case b < a is analogous).

Definition 117. Let f be defined on an interval I. We say that f is convex (concave, respec-
tively) if for any a, b ∈ I and t ∈ [0, 1] it holds that

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) ( respectively f(ta+ (1− t)b) ≥ tf(a) + (1− t)f(b)).
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Figure 52: A convex function. The graph is below the segment between any pair of points
(a, f(a)), (b, f(b)).

Note that (ta+(1− t)b, tf(a)+(1− t)f(b)) defines a segment between (a, f(a)) and (b, f(b)).
Indeed, the slope from the point (a, f(a)) to such a point is (1−t)(f(b)−f(a))

(1−t)(b−a) = f(b)−f(a)
b−a , which

does not depend on t.

Theorem 118. Assume that f is continuous on [c, d], differentiable on (c, d). If f ′ is mono-
tonically nondecreasing (nonincreasing, respectively), then f is convex (concave, respectively).
In particular, if f ′′(x) > 0 (f ′′(x) < 0, respectively) for x ∈ (c, d), then f is convex (concave,
respectively).

Proof. Let a < b in [c, d] and t ∈ (0, 1). Let x = ta + (1 − t)b. We have to prove that
f(x) ≤ tf(a) + (1− t)f(b), or equivalently, t(f(x)− f(a)) ≤ (1− t)(f(b)− f(x)).

By Theorem 107, there are points c, d such that a < y < x and x < z < b such that
f(x)− f(a) = f ′(y)(x− a) and f(b)− f(x) = f ′(z)(b− x). As f ′ is nondecreasing, f ′(y) ≤ f ′(z)
and hence, using t(x− a) = (1− t)(b− x),

t(f(x)− f(a)) = tf ′(y)(x− a) ≤ f ′(z)t(x− a) = f ′(z)(1− t)(b− x) = (1− t)(f(b)− f(x)).

Under certain conditions, it can also be shown that f is convex, then f ′′ > 0. We omit the
proof.

Example 119. • Let f(x) = x2. As f ′′(x) = 2, f is convex.

• Let f ′(x) = x3. As f ′′(x) = 6x, f is concave on (−∞, 0) and convex on (0,∞).

Asymptotes

The graph of some function may approach a straight line. A more precise concept of this is
asymptotes.

Definition 120. • Let f be defeind on (a,∞). If lima→∞ f(x) = L, then we say that y = L
is a horizontal asymptote (analogous for −∞).

• Let f be defined on (a, b). If limx→a+ |f(x)| → ∞, then x = a is called a vertical
asymptote. (analogous for b).

• Let f be defined on (a,∞). If there is A,B ∈ R such that limx→∞
f(x)
x = A ̸= 0 and

limx→∞ f(x)−Ax = B, then we say that y = Ax+B is an oblique asymptote (analogous
for −∞).
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Figure 53: The asymptotes for 1
x and tanhx.

Figure 54: The oblique asymptotes for x tanhx.

Note that, when there is a horizontal asymptote, say for x→ ∞, there is no oblique asymp-
tote, as in this case limx→∞

f(x)
x = 0. Conversely, if there is an oblique asymptote, there is no

horizontal asymptote, because if limx→∞
f(x)
x = A ̸= 0, then limx→∞ f(x) = (signA)∞.

Example 121. • Let f(x) = tanhx. We know that limx→∞ tanhx = 1, limx→−∞ tanhx =
−1, hence y = 1,−1 are the horizontal asymptotes of tanhx.

• Let f(x) = 1
x on (−∞, 0) ∪ (0,∞). We know that limx→0+

1
x = ∞, limx→0−

1
x = −∞, and

hence x = 0 is a vertical asymptote of 1
x . y = 0 is a horizontal asymptote of 1

x because
limx→±∞

1
x = 0.

• Let f(x) = x tanhx. Then, we see that limx→∞
x tanhx

x = limx→∞ tanhx = 1 and

lim
x→∞

x tanhx− x = lim
x→∞

x

(
ex − e−x

ex + e−x
− 1

)
= lim

x→∞

−2xe−x

ex + e−x
= 0,

hence y = x is an oblique asymptote. Similarly, y = −x an oblique asymptote for x→ −∞.

Nov. 13. Graph sketching

Symmetry of functions

Recall that the graph of a function is a subset in R×R in the sense that it collects all the points
{(x, y) ∈ R× R : y = f(x), x ∈ D}, where D is the domain of f . This is the graph itself.

We can consider certain operations on a function.
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Figure 55: Left:the graphs of x2 and (x− 1
2)

2 − 1. Right:the graphs of x3 − x2 and −x3 − x2.

Figure 56: The graphs of sinx and 2 sin(x/2).

• Translation. Let a, b ∈ R. If g(x) = f(x − a) + b for some function f, g, then the graph
of g is obtained by translating the graph of f by (a, b). Indeed, if (x, y) is on the graph of
f , then (x+ a, y + b) is on the graph of g.

• Reflection. If g(x) = f(−x) for some function f, g, then the graph of g is obtained by
reflecting the graph of f with respect to x = 0. Indeed, if (x, y) is on the graph of f , then
(−x, y) is on the graph of g.

• If g(x) = f(−(x− 2a)) for some function f, g, then the graph of g is obtained by reflecting
the graph of f with respect to x = a.

• Scaling. Let a, b ∈ R, a ̸= 0 ̸= b. If g(x) = bf(x/a) for some function f, g, then the graph
of g is obtained by scaling the graph of f by a in the x-direction and b in the y-direction.
Indeed, if (x, y) is on the graph of f , then (ax, by) is on the graph of g.

A graph or a function may have a symmetry. A function f is said to have a symmetry if it
is invariant under certain operations.

• Translation symmetry. If f(x) = f(x−a), then the graph of f remains invariant under
the translation (a, 0).

• Reflection. If f(x) = f(−x), then the graph of f is invariant under the reflection respect
to x = 0 and f is said to be even.
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Figure 57: Above:The graph of sinx is invariant under 2π translation and under the reflection
with respect to π

2 . Below:The graph of (x− 1
2)

2+1 is invariant under the reflection with respect
to x = 1

2 .

• f(x) = −f(−x), f is said to be odd.

• f(x) = f(−(x− 2a)) has reflection symmetry with respect to x = a.

Example 122. • The graph of sinx is invariant under 2π translation and under the reflection
with respect to π

2 , because sin(x+2π) = sin(x) and sin(−(x−π)) = − sin(x−π) = sin(x).
On the other hand, sin(−x) = − sinx, hence sinx is an odd function.

• If f(x) = (x − 1
2)

2 − 1 is invariant under the reflection with respect to x = 1
2 because

((−(x− 1))− 1
2)

2 − 1 = (−x+ 1
2)

2 − 1 = (x− 1
2)

2 − 1.

Graph sketching

The graph of a function f can be qualitatively drawn as follows.

(0) Determine the (natural) domain A of definition of f .

(0.5) Check if f has a symmetry or a period.

(1) Study the sign of f : where f(x) > 0,= 0, < 0 hold.

(2) Determine the asymptotes.

(3) Study the sign of f ′ and find stationary points (where f ′(x) = 0).

(4) Study the stationary points and find local minima and maxima (either by the second deriva-
tive or the first).

Example 123. • f(x) = e−(2x−1)2 .
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Figure 58: The graph of f(x) = e−(2x−1)2 .

Figure 59: The graph of f(x) = log( 1
sinx).

(0) f(x) is defined for all x ∈ R = A in a natural way.

(0.5) f(x+ 1
2) = f(−x+ 1

2), that is f(x) is even with respect to x = 1
2 .

(1) e−(2x−1)2 > 0 for all x ∈ R.

(2) Consider x → ±∞. limx→±∞ f(x) = 0. The asymptote is y = 0 and there is no
oblique asymptote. There is no vertical asymptote because f is continuous on any
closed interval.

(3) f ′(x) = −4(2x− 1)e−(2x−1)2 . f ′(x) = 0 ⇔ 2x− 1 = 0 ⇔ x = 1
2 . f(

1
2) = 1.

(4) f ′(x) > 0 if x < 1
2 , f

′(x) > 0 if x > 1
2 .

x 1
2

f ′(x) + 0 −
f ′′(x) −
f(x) ↗ 1 ↘

• f(x) = log( 1
sinx).

(0) log y is defined for y > 0, hence 1
sinx > 0, that is sinx > 0 ⇔ x ∈ (2nπ, (2n+1)π) for

n ∈ Z.

(0.5) sin(x+ 2π) = sinx, hence f(x+ 2π) = f(x). It sufficed to draw the graph for (0, π).
Since sin(x+ π

2 ) = sin(−x+ π
2 ), f(x) is even with respect to x = π

2 .

(1) 0 < sinx ≤ 1, hence 1
sinx ≥ 1 and log( 1

sinx) ≥ 0.

(2) The domain is (0, π), so we need to check {0, π}. limx→0 f(x) = limx→π f(x) = ∞.
The asymptotes are x = 0, π.

(3) f ′(x) = − cosx
sinx . f ′(x) = 0 ⇔ cosx = 0 ⇔ x = π

2 . f(π2 ) = 0. f ′(x) < 0 if x ∈ (0, π2 ),
and f ′(x) > 0 if x ∈ (π2 , π).

(4) f ′′(x) = 1
sin2 x

> 0.

x π
2

f ′(x) − 0 +
f ′′(x) +
f(x) ↘ 0 ↗
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Figure 60: The graph of h(x) = ex + x2 − 2. It crosses the x-axis twice and only twice.

Solutions to equations

We can draw the graphs of f(x) = 1 − x2 and g(x) = ex − 1, and prove that there are two
solutions of the equation f(x) = g(x).

Indeed, let us consider the function h(x) = g(x)− f(x) = ex + x2 − 2 and it suffices to find
all x such that h(x) = g(x)− f(x) = 0. We have limx→±∞ g(x)− f(x) = ∞ and g(0)− f(0) =
(1 − 1) − 1 = −1. By the intermediate value theorem, there are solutions in x > 0 e x < 0.
Moreover, h′(x) = ex + 2x, hence there is only one stationary point (because in x > 0 h′(x)
is positive and it is negative for sufficiently small x, while g′′(x) − f ′′(x) = ex + 2 is positive,
therefore, g′(x)− f ′(x) is monotonically increasing). Therefore, h(x) = g(x)− f(x) is decreasing
in a negative half line and is increasing in the rest, hence it can have only two points x where
h(x) = 0.

Some applications of the minimum/maximum finding

If one can express a problem as a problem of finding the maximum or the minimum of a function,
we can solve it using derivatives and graphs.

• Among all rectangles of given perimeter 2r, which one has the largest area? Let the vertical
side x, then 0 ≤ x ≤ r and the other side is r − x, hence the area is x(r − x). We need
to find the maximum of f(x) = x(r − x) on the domain {x : 0 < x < r}. We have
limx→0 f(x) = limx→r f(x) = 0, while f ′(x) = r−2x, and hence there is a stationary point
at x = r

2 , and f ′′(x) = −2, hence this is a local maximum. There is no other stationary
points, and f(0) = f(r) = 0, hence this is the maximum.

• The geometric mean
√
ab is smaller than or equal to the arithmetic mean a+b

2 . Let us fix

P =
√
ab and put a = x, then b = P 2

x and 0 < x. Let us find the minimum of f(x) = x+P2

x
2 .
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Figure 61: Theorem of de l’Hôpital. The limit limx→x−
0

f(x)
g(x) is determined by limx→x0

f ′(x)
g′(x) .

This tends to ∞ as x→ 0 or x→ ∞. On the other hand, f ′(x) = 1
2(1−

P 2

x2 ), and hence there
is only one stationary point at x = P , and f ′′(x) = 2P 2

x3 , hence this is a local minimum,

and is the minimum. At x = P , we have f(P ) = P . Hence we have P ≤ x+P2

x
2 .

Nov. 15. Theorem of Bernoulli-de l’Hôpital

Let us recall the mean value theorem of Cauchy: let f, g be continuous on [a, b] and differentiable
on (a, b). Then there is x0 ∈ (a, b) such that

f ′(y)(g(b)− g(a)) = g′(y)(f(b)− f(a)).

(Bernoulli-)de l’Hôpital rule is a useful tool to compute limits of the type 0
0 or ∞

∞ .

Theorem 124 (Bernoulli-de l’Hôpital, case 1). Let a < x0, f, g differentiable on (a, x0) such
that g′(x) ̸= 0 for x sufficiently close to x0, x ̸= x0, limx→x−

0
f(x) = limx→x−

0
g(x) = 0,

limx→x−
0

f ′(x)
g′(x) = L ∈ R. Then g(x) ̸= 0 for x close to x0, x ̸= x0 and limx→x−

0

f(x)
g(x) = L.

Proof. We can extend f, g to (a, x0] by putting f(x0) = g(x0) = 0, such that they are continuous.
By the hypothesis we may assume that g′(x) ̸= 0 in (b, x0). Let x ∈ (b, x0), by Lagrange’s mean
value theorem, there is y ∈ (x, x0) such that g(x) = g(x) − g(x0) = g′(y)(x − x0) ̸= 0, in
particular, g(x) ̸= 0.

By Cauchy’s mean value theorem, for x above, there is z ∈ (x, x0) such that f ′(z)(g(x) −
g(x0)) = g′(z)(f(x)− f(x0)), that is,

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(z)

g′(z)
.

If x → x0, such z tends to x0. Because limz→x−
0

f ′(z)
g′(z) = L by the hypothesis it holds that

limx→x−
0

f(x)
g(x) = L.

A similar result holds for right limits.

Example 125. • Consider ex−1
sin(2x) . The limit x → 0 is of the form 0

0 . It holds that
(sin(2x))′ = 2 cos(2x) ̸= 0 as x→ 0. In addition (ex − 1)′ = ex. Therefore, limx→0

ex−1
sinx =

limx→0
ex

2 cos(2x) =
1
2 .

• limx→0
x

ex−1 = 1
e0

= 1.

• limx→0
x2

cosx−1 = limx→0
2x

− sinx = 2
− cos 0 = −2.

Theorem 126 (Bernoulli-de l’Hôpital, case 2). Let f, g differentiable on (a,∞) such that g′(x) ̸=
0 for x sufficiently large, limx→∞ f(x) = limx→∞ g(x) = 0, limx→∞

f ′(x)
g′(x) = L. Then g(x) ̸= 0

for x sufficiently large and limx→∞
f(x)
g(x) = L.
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Proof. Let F (x) = f( 1x), G(x) = g( 1x). Note that, as x → ∞, we have 1
x → 0+, and F ′(x) =

− 1
x2 f

′( 1x), G
′(x) = − 1

x2 g
′( 1x). Then for sufficiently small x, G′(x) ̸= 0 because g′( 1x) ̸= 0 for such

x. By applying case 1, we obtain

lim
x→∞

f(x)

g(x)
= lim

x→0+

F (x)

G(x)
= lim

x→0+

F ′(x)

G′(x)
= lim

x→0+

−x2f ′( 1x)
−x2g′( 1x)

= lim
x→∞

f ′(x)

g′(x)

as desired.

Example 127. • limx→∞
sin( 1

x2
)

1
x2

= limx→∞
− 2

x3
cos( 1

x2
)

− 2
x3

= 1.

Theorem 128 (Bernoulli-de l’Hôpital, case 3). Let a < x0, f, g differentiable on (a, x0) such that
g′(x) ̸= 0 for x sufficiently close to x0, limx→x0 f(x) = limx→x0 g(x) = +∞, limx→x0

f ′(x)
g′(x) = L.

Then g(x) ̸= 0 for x sufficiently close to x0 and limx→x0

f(x)
g(x) = L.

Proof. Let ε > 0. By the hypothesis, there is b such that
∣∣∣f ′(y)
g′(y) − L

∣∣∣ < ε
3 for y ∈ (b, x0). In

addition, there is b̃ such that b < b̃ < x0 and in (b̃, x0) f(x) > 2f(b) > 0, g(x) > 2g(b) > 0.

Then the function h(x) =
1− g(b)

g(x)

1− f(b)
f(x)

is continuous on (b̃, x0] and its value at x0 is 1 . Furthermore,

it holds that
f(x)− f(b)

g(x)− g(b)
· h(x) = f(x)− f(b)

g(x)− g(b)
·
1− g(b)

g(x)

1− f(b)
f(x)

=
f(x)

g(x)
.

Let ˜̃
b such that |h(x) − 1| < ε

3L+1 for x ∈ (
˜̃
b, x0). By Cauchy’s mean value theorem, there is

y ∈ (b, x) such that
f(x)

g(x)
=
f(x)− f(b)

g(x)− g(b)
· h(x) = f ′(y)

g′(y)
h(x).

Now
∣∣∣f(x)g(x) − L

∣∣∣ = ∣∣∣f ′(y)
g′(y)h(x)− L

∣∣∣ < ∣∣∣f ′(y)
g′(y) − L

∣∣∣ (1 + ε
3L+1) + L|h(x)− 1| < ε

3 + ε2

3 + ε
3 < ε.

Theorem 129 (Bernoulli-de l’Hôpital, case 4). Let f, g be differentiable (a,∞) such that g′(x) ̸=
0 for sufficiently large x, limx→∞ f(x) = limx→∞ g(x) = +∞, limx→∞

f ′(x)
g′(x) = L ∈ R. Then

g(x) ̸= 0 for x sufficiently large and limx→∞
f(x)
g(x) = L.

Proof. Consider F (y) = f( 1y ), G(y) = g( 1y ). Since 1
y → ∞ as y → 0+, and D(F (y)) =

Df( 1
y
)

−y2
, D(G(y)) =

Dg( 1
y
)

−y2
we can apply case 3 and obtain L = limy→0+

DF (y)
DG(y) = limy→0+

F (y)
G(y) =

limx→∞
f(x)
g(x) .

Example 130. • Let us compute limx→∞
x2

ex . If the limit limx→∞
2x
ex exists, then by the de

l’Hôpital rule, they should coincide. The latter exists if limx→∞
2
ex exists, and it does: it is

0. Therefore, the second limit exists and it is 0, and hence the first limit exists and it is 0.

• limx→0
sin 2x
sinx = limx→0

2 cos 2x
cosx = 2.

• limx→0
log x

1/ tanx = limx→0
1/x

1/ sin2 x
= 0.

• limx→0
log(sinx)

log x = limx→0

cos x
sin x
1
x

= 1.

• limx→∞
xn

ex = 0.

• limx→∞
log coshx

x = limx→∞
sinhx/ coshx

1 = 1.
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(
a

Figure 62: Theorem of de l’Hôpital. The limit limx→∞
f(x)
g(x) is determined by limx→∞

f ′(x)
g′(x) .

Nov. 16. Landau’s symbols, Taylor’s formula.

Definition 131. Let I be an open interval, f, f1, f2, g : I → R, x0 ∈ I (one may consider the
case where x0 is one of the boundaries of I, and left or right limits in the following) and suppose
that g(x) ̸= 0 in an neighbourhood of x0, x ̸= x0. We write:

• f(x) = O(g(x)) (as x→ x0) if there is M > 0 such that |f(x)| ≤M |g(x)| in an neighbour-
hood of x0.

• f(x) = o(g(x)) (as x→ x0) if limx→x0

f(x)
g(x) = 0.

• f1(x) = f2(x) +O(g(x)) (f1(x) = f2(x) + o(g(x)), respectively) if f1(x)− f2(x) = O(g(x))
(= o(g(x)), respectively).

Similarly, let f, g : (a,∞) → R, and suppose that g(x) ̸= 0 for sufficiently large x (that is, there
is X > 0 such that g(x) ̸= 0 if x > X). We write:

• f(x) = O(g(x)) (as x → ∞) if there is M > 0 such that |f(x)| ≤ M |g(x)| for sufficiently
large x.

• f(x) = o(g(x)) (as x→ ∞) if limx→∞
f(x)
g(x) = 0.

The cases for (−∞, a), or f(x) → 0 and the cases in I but f(x) → 0 are analogous.

Example 132. • If n > 1, xn = o(x) as x→ 0 (because limx→0
xn

x → 0).

• xn = o(xm) as x→ 0 if n > m (because limx→0
xn

xm → 0).

• xm = o(xn) as x→ ∞ se n > m (because limx→∞
xm

xn → 0).

• log x = o(x) as x→ ∞ (because limx→∞
log x
x → 0).

• log x = o( 1x) as x→ 0 (because limx→0 x log x→ 0).
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Figure 63: Landau’s symbol. x2 = o(x) as x→ 0, but x = o(x2) as x→ ∞.

• sinx = O(x) as x→ 0 (because limx→0
sinx
x → 1).

• sinx = o(x) as x→ ∞ (because limx→∞
sinx
x → 0).

• cosx = O(1) as x→ 0 (because limx→0 cosx→ 1).

• ex − 1 = O(x) as x→ 0 (because limx→0
ex−1
x → 1).

Lemma 133. Let us consider the behaviour x→ x0 (other cases are analogous).

(a) Let a, b ∈ R. If f(x) = O(h(x)), g(x) = O(h(x)), then af(x) + bg(x) = O(h(x)).

(b) Let a, b ∈ R. If f(x) = o(h(x)), g(x) = o(h(x)), then af(x) + bg(x) = o(h(x)).

(c) If g(x) = o(h(x)) and f(x) ̸= 0 in a neighbourhood of x0, then f(x)g(x) = o(f(x)h(x)). If
f(x) = o(h1(x)), g(x) = o(h2(x)), then f(x)g(x) = o(h1(x)h2(x)).

(Similarly, if g(x) = O(h(x)), then f(x)g(x) = O(f(x)h(x)) etc.)

(d) If f(x) = o(h(x)), then f(x) = O(h(x)).

(e) Let f(x) = o(h(x)) and f(x0) = 0, g(x) ̸= x0 for x in an neighbourhood of x1 and x ̸= x1,
limx→x1 g(x) = x0. Then f(g(x)) = o(h(g(x))) as x→ x1.

(Similarly, if f(x) = O(h(x)) with similar assumptions, then f(g(x)) = O(h(g(x))))

Proof. (a) We have |f(x)| ≤ M1|h(x)|, |g(x)| ≤ M2|h(x)|, hence |af(x) + bg(x)| ≤ |a||f(x)| +
|b||g(x)| ≤ (|a|M1 + |b|M2)|h(x)|.

(b) Analogous.

(c) If limx→x0

g(x)
h(x) = 0, then limx→x0

f(x)g(x)
f(x)h(x) = limx→x0

g(x)
h(x) = 0. If limx→x0

f(x)
h1(x)

= 0 and

limx→x0

g(x)
h2(x)

= 0, then limx→x0

f(x)g(x)
h1(x)h2(x)

= 0.

(d) If limx→x0

f(x)
h(x) → 0, then

∣∣∣f(x)h(x)

∣∣∣ < 1 for x close enough to x0, hence |f(x)| < M |h(x)| with
M = 1.
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Figure 64: The second order Taylor formula. We approximate a general function by a second
order polynomial.

(e) Let us define

u(k) =

{
f(k)
h(k) if k ̸= x0

0 if k = x0.

Then u(k) is continuous at k = x0 because f(k)
h(k) → 0 as k → x0. We have f(g(x)) =

h(g(x))u(g(x)) for x close enough to x1, x ̸= x1, and altogether,

lim
x→x1

∣∣∣∣f(g(x))h(g(x))

∣∣∣∣ = lim
x→x1

∣∣∣∣h(g(x))u(g(x))h(g(x))

∣∣∣∣ = u( lim
x→x1

g(x)) = u(x0) = 0.

The other claim is analogous.

Example 134. As x→ 0,

• sin(x2) = O(x2), because sin(y) = O(y) and we put y = x2.

• ex
3 − 1 = O(x3), because ey − 1 = O(y), and we put y = x3.

• sin2(x) = O(x2), because sinx = O(x), thus sin2(x) = O(x)O(x) = O(x2).

Second order Taylor Formula

We have defined derivative by limx→x0

f(x)−f(x0)
x−x0

. If f is differentiable at x0, then we have

limx→x0

f(x)−f(x0)
x−x0

= f ′(x0), or equivalently,

lim
x→x0

(
f(x)− f(x0)

x− x0
− f ′(x0)(x− x0)

x− x0

)
= lim

x→x0

f(x)− f(x0)− f ′(x0)(x− x0)

x− x0
= 0,

therefore, f(x)− f(x0)− f ′(x0)(x− x0) = o(x− x0). This means that we can approximate f to
the first order by f(x0) + f ′(x0)(x− x0). This is indeed called the first order Taylor formula.

The Taylor formula can be extended to higher order.

Proposition 135 (Second order Taylor formula). Let f be differentiable on (a, b) and twice
differentiable at x0 ∈ (a, b). Then f(x) = f(x0)+(x−x0)f ′(x0)+ 1

2(x−x0)
2f ′′(x0)+o((x−x0)2)

as x→ x0.
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Proof. Let us put P2(x) = f(x0) + (x − x0)f
′(x0) +

1
2(x − x0)

2f ′′(x0). Then P ′
2(x) = f ′(x0) +

(x− x0)f
′′(x0). Furthermore, the first order Talylor formula holds for f ′: f ′(x) = f ′(x0) + (x−

x0)f
′′(x0) + o(x− x0) as x→ x0. That is,

lim
x→x0

D(f(x)− P2(x))

D((x− x0)2)
= lim

x→x0

f ′(x)− f ′(x0)− (x− x0)f
′′(x0)

2(x− x0)
=

1

2
(f ′′(x0)− f ′′(x0)) = 0.

By the Bernoulli-de l’Hôpital theorem,

lim
x→x0

f(x)− P2(x)

(x− x0)2
= 0.

that is, f(x) = P2(x) + o((x− x0)
2).

Example 136. As x→ 0,

• ex = 1 + x+ x2

2 + o(x2)

• log(1 + x) = x− x2

2 + o(x2).

• sin(x) = x+ o(x2).

• cos(x) = 1− x2

2 + o(x2).

Nov. 20. Higher order Taylor formula and more examples.

Higher order Taylor(-Peano) Formula

For f n-times differentiable, the following holds (as we prove later).
With the convention f (0)(x) = f(x),

f(x) = f(x0) + (x− x0)f
′(x0) +

1

2
(x− x0)

2f ′′(x0) + · · ·+ 1

n!
(x− x0)

nf (n)(x0) + o((x− x0)
n)

=

n∑
k=0

f (k)(x0)

k!
(x− x0)

k + o((x− x0)
n)

The part
∑n

k=0
f (k)(x0)

k! (x− x0)
k is called the Taylor polynomial of f .

Lemma 137. Let f, g be differentiable n-times in an open interval I and x0 ∈ I. Suppose that
g(k)(x) ̸= 0 for x ̸= x0, 0 ≤ k ≤ n but f (k)(x0) = g(k)(x0) = 0 for 0 ≤ k ≤ n − 1. Then for any
x ̸= x0, x ∈ (a, b) there is ξ between x, x0 such that f(x)

g(x) = f (n)(ξ)

g(n)(ξ)
.

Proof. By Proposition 113,

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(ξ1)

g′(ξ1)
=
f ′(ξ1)− f ′(x0)

g′(ξ1)− g′(x0)
=
f (2)(ξ2)

g(2)(ξ2)
= · · · = f (n)(ξn)

g(n)(ξn)

where ξ1 is between x, x0, ξ2 is between ξ1, x0, · · · , and we put ξ = ξn.

Proposition 138. Let F be differentiable n− 1-times on I and n-times at x0 ∈ I. In this case,
F (x) = o((x− x0)

n) as x→ x0 if and only if F (k)(x0) = 0 for 0 ≤ k ≤ n.
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Proof. We know this for n = 0 by definition of continuity: f is continuous if and only if f(x)−
f(x0) = O(1) as x→ x0. Let us prove the general case by induction, by assuming that it is true
for n.

Let F (x) = o((x − x0)
n+1). Then F (k)(x0) = 0 for 0 ≤ k ≤ n by the hypothesis of induc-

tion. The assumption is 0 = limx→x0

F (x)
(x−x0)n+1 . On the other hand, F (x)

(x−x0)n+1 = F (n)(ξ)
(n+1)!(ξ−x0)

for some ξ. If x → x0, ξ → x0, that is, 0 = limx→x0

F (x)
(x−x0)n+1 = limξ→x0

F (n)(ξ)
(n+1)!(ξ−x0)

=

limξ→x0

F (n)(ξ)−F (n)(x0)
(n+1)!(ξ−x0)

= F (n+1)(x0)
(n+1)! , hence F (n+1)(x0) = 0.

Let F (k)(x0) = 0 for 0 ≤ k ≤ n+ 1. Then by the Bernoulli-de l’Hôpital theorem,

0 =
F (n+1)(x0)

(n+ 1)!
= lim

x→x0

F (n)(x)− F (n)(x0)

(n+ 1)!(x− x0)

= lim
x→x0

F (n)(x)

(n+ 1)!(x− x0)
= lim

x→x0

F (n−1)(x)− F (n−1)(x0)
(n+1)!

2 (x− x0)2

= lim
x→x0

F (n−1)(x)
(n+1)!

2 (x− x0)2
= lim

x→x0

F (n−2)(x)− F (n−2)(x0)
(n+1)!

3! (x− x0)3

· · · = lim
x→x0

F (x)

(x− x0)n+1
.

That is, F (x) = o((x− x0)
n+1).

Corollary 139. Let f be differentiable n times at x0 ∈ (a, b). Then with

Pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k,

we have f(x) = Pn(x) + o((x− x0)
n).

Proof. Dm(f−Pn)(x0) = 0 for 0 ≤ m ≤ n. Indeed, Dm(Pn)(x0) =
∑n

k=m
f (k)(x0)

k! k(k−1) · · · (k−
m+ 1)(x0 − x0)

k = f (m)(x0)
m! m! = f (m)(x0).

By Proposition 138, f(x0) = Pn(x0) + o((x− x0)
n).

Example 140. • f(x) = ex. As f (n)(x) = ex, we have f (n)(0) = 1 and hence ex =∑n
k=0

xn

n! + o(xn). That is, ex = 1 + x+ x2

2 + x3

3! + · · ·+ xn

n! + o(xn) as x→ x0 = 0.

• f(x) = sinx. As f (4n)(x) = sinx, f (4n+1)(x) = cosx, f (4n+2)(x) = − sinx, f (4n+3)(x) =
− cosx, we have f (4n)(0) = 0, f (4n+1)(x) = 1, f (4n+2)(x) = 0, f (4n+3)(x) = −1, and hence
sinx =

∑n
k=0

(−1)kx2k+1

(2k+1)! +o(x2n+1). That is, sinx = x− x3

3! +
x5

5! +· · ·+ (−1)nx2n+1

(2n+1)! +o(x2n+1)
as x→ x0 = 0.

Very often, the Taylor series converges to the original function f(x), that is,

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k

holds for some functions (ex, sinx, cosx, log(1 + x)) and for some x. One example we can show
easily such convergence is f(x) = 1

1−x . Indeed, f ′(x) = 1
(1−x)2

, f (n)(x) = n!
(1−x)n . And hence the

Taylor series around x = 0 is
n∑

k=0

n!xn

n!
=

n∑
k=0

xn,
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Figure 65: The graph of a function whose Taylor series converges but not to itself.

and we know that this partial sum is 1−xn+1

1−x , which converges to 1
1−x for |x| < 1. But the series

does not converge for if |x| > 1.
There are functions whose Taylor series converges but not to the original function. For

example, if we take

f(x) =

{
e−

1
x if x > 0

0 if x ≥ 0

then f (n)(0) = 0 for all n, hence the Taylor polynomial is identically 0, but the original function
f(x) is not identically 0.

The question of for which function the Taylor series converges to the origial function will be
studied in Mathematical Analysis II.

Applications to certain limits

Taylor’s formula can be used to compute certain indefinite limits.

Example 141. •

lim
x→0

ex − 1− x

sin(x2)

As x→ x0 = 0, we have

– ex = 1 + x+ x2

2 + o(x2)

– sin y = y + o(y)

– sin(x2) = x2 + o(x2)

Then it holds, as x→ 0,
ex − 1− x

sin(x2)
=

x2

2 + o(x2)

x2 + o(x2)

hence limx→0
ex−1−x
sin(x2)

= 1
2 .

•

lim
x→0

x− ln(1− x)− 2x
√
1 + x

sin(x)− xex

As x→ x0 = 0, we have

– ln(1− x) = −x− 1
2!x

2 + o(x2)

– x
√
1 + x = x(1 + 1

2x− o(x)) = x+ 1
2x

2 + o(x2)

– sinx = x+ 0 · x2 + o(x2)

– xex = x(1 + x+ o(x)) = x+ x2 + o(x2)
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Figure 66: Approximating the area surrounded by f(x) by rectangles.

I ( ]

P ( )[ ]
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Figure 67: Left: a partition P of an interval I and a refinement P ′ ≻ P . Right: two partitions
P, P ′ of I and P ∧ P ′.

Then it holds, as x→ 0,

x− ln(1− x)− 2x
√
1 + x

sin(x)− xex
=

−1
2x

2 + o(x2)

−x2 + o(x2)

hence limx→0
x−ln(1−x)−2x

√
1+x

sin(x)−xex = 1
2 .

Nov. 22. Definite integral.

Given a function f , we consider (Riemann) integral. This is a concept that extends the area of
familiar figures such as triangles and disks. If f(t) represents the velocity of a car at time t, then
the integral of f gives the distance the car travels in a time interval. If f is the density of a piece
of iron, the integral gives the weight.

The area of a region defined by a function can be approximated by rectangles. We know that
the area of a rectangle with sides a, b is ab.

For an interval I = (a, b) or (a, b] etc., we define |I| = b− a.

Definition 142. (i) Let I be a bounded interval in R. A partition of I is a finite set of disjoint
intervals P = {Ij : 1 ≤ j ≤ n} such that

⋃n
j=1 Ij = I.

(ii) diam(P ) = max{|Ij | : 1 ≤ j ≤ n}.

(iii) A partition P ′ is called a refinement of P if every interval of P admits a partizione formed
by intervals in P ′. That is, every Ij ∈ P can be written as Ij =

⋃nj

k=1 Ijk, Ijk ∈ P ′.

We denote this by P ′ ≻ P .

(iv) If P, P ′ are partitions of I, we define P ∧ P ′ = {I ∩ I ′ : I ∈ P, I ∈ P ′, I ∩ I ′ ̸= ∅}. We have
P ∧ P ′ ≻ P, P ′.

If P is a partition of I, then |I| =
∑n

j=1 |Ij |.
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Figure 68: SI(f, P ) and SI(f, P ) for a given a partition P of I.

For a partition P of I and a bounded function f : I → R, we put

SI(f, P ) :=
n∑

j=1

(inf
Ij
f)|Ij |, (“lower sum”)

SI(f, P ) :=
n∑

j=1

(sup
Ij

f)|Ij | (“upper sum”).

We have SI(f, P ) ≤ SI(f, P ).

Example 143. I = [0, 1]. Pn = {[0, 1n), [
1
n ,

2
n), · · · , [

n−1
n , 1]}. If n′ = mn for m ∈ N, then

Pn′ ≻ Pn. diam(Pn) =
1
n .

• If f(x) = a, then SI(f, Pn) = SI(f, Pn) = a.

• Let f(x) = x.

SI(f, Pn) =

n∑
j=1

j

n
· 1
n
=

1

n2
· n(n+ 1)

2

Analogously,

SI(f, Pn) =

n∑
j=1

j − 1

n
· 1
n
=

1

n2
·
(
n(n+ 1)

2
− n

)
=

1

n2
n(n− 1)

2
.

Therefore, by taking n→ ∞, we obtain limn→∞ SI(f, Pn) = limn→∞ SI(f, Pn) =
1
2 , which

is the area of the triangle {(x, y) : x ∈ [0, 1], 0 ≤ y ≤ x = f(x)}.

Lemma 144. Let I be a bounded interval, f : I → R a bounded function. If P, P ′ are two
partitions of I, then

(i) If P ≺ P ′, then
SI(f, P ) ≤ SI(f, P

′) ≤ SI(f, P
′) ≤ SI(f, P ).

(ii) SI(f, P ) ≤ SI(f, P
′)
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· · ·

· · ·

Figure 69: The upper and lower sum for f(x) = a (constant) and f(x) = x.

Proof. (i) If P ≺ P ′, then we can take P = {Ij : 1 ≤ j ≤ n} and P ′ = {Ijk : 1 ≤ j ≤ n, 1 ≤
j ≤ nj} such that ∪nj

k=1Ijk = Ij . Then, for every j, k, infIj f ≤ infIjk f , supIj f ≥ supIjk f .
It follows that

SI(f, P ) =
n∑

j=1

(inf
Ij
f)|Ij | =

n∑
j=1

(inf
Ij
f)

nk∑
k=1

|Ijk| =
n∑

j=1

nk∑
k=1

(inf
Ij
f)|Ijk|

≤
n∑

j=1

nk∑
k=1

(inf
Ijk

f)|Ijk| = SI(f, P
′).

SI(f, P ) =
n∑

j=1

(sup
Ij

f)|Ij | =
n∑

j=1

(sup
Ij

f)

nk∑
k=1

|Ijk| =
n∑

j=1

nk∑
k=1

(sup
Ij

f)|Ijk|

≥
n∑

j=1

(sup
Ijk

f)

nk∑
k=1

|Ijk| = SI(f, P
′).

Note that SI(f,Q) ≤ SI(f,Q) for any partition Q.

(ii) Since P ≺ P ∧P ′, P ′ ≺ P ∧P ′, it follows from the previous point SI(f, P ) ≤ SI(f, P ∧P ′) ≤
SI(f, P ∧ P ′) ≤ SI(f, P

′).

Definition 145. Let I = (a, b) or [a, b] etc. a bounded interval and f : I → R bounded. f is
said to be integrable on I if

sup
P
SI(f, P )

“lower integral”

= inf
P
SI(f, P )

“upper integral”

,

where infP and supP are taken over all possible partitions of P of I and in this case we denote
this number by ∫

I
f(x)dx =

∫ b

a
f(x)dx.

x does not have any meaning, and one can also write thsi as
∫
I f(t)dt.

Example 146. •
∫ 1
0 adx = a. Indeed, for all partitions SI(f, P ) = SI(f, P ) = a.

•
∫ 1
0 xdx = 1

2 . Indeed, with f(x) = x, we have found Pn such that SI(f, P ) =
n(n−1)
2n2 and

SI(f, P ) =
n(n+1)
2n2 , hence the sup and the inf coincide and it is 1

2 .
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In general, it is difficult to show integrability by definition. Fortunately, we can prove that
continuous functions on a closed bounded interval are integrable, and we also have the funda-
mental theorems of calculus, that let us calculate integrals with the knowledge of derivatives.

Nov. 23. Integrability of continuous functions, fundamental theo-
rems of calculus.

Recall that any continuous function f on a closed interval I = [a, b] is uniformly continuous, that
is, for given ϵ > 0 there is δ > 0 such that |f(x)− f(y)| < ϵ for x, y ∈ I with |x− y| < δ.

Theorem 147. Let I = [a, b] be a closed bounded interval. Then any continuous function f on
I is integrable.

Proof. By Theorem 92, for ϵ
2(b−a) there is δ such that for x, y ∈ I, |x − y| < δ it holds that

|f(x) − f(y)| < ϵ
2(b−a) . Now, for any partition P = {Ij}nj=1 with diamP = max{|Ij | : 1 ≤ j ≤

n} < δ, we have

SI(f, P )− SI(f, P ) =

n∑
j=1

(sup
Ij

f − inf
Ij
f)|Ij | <

n∑
j=1

ϵ

2(b− a)
|Ij | =

ϵ

2
< ϵ.

Therefore, f is integrable.

Example 148. (of a nonintegrable function) If f(x) =

{
0 x rational
1 x irrational

, f(x) is not integrable:

SI(f, P ) = 1, SI(f, P ) = 0, because any interval I contains both a rational number and an
irrational number.

Proposition 149. Let I be a bounded interval, f, g bounded and integrable on I.

(i) If c ∈ R, then cf is integrable on I and
∫
I cf(t)dt = c

∫
I f(t)dt. f + g is integrable and∫

I(f(t) + g(t))dt =
∫
I f(t)dt+

∫
I g(t)dt.

(ii) If f ≤ g, then
∫
I f(t)dt ≤

∫
I g(t)dt.

(iii) If I ⊂ I, then f is integrable on I. If P = {Ij : 1 ≤ j ≤ n} is a partition of I, then∫
I f(t)dt =

∑n
j=1

∫
Ij
f(t)dt.

Proof. (i) Integrability of cf is easy: SI(cf, P ) = cSI(f, P ) if c ≥ 0 and SI(cf, P ) = cSI(f, P )
if c < 0. If c = 0 everything becomes 0, and if c > 0 one obtains the limit directly. If c < 0
sup and inf are exchanged.

Let f, g be integrable. We have infIj f + infIj g ≤ infIj (f + g), hence for any partition P ,
SI(f, P ) + SI(g, P ) ≤ SI(f + g, P ). Analogously, SI(f + g, P ) ≤ SI(f, P ) + SI(g, P ). By
taking inf and sup with respect to P , we obtain integrability of f + g and the equality∫
I(f(t) + f(t))dt =

∫
I f(t)dt+

∫
I g(t)dt.

Altogether, we have
∫
I(cf(t) + df(t))dt =

∫
I cf(t)dt+

∫
I dg(t)dt = c

∫
I f(t)dt+ d

∫
I g(t)dt.

(ii) If f ≤ g, then SI(f, P ) ≤ SI(g, P ) for any P . Similarly SI(f, P ) ≤ SI(g, P ).

(iii) Let I ⊂ I. Then, for any partition P of I, we can take a refinement P ′ which consists of
the intervals of the form Ij ∩ I and Ij \ I (the latter may be a union of two intervals).
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Figure 70: The patition P2 of a subinterval I of I obtained from a partition P of I.

Let P2 = {Ij ∩ I : 1 ≤ j ≤ n}. Then

SI(f, P2)− SI(f, P2) ≤ SI(f, P2)− SI(f, P2) +
n∑

j=1

(sup
Ij\I

f − inf
Ij\I

f)|Ij \ I|

= SI(f, P
′)− SI(f, P

′) ≤ SI(f, P )− SI(f, P )

Let ϵ > 0. As f is integrable, there is P such that SI(f, P )−SI(f, P ) < ϵ, then SI(f, P2)−
SI(f, P2) < ϵ.

Let us consider the case n = 2, that is I = I1∪I2. For P1, P2 partitions of I1, I2, P = P1∪P2

is a partition of I. Then

SI1(f, P1) + SI2(f, P2) = SI(f, P1 ∪ P2) ≤ SI(f, P1 ∪ P2) = SI1(f, P1) + SI2(f, P2).

If P1, P2 are such that
∫
I1
f(x)dx − SI1(f, P1) <

ε
2 and

∫
I2
f(x)dx − SI2(f, P2) <

ε
2 , then∫

I1
f(x)dx+

∫
I2
f(x)dx < SI(f, P1∪P2)+ε ≤

∫
I f(x)dx+ε, thus

∫
I1
f(x)dx+

∫
I2
f(x)dx ≤∫

I f(x)dx. Similarly,
∫
I1
f(x)dx+

∫
I2
f(x)dx ≥

∫
I f(x)dx.

Corollary 150. If f is continuous, then |f | is continuous and by Theorem 149(ii),
∣∣∫

I f(x)dx
∣∣ ≤∫

I |f(x)|dx.

Definition 151. If a < b, then we put
∫ a
b f(x)dx = −

∫ b
a f(x)dx.

Lemma 152. It holds that
∫ b
a f(x)dx =

∫ c
a f(x)dx+

∫ b
c f(x)dx for all a, b, c ∈ R.

Proof. If a < c < b, then this follows from 149(iii). If a < b < c, then∫ c

a
f(x)dx =

∫ b

a
f(x)dx+

∫ c

b
f(x)dx =

∫ b

a
f(x)dx−

∫ b

c
f(x)dx.

The other cases are analogous.

Theorem 153 (Fundamental theorem of calculus 1). Let I = [a, b] a bounded closed interval
and f : I → R continuous. Then the function of x on I defined by

F (x) =

∫ x

a
f(t)dt

is differentiable and F ′(x) = f(x).

Proof. We have

F (x+ h)− F (x)

h
=

1

h

(∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

)
=

1

h

∫ x+h

x
f(t)dt
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We have
∣∣∣∫ x+h

x f(t)dt− f(x)h
∣∣∣ = ∣∣∣∫ x+h

x f(t)dt−
∫ x+h
x f(x)dt

∣∣∣ ≤ ∫ x+h
x |f(t) − f(x)|dt. As f is

continuous, for any ϵ > 0 there is δ > 0 such that if |t − x| < δ, then |f(t) − f(x)| < ϵ,
therefore,

∫ x+h
x |f(t) − f(x)|dt < hϵ. Then, for such |h| < δ, we have

∣∣∣F (x+h)−F (x)
h − f(x)

∣∣∣ =∣∣∣ 1h ∫ x+h
x f(t)dt− f(x)

∣∣∣ < ϵ. Since ϵ > 0 is arbitrary, limh→0
F (x+h)−F (x)

h = f(x).

Theorem 154 (Fundamental theorem of calculus 2). Let I = [a, b] be a closed bounded interval
and f : I → R differentiable on (a, b), continuous on [a, b] and f ′ is continuous and extends to a
continuous function on [a, b]. Then

f(x)− f(a) =

∫ x

a
f ′(t)dt.

Proof. D(f(x) − f(a)) = f ′(x), while D(
∫ x
a f

′(t)dt) = f ′(x) by Theorem 153. Therefore,
D(f(x) − f(a) −

∫ x
a f

′(t)dt) = 0, and by Corollary 108, f(x) − f(a) −
∫ x
a f

′(t)dt is constant,
but with x = a, f(a)− f(a)−

∫ a
a f

′(t)dt = 0, hence f(x)− f(a)−
∫ x
a f

′(t)dt = 0.

Theorem 154 allows us to compute integrals of certain functions.

• We know that D(xn+1) = (n+1)xn, or D(x
n+1

n+1 ) = xn. Hence
∫ x
a t

ndt = 1
n+1(x

n+1−an+1).
We know that D(ex) = ex, hence

•
∫ x
a e

tdt = (ex − ea).

Nov. 27. Primitive and examples of integral calculus.

Definition 155. Let f : I → R. If there is a function F : I → R such that F ′ = f , then F is
called a primitive of f .

By Corollary 108, if there are two primitives F,G of f , then F (x)−G(x) is a constant.
By Theorem 147 and Theorem 153 there is a primitive if f is continuous: F (x) =

∫ x
a f(t)dt

is a primitive of f .

Corollary 156. Let f be a continuous function on a closed bounded interval I = [a, b], and F
be a primitive of f . Then

∫ b
a f(t)dt = F (b)− F (a).

Proof. As F is a primitive of f , by Theorem 154,
∫ x
a f(t)dt = F (x)− F (a) for any x ∈ [a, b], in

particular for x = b.

This tells us a way to compute the integral
∫ b
a f(x)dx: we only have to find a primitive F (x)

of f(x) and take the difference F (b)− F (a). This is denoted by [F (x)]ba. Namely,∫ b

a
f(x)dx = [F (x)]ba.

A primitive of f is also written by
∫
f(x)dx (up to a constant) and it is called the indefinite

integral of f . With a generic constant it is written, for example
∫
xdx = x2

2 + C. In contrast,∫ b
a f(x)dx (the integral in the interval [a, b]) is called a definite integral.

• Let f(x) = xn, n ∈ N. Then F (x) = xn+1

n+1 is a primitive of f(x). That is,
∫
xndx = xn+1

n+1 +C.

• Let f(x) = sinx. Then F (x) = − cosx a primitive of f(x). That is,
∫
sinxdx = − cosx+C.

• Let f(x) = cosx. Then F (x) = sinx a primitive of f(x). That is,
∫
cosxdx = sinx+ C.

• Let f(x) = ex. Then F (x) = ex a primitive of f(x). That is,
∫
exdx = ex + C.
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• Let f(x) = 1
x . Then F (x) = log x a primitive of f(x). That is,

∫
1
xdx = log x+ C.

• Let f(x) = 1
xn+1 , n ∈ N. Then F (x) = − 1

nxn a primitive of f(x). That is,
∫

1
xn+1dx =

− 1
nxn + C.

With this knowledge of primitives, we can compute definite integrals.

•
∫ 1
0 x

2dx = [x
3

3 ]
1
0 =

1
3 − 0

3 = 1
3 .

•
∫ 2
−1 x

4dx = [x
5

5 ]
2
−1 =

32
5 − (−1

5) =
33
5 .

•
∫ π
0 sinxdx = [− cosx]π0 = −(−1)− (−1) = 2.

•
∫ π
0 cosxdx = [sinx]π0 = 0− 0 = 0.

•
∫ 2
1 e

xdx = [ex]21 = e2 − e.

•
∫ 2
1

1
xdx = [log x]21 = log 2− log 1 = log 2.

•
∫ 2
1

1
x2dx = [− 1

x ]
2
1 = −1

2 − (−1
1) =

1
2 .

Note that
∫ 2
−1

1
xdx is not integrable!

Lemma 157. Let f, g be integrable in a certain interval. Then we have the folowing.

•
∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x)dx+ C.

•
∫
af(x)dx = a

∫
f(x)dx+ C for a ∈ R.

• If
∫
f(x)dx = F (x) + C, then

∫
f(x− a)dx = F (x− a) + C for a ∈ R.

Proof. All these follow from the rules for derivatives.

• If DF (x) = f(x), DG(x) = g(x), then D(F (x) +G(x)) = f(x) + g(x).

• If DF (x) = f(x), then D(aF (x)) = af(x).

• If DF (x) = f(x), then with G(x) = F (x− a), D(G)(x) = D(F )(x− a) by the chain rule,
and hence D(G)(x) = f(x− a) by the chain rule.

With this, we can compute also definite integrals.

Lemma 158. Let f, g be integrable in [a, b]. Then

•
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx+

∫ b
a g(x).

•
∫ b
a cf(x)dx = c

∫ b
a f(x)dx for c ∈ R.

Proof. This follows immediately from Lemma 157.

•
∫ 1
0 (x− 1)2dx = [ (x−1)3

3 ]10 =
0
3 − (−1)3

3 = 1
3 .

•
∫ 2
−1 x

2(x− 2)dx =
∫ 2
−1 x

3 − 2x2dx = [x
4

4 − 2x3

3 ]2−1 = (4− 16
3 )− (14 − (−2

3)) = −9
4 .

•
∫ π
0 sin(x− π

3 )dx = [− cos(x− π
3 )]

π
0 = − cos 2π

3 − (− cos(−π
3 )) =

1
2 + 1

2 = 1.

•
∫ 2
1

2
x+1dx = 2[log(x+ 1)]21 = 2(log 3− log 2).

Theorem 159. Let f be a continuous function on I = [a, b]. Then there is c ∈ (a, b) such that∫ b
a f(x)dx = f(c)(b− a).

Proof. Note that F (x) =
∫ x
a f(t)dt is differentiable and F ′(x) = f(x). By Lagrange’s mean value

theorem, there is c ∈ (a, b) such that F ′(c) = F (b)−F (a)
b−a , that is, f(c)(b− a) =

∫ b
a f(x)dx.
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Some applications

Let us imagine a car travelling at the speed v(t) at time t. Then the distance travelled from time
a and b is

∫ b
a v(t)dt. Indeed, if x(t) is the place of the car at time t, then we have x′(t) = v(t) by

definition. By Theorem 154, we have x(b)− x(a) =
∫ b
a v(t)dt.

As another example from physics, consider the situation where someone is pushing up ver-
tically a mass m (kg) to a certain height h. The work done by this motion is, as far as the
gravitational force is constant, mgh, where g is the gravitational acceleration. mg is called the
weight, which is the downward force. If one is pushing a mass in a changing gravitational field
g(x) (like a rocket carrying a payload), the work done by this motion is

∫ h2

h1
mg(x)dx.

Nov. 29. Integral calculus.

Indefinfite integral of elementary functions

Note that, for x < 0, D(log |x|) = D(log(−x)) = − 1
−x = 1

x . Altogether,
f(x) f ′(x)

∫
f(x)dx

c (constant) 0 cx+ C

xα αxα−1 xα+1

α+1 + C for α ̸= 0,−1,x ̸= 0 for negative power
x−1 − 1

x2 log |x|+ C x ̸= 0
1

x2+1
− 2x

(x2+1)2
arctanx+ C

1√
1−x2

x

(1−x2)
3
2

arcsinx+ C −1 < x < 1

ex ex ex + C
log |x| 1

x x log |x| − x+ C see below, x ̸= 0
sinx cosx − cosx+ C
cosx − sinx sinx+ C
sinhx coshx sinhx+ C
coshx sinhx coshx+ C

Integration by parts

Recall that, if f, g are differentiable, then it holds that D(f(x)g(x)) = Df(x)g(x) + f(x)Dg(x).
By writing this as Df(x)g(x) = D(f(x)g(x))−f(x)Dg(x), we can find a primitive of Df(x)g(x)
if we know a primitive of f(x)Dg(x). Schematically,∫

f ′(x)g(x)dx = f(x)g(x)−
∫
f(x)g′(x)dx+ C.

This is called integration by parts.

Example 160. • Consider
∫
x cosxdx. With f(x) = sinx, g(x) = x, this is of the form

f ′(x)g(x), because f ′(x) = cosx. By integration by parts, with g′(x) = 1, we obtain∫
x cosxdx = x sinx−

∫
sinx · 1dx+ C = x sinx+ cosx+ C.

We can check this results by taking the derivative: D(x sinx + cosx) = sinx + x cosx −
sinx = x cosx.

• Consider
∫
log xdx. We can see this as 1 · log x, and 1 = D(x). Therfore, with f(x) =

x, g(x) = log x and g′(x) = 1
x , we have∫

log xdx = x log x−
∫
x · 1

x
dx+ C = x log x−

∫
1dx+ C = x log x− x+ C.
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• Consider
∫
x2 sinxdx. This cannot be integrated by one step, but by successive applications

of integration by parts. By noting that sinx = D(− cosx) and cosx = D(sinx),∫
x2 sinxdx = x2(− cosx)−

∫
2x(− cosx)dx+ C

= −x2 cosx+ 2x sinx−
∫

2 sinxdx+ C

= −x2 cosx+ 2x sinx+ 2 cosx+ C.

As for indefinite integral, we do not have to find the whole indefinite integral, but we can
give values to parts. Let us recall that f(b)− f(a) =

∫ b
a f

′(x)dx.

Lemma 161. If f, g are differentiable and f ′, g′ are continuous on and extends to [a, b], then∫ b

a
f ′(x)g(x)dx = [f(x)g(x)]ba −

∫ b

a
f(x)g′(x)dx.

Proof. (fg)′ = f ′g+ fg′, hence
∫
f ′(x)g(x)dx = f(x)g(x)−

∫
f(x)g′(x)dx (integration by parts)

and this follows from Theorem 154, that is, If H(x) is a primitive of h(x), then
∫ b
a h(x)dx =

H(b) − H(a). Note that with h(x) = f(x)g′(x), we have we can take H(x) =
∫ x
a h(x)dx and

H(b)−H(a) =
∫ b
a h(x)dx−

∫ a
a h(x)dx =

∫ b
a h(x)dx.

Example 162.
∫ 1
0 xe

2xdx = 1
2 [xe

2x]10−
∫ 1
0

1
2e

2xdx = 1
2(e

2−0)− 1
4 [e

2x]10 =
e2

2 − 1
4(e

2−1) = e2

4 + 1
4 .

Substitution

Next, let us consider the case where the integral is of the form
∫
φ′(x)f ′(φ(x))dx. We know that

D(f(φ(x))) = φ′(x)f ′(φ(x)) by the chain rule, hence in this case we have∫
φ′(x)f ′(φ(x))dx = f(φ(x)) + C.

This is called substitution.

Example 163. • Consider
∫
2x sin(x2)dx. Note that 2x = D(x2) and sin(y) = D(− cos y),

hence ∫
2x sin(x2)dx = − cos(x2) + C.

Indeed, by the chain rule, D(− cos(x2)) = −(2x(− sin(x2))) = 2x sin(x2).

• Consider
∫

x
x2+1

dx. Note that 2x = D(x2), and hence∫
x

x2 + 1
dx =

1

2

∫
2x

x2 + 1
dx =

1

2

∫
D(x2)

x2 + 1
dx =

1

2
log(x2 + 1).

• Consider
∫
tanxdx. Recall that tanx = sinx

cosx and note that D(cosx) = − sinx. Hence∫
tanxdx = −

∫
D(cosx) · 1

cosx
dx+ C = − log | cosx|+ C.

Lemma 164. If f, φ are differentiable and f ′, φ′ is continuous on {φ(x) : x ∈ [a, b]} and [a, b]
respectively, then∫ b

a
φ′(x)f ′(φ(x))dx = [f(φ(x))]ba = [f(y)]

φ(b)
φ(a) = f(φ(b))− f(φ(a)).
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Proof. This follows immediately because f(φ(x)) is a primitive of φ′(x)f ′(φ(x)).

Example 165. ∫ π

0
sin3 xdx = −

∫ π

0
(cos2 x− 1) sinxdx

=

∫ π

0
((cosx)2 − 1)D(cosx)dx =

[
cos3 x

3
− cosx

]π
0

=

(
(−1)3

3
− (−1)− (

13

3
− 1)

)
=

4

3
.

Nov. 30. Integral calculus.

Rational functions

We know that

•
∫

1
(x−a)dx = log |x− a|.

• for n ∈ N, n ≥ 2,
∫

1
(x−a)ndx = −1

(n−1)(x−a)n−1 .

•
∫

1
x2+1

dx = arctanx,
∫

1
x2+a2

dx = 1
a arctan(

x
a ).

•
∫

1
(x−b)2+a2

dx = 1
a arctan(

(x−b)
a ).

We also have∫
1

(x2 + 1)2
dx =

∫
1 + x2 − x2

(x2 + 1)2
dx =

∫
1

(x2 + 1)
+

∫
−2x · x

2(x2 + 1)2
dx

= arctanx+
x

2(x2 + 1)
−
∫

1

2(x2 + 1)
= arctanx+

x

2(x2 + 1)
− 1

2
arctanx

=
1

2
arctanx+

x

2(x2 + 1)
.

Indeed, by taking the derivative,(
1

2
arctanx+

x

2(x2 + 1)

)′
=

1

2(x2 + 1)
+

(x2 + 1)− 2x2

2(x2 + 1)2
=

1

x2 + 1
.

In general, the derivative of the primitive F of f must be the original function f . We can
check that the primitive in this way. This is often useful because the calculus of primitive is
often complicated, while derivative is mechanical.

Example 166. •
∫

x3−1
4x3−x

dx =
∫ 1

4
(4x3−x)+x

4
−1

4x3−x
dx. Note that x−4

4x3−x
= x−4

x(2x−1)(2x+1) = 4
x +

− 7
2

2x−1 +
− 9

2
2x+1 (see below) and hence

∫
x3 − 1

4x3 − x
dx =

x

4
+

1

4

∫ (
4

x
+

−7
2

2x− 1
+

−9
2

2x+ 1

)
dx

=
x

4
+ log |x| − 7

16
log |2x− 1| − 9

16
log |2x+ 1|.
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• Using 1
(x−1)2(x2+1)

= Ax+B
(x−1)2

+ Cx+D
x2+1

=
−x

2
+1

(x−1)2
+

x
2

x2+1
we get∫

1

(x− 1)2(x2 + 1)
dx =

∫ −x
2 + 1

(x− 1)2
dx+

∫ x
2

x2 + 1
dx

=

∫ − (x−1)
2 + 1

2

(x− 1)2
dx+

∫ x
2

x2 + 1
dx

= −1

2
log |x− 1| − 1

2(x− 1)
+

1

4
log(x2 + 1).

In general, if P (x) and Q(x) are polynomials, P (x)
Q(x) can be written as a sum of P1(x)

(x−a)n or
P2(x)

((x−b)2+a2)n
(with different polynomials P1, P2), and for each of them one can find a primitive.

Example 167. • 1
(x−1)(x+1) . We put 1

(x−1)(x+1) =
A

x−1 + B
x+1 . Then

1

(x− 1)(x+ 1)
=
A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

and 1 = (A + B)x + (A − B). This means that A + B = 0 and 1 = A − B, therfore,
A = 1

2 , B = −1
2 .

• 1
(x+1)(x2+1)2

. We put 1
(x+1)(x2+1)2

= A
x+1 + Bx3+Cx2+Dx+E

(x2+1)2
.

Then
1

(x+ 1)(x2 + 1)2
=
A(x2 + 1)2 + (Bx3 + Cx2 +Dx+ E)(x+ 1)

(x+ 1)(x2 + 1)2

hence 1 = A(x4 + 2x2 + 1) + (Bx4 + (B + C)x3 + (C +D)x2 + (D + E)x + E), and this
means A + B = 0, B + C = 0, 2A + C + D = 0, D + E = 0, A + E = 1. To solve this,
we observe A = −B, C = −B,D = −E and hence −3B − E = 0,−B + E = 1, hence
B = −1

4 , E = 3
4 , A = 1

4 , C = 1
4 , D = −3

4 . Altogether,

1

(x+ 1)(x2 + 1)2
=

1
4

x+ 1
+

−1
4x

3 + 1
4x

2 − 3
4x+ 3

4

(x2 + 1)2
=

1
4

x+ 1
+

−x
4 + 1

4

x2 + 1
+

−1
2x+ 1

2

(x2 + 1)2

Change of variables

Let F (x) be a primitive of f(x), that is
∫
f(x)dx = F (x). If it is difficult to find F directly, one

may consider a change of variables x = φ(t). By the chain rule, d
dtF (φ(t)) = f(φ(t))φ′(t). If

G(t) is a primitive of f(φ(t))φ′(t), then F (x) = G(φ−1(t)).
In order to recall the rule, it is useful to write∫

f(x)dx =

∫
f(φ(t))

dx

dt
dt,

even if this is only formal.

Example 168. • f(x) = 1
ex+1 . With t = ex + 1, x = φ(t) = log(t− 1), φ′(t) = 1

t−1 ,∫
1

ex + 1
dx =

∫
1

t(t− 1)
dt =

∫ (
1

t− 1
− 1

t

)
dt = log

∣∣∣∣ t− 1

t

∣∣∣∣
and with t = ex + 1,

∫
1

ex+1dx = log ex

ex+1 .
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• f(x) = x2
√
1−x2

. With x = φ(t) = sin t, φ′(t) = cos t, t = arcsinx, if t ∈ (−π
2 ,

π
2 ),∫

x2√
1− x2

dx =

∫
sin2 t

cos t
cos tdt =

∫
sin2 tdt =

∫
1− cos 2t

2
dt =

t

2
− sin 2t

4

and with t = arcsinx, sin 2t = 2 sin t cos t = 2x
√
1− x2, we obtain

∫
x2

√
1−x2

dx = 1
2 arcsinx−

1
2x

√
1− x2.

Dec. 04. Integral calculus, Taylor’s formula with remainder, log
derivative, improper integral

When the function contains sinx and cosx, it is often useful to do the change of variable x =

φ(t) = 2 arctan t, or t = tan x
2 . Indeed, we have φ′(t) = 2

1+t2
, while 1

cos2 x
2
=

cos2 x
2
+sin2 x

2
cos2 x

2
= 1+ t2

and sinx = sin(2 · x
2 ) = 2 sin x

2 cos
x
2 = 2t

1+t2
and cosx = cos2 x

2 − sin2 x
2 = 1−t2

1+t2
.

For example,∫
1

sinx
dx =

∫
t2 + 1

2t
· 2

1 + t2
dt = log |t|+ C = log

∣∣∣tan x
2

∣∣∣+ C.

Definite integral by change of variables

Corollary 169. Let f be contiunous on [a, b], φ differentiable and φ′ continuous on [α, β], and
φ([α, β]) ⊂ [a, b], φ(α) = a, φ(β) = b. Then∫ b

a
f(x)dx =

∫ β

α
f(φ(t)) · φ′(t)dt

Proof. Let F (x) =
∫ x
a f(s)ds. Since d

dt(F (φ(t))) = f(φ(t)) · φ′(t),∫ β

α
f(φ(t)) · φ′(t)dt = [F (φ(t))]βα = [F (x)]ba =

∫ b

a
f(x)dx.

Example 170. • Note that
√
1− sin2 t = | cos t| and this is equal to cos t if |t| < π

2 , hence
with x = sin t, ∫ 1

0

√
1− x2dx =

∫ π
2

0

√
1− sin2 t cos t dt =

∫ π
2

0
cos2 t dt

=

∫ π
2

0

cos(2t) + 1

2
dt =

[
sin(2t)

4
+
t

2

]π
2

0

=
π

4
.

Some remarks

• If f(x) = f(−x), then by the change of variables x = −t,
∫ 0
−a f(x)dx =

∫ 0
a f(−t)(−t)

′dt =∫ a
0 f(t)dt, hence

∫ a
−a f(x)dx = 2

∫ a
0 f(x)dx.

For example,
∫ 1
−1

√
1− x2dx = 2

∫ 1
0

√
1− x2dx = π

2 .

• If f(x) = −f(−x), then by the change of variables x = −t,
∫ 0
−a f(x)dx =

∫ 0
a f(−t)(−t)

′dt =

−
∫ a
0 f(t)dt, hence

∫ a
−a f(x)dx = 0.

For example,
∫ 1
−1 e

x2
sinxdx = 0.

94



Figure 71: Integral of symmetric and antisymmetric functions.

• Logarithmic differentiation: If f(x) is difficult to differentiate but log f(x) is easy, then we
have D(log f(x)) = f ′(x)

f(x) , hence we have f ′(x) = f(x)D(log f(x)).

For example, f(x) = xx (for x > 0) is not a simple product or a composition. But
log f(x) = x log x, hence D(log f(x)) = log x+ 1, hence f ′(x) = xx(log x+ 1).

Taylor’s formula with remainder

Proposition 171. If f is differentiable n+ 1 times in an neighbourhood of x0 with continuous
derivative, then for x in that neighbourhood,

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +Rn(x, x0),

where Rn(x, x0) =
1
n!

∫ x
x0
f (n+1)(y)(x− y)ndy.

Proof. This is true for n = 0, because

f(x0) +

∫ x

x0

f ′(y)dy = f(x0) + [f(y)]xx0
= f(x).

To prove the formula by induction, assume the claim for n and let f be n+2 times differentiable,
then f(x) =

∑n
k=0

f (k)(x0)
k! (x− x0)

k +Rn(x, x0) and

Rn(x, x0) =
1

n!

∫ x

x0

f (n+1)(y)(x− y)ndy

= − 1

(n+ 1)!

[
f (n+1)(y)(x− y)n+1

]x
x0

+
1

(n+ 1)!

∫ x

x0

f (n+2)(y)(x− y)n+1dy

=
1

(n+ 1)!
f (n+1)(x0)(x− x0)

n+1 +
1

(n+ 1)!

∫ x

x0

f (n+2)(y)(x− y)n+1dy

This is interesting, because for some functions, we can prove that the Taylor series converges
to the original function. Let us take x0 = 0 and consider the interval (−R,R).

• ex =
∑n

k=0
xn

n! +
1

(n+1)!

∫ x
0 e

y(y− x)ndy. As |x| < R, we have ey < eR and |(y− x)n| < Rn.
Altogether, the remainder term is

1

(n+ 1)!

∣∣∣∣∫ x

0
ey(y − x)ndy

∣∣∣∣ ≤ 1

(n+ 1)!

∣∣∣∣∫ x

0
eRRndy

∣∣∣∣ ≤ eRRn+1

(n+ 1)!
.
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Note that for any R, Rn+1

(n+1)! → 0 because for sufficiently large n we have n > 2R, hence from

that point the sequence decreases more than by 1
2 . This means that ex −

∑n
k=0

xk

k! → 0,
that is, the Taylor series converges to ex for x ∈ (−R,R), and this is denoted by

ex =
∞∑
n=0

xn

n!
.

Furthermore, R was arbitrary, hence this holds for any x.

• The same argument holds for sinx, cosx, because |Dn(sinx)| ≤ 1, |Dn(cosx)| ≤ 1. That
is,

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
,

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
,

in the sense that for each x the series converges to the original function.

More properties of Taylor series will be studied in Mathematical Analysis II.

The value of Napier’s number

We can also find the approximate value of e = e1 using the Taylor formula with remainder. We
know that e < (1 + 1

n)
n+1 for any n. In particular, e < 4. Therefore, by

e1 =
13∑
k=0

1k

k!
+

1

13!

∫ 1

0
ey(1− y)13dy

and the error term satisfies 0 < 1
13!

∫ 1
0 e

y(1 − y)13dy < 4
13! < 0.0000000007. Therefore, the

approximation of e,
13∑
k=0

1k

k!
∼= 2.718281828...,

is correct up to the 9-th digit.

Improper integral

We can define integral for (some) funtions that are not bounded and on an interval not bounded.

Definition 172. Let (a, b) be an interval, a ∈ R or a = −∞ and b ∈ R or b = +∞. Let f
be a function integrable on all [α, β], where a < α < β < b, α, β ∈ R. If there exists the limit
limα→a

∫ β
α f(x)dx, then we denote it by∫ β

a
f(x)dx = lim

α→a

∫ β

α
f(x)dx.

It also holds that
∫ γ
a f(x)dx =

∫ β
a f(x)dx+

∫ γ
β f(x)dx for γ ∈ (a, b). Analogously if there exists

the limit limβ→b

∫ β
α f(x)dx, then we write

∫ b
α f(x)dx = limβ→b

∫ β
α f(x)dx. If both limits exist,

then we denote
∫ b
a f(x)dx =

∫ x0

a f(x)dx+
∫ b
x0
f(x)dx for some x0 ∈ (a, b).
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This definition does not depend on x0 ∈ (a, b). Indeed,∫ x0

a
f(x)dx+

∫ b

x0

f(x)dx =

∫ x0

a
f(x)dx+

∫ x1

x0

f(x)dx+

∫ x0

x1

f(x)dx+

∫ b

x0

f(x)dx

=

∫ x1

a
f(x)dx+

∫ b

x1

f(x)dx

Example 173. • Consider (0, 1) and the function f(x) = xα, α ∈ R. For ε > 0, if α ̸= −1,∫ 1

ε
xαdx =

1

α+ 1
[xα+1]1ε =

1

α+ 1
(1− εα+1),

and as ε→ +0, this tends to 1
α+1 if α > −1, and diverges if α < −1. If α = −1,∫ 1

ε
x−1dx = [log x]1ε = − log ε,

and this tends to ∞ as ε→ 0+. Therefore, for α > −1,
∫ 1
0 x

αdx = 1
α+1 .

• Consider (1,∞) and the function f(x) = xα, α ∈ R. For β > 1, if α ̸= −1,∫ β

1
xαdx =

1

α+ 1
[xα+1]β1 =

1

α+ 1
(βα+1 − 1),

and as β → +∞, this tends to − 1
α+1 = 1

|α+1| if α < −1, and diverges if α > −1. For
α = −1, ∫ β

1
x−1dx = [log x]β1 = log β,

and this tends to ∞ as β → +∞. Therefore,
∫∞
1 f(x)dx = 1

|α+1| for α < −1.

• Consider (−∞,∞). ∫ β

α
xe−x2

dx =
1

2
[e−x2

]βα =
1

2
(e−β2 − e−α2

).

Then both limits limα→−∞, limβ→∞ exist. Furthermore,
∫∞
−∞ xe−x2

dx = 1
2([e

−x2
]0−∞ +

[e−x2
]∞0 ) = 0.

Dec. 06. Some properties of improper integral

Let us recall that we introduced a proper integral for an unbounded function or on an unbounded
interval by ∫ β

a
f(x)dx = lim

α→a

∫ β

α
f(x)dx,

where a < α, and the function is bounded and integrable on all bounded intervals [α, β]. Similarly,∫ b
α f(x)dx = limβ→b

∫ β
α f(x)dx and

∫ b
a f(x)dx =

∫ x0

a f(x)dx +
∫ b
x0
f(x)dx, where x0 ∈ (a, b).

When these limits exist, we say that the improper integral converges, and otherwise does not
converge, or diverges if the limit tends to ∞ or −∞.

Example 174. • The improper integral
∫∞
0 sinxdx does not converge. Indeed, it holds that∫ β

0 sinxdx = [− cosx]β0 = − cosβ + 1, and as β → ∞, − cosβ oscillates and does not
converge to any value.
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• Consider
∫∞
0 e−xdx. For β > 0, we have

∫ β
0 e

−xdx = [−e−x]β0 = −e−β − (−1) = 1 − e−β ,
hence as β → ∞, this tends to 1. That is,

∫∞
0 e−xdx = 1.

• Consider (−∞,∞). ∫ β

α
xe−x2

dx = −1

2
[e−x2

]βα = −1

2
(e−β2 − e−α2

).

and both limits limα→−∞, limβ→∞ exist. Furthermore,
∫∞
−∞ xe−x2

dx = −1
2([e

−x2
]0−∞ +

[e−x2
]∞0 ) = 0.

Proposition 175. Let f, g be integrable on all [α, β] ⊂ (a, b) (a is possibly −∞, b is possibly
∞).

(i) If f ≥ 0 and there is M > 0 such that
∫ β
α f(x)dx < M for all a < α < β < b, then∫ b

a f(x)dx converges.

(ii) Let 0 ≤ f ≤ g. If
∫ b
a g(x)dx converges, then so does

∫ b
a f(x)dx. If

∫ b
a f(x)dx diverges, then

so does
∫ b
a g(x)dx.

(iii) Let 0 < g, and limx→b−
f(x)
g(x) = c ̸= 0. Then

∫ b
α f(x)dx exists if and only if

∫ b
α g(x)dx exists.

(iv) Let f > 0 be decreasing on [α,∞).
∫∞
α f(x)dx converges if and only if

∑∞
n=N f(n) converges

for some N .

(v)
∣∣∣∫ b

a f(x)dx
∣∣∣ ≤ ∫ b

a |f(x)|dx. In particular, if
∫ b
a |f(x)|dx converges, so does

∫ b
a f(x)dx.

Proof. (i) As f(x) ≥ 0, when α → a (and β → b), the integral
∫ β
α f(x)dx increases. But as it

is bounded by M , it must converge to a certain number

(ii) On any interval [α, β] it holds that
∫ β
α f(x)dx ≤

∫ β
α g(x)dx, hence

∫ β
α f(x)dx is bounded

and increases as α, β tend to a, b.
∫ b
a f(x)dx ≤M .

(iii) Let c > 0 (the other case is analogous). There is x0 such that for x > x0 it holds that
c
2g(x) ≤ f ≤ 2cg(x). Hence the claim follows from (ii).

(iv) We have f(n + 1) ≤
∫ n+1
n f(x)dx ≤ f(n), therefore,

∑M
n=N f(n) ≤

∫M+1
N f(x)dx ≤∑M+1

n=N f(n).

(v) This follows from −|f | ≤ f ≤ |f | and (i) for an interval [α, β]. As for convergence, consider
β1, β2 ∈ (a, b). We have∣∣∣∣∫ β2

α
f(x)dx−

∫ β1

α
f(x)dx

∣∣∣∣
≤
∣∣∣∣∫ β2

β1

f(x)dx

∣∣∣∣ ≤
∫ β2

β1

|f(x)|dx

and the latter converges to 0 as β1, β2 → b.

Now we can show that
∑∞

n=1
1
n is divergent using integral. Indeed,

∫ N
1

1
xdx ≤

∑N−1
n=1

1
n , but∫ N

1
1
xdx = [log x]N1 = logN − 0 → ∞, therefore, also

∑N−1
n=1

1
n → ∞ as N → ∞.

When the improper integral
∫ b
a |f(x)|dx, then we say that the improper integral

∫ b
a f(x)dx

converges absolutely.
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f(x) = 1
x

f(x) = 1
x2

f(x) = 1
x

f(x) = 1

x
1
2

f(x) = sinx

f(x) = e−x

Figure 72: Convergent and non convergent improper integrals.

f(x) = 1
x

Figure 73: A graphical proof that
∑N

n=1
1
n diverges as N → ∞.
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f(x) = sinx
x

f(x) =
∣∣ sinx

x

∣∣

Figure 74: f(x) = sinx
x and f(x) =

∣∣ sinx
x

∣∣. The improper integral of the former in [1,∞) is
convergent, while the latter is not.

Example 176. •
∫∞
1

cosx
x2 dx converges. Indeed, | cosx

x2 | ≤ 1
x2 and

∫ α
1

1
x2dx = [− 1

x ]
α
1 = 1 − 1

α
which tends to 1 as α→ ∞.

•
∫∞
1

sinx
x dx converges. Indeed, by integration by parts,∫ α

1

sinx

x
dx =

[
− cosx

x

]α
1

+

∫ α

1

cosx

x2
dx = cos 1− cosα

α
+

∫ α

1

cos

x2
dx

The first two terms tend to cos 1 while the last one is convergent.

•
∫∞
1 | sinx

x |dx diverges. Indeed,
∫ (n+1)π
nπ | sinx

x | ≥ 1
(n+1)π

∫ π
0 sinxdx = 2

(n+1)π and hence we

have
∫ α
1 | sinx

x |dx ≥
∑[α]

n=2
2

π(n+1) → ∞.

•
∫∞
0

1√
x3+1

dx is convergent. Indeed, it is enough to consider
∫∞
1

1√
x3+1

dx, and since 1√
x3+1

≤
1√
x3

= 1

x
3
2
, we have

∫ β
1

1√
x3+1

dx ≤
∫ β
1 x

− 3
2dx, where the right-hand side is convergent.

•
∫∞
−∞

1√
x4+1

dx is convergent. Indeed, 1√
x4+1

≤ 1√
x4

= 1
x2 and

∫ β
1

1
x2dx =

∫ −1
−β

1
x2dx =

[−x−1]β1 = 1− 1
β → 1 as β → ∞.

Dec. 07. Area and length

Area

We know the area of rectangles, triangles and disks. Let us define the area of a more general
region.

Definition 177. • Let f ≥ g be two integrable functions on an interval I. The area of the
region between g, f is defined by the following:

Dg,f := {(x, y) ∈ R2 : x ∈ I, g(x) ≤ y ≤ f(x)}

area(Dg,f ) :=

∫
I
(f(x)− g(x))dx.

• Even if I is not bounded, if the improper integral
∫
I(f(x)− g(x))dx exists, then we define

the area of the region Dg,f = {(x, y) ∈ R2 : x ∈ I, g(x) ≤ y ≤ f(x)} by the same formula.

• If D is the disjoint union of such regions, then area(D) is the sum of the areas of such
regions.
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Figure 75: The area of the region between two functions.

f(x) =
√
a2 − x2

f(x) = −
√
a2 − x2

Figure 76: The area of a disk.

Example 178. • Rectangles. D = {(x, y) ∈ R2 : x ∈ I, a ≤ y ≤ b}, with the length |I| and
width b− a, then area(D) =

∫
I(b− a)dx = (b− a)|I|.

• Triangles. D = {(x, y) ∈ R2 : x ∈ [0, a], 0 ≤ y ≤ b
ax}, with length a and width b, then

area(D) =
∫ a
0

b
axdx = [ b

2ax
2]a0 = ab

2 .

• Disks. D = {(x, y) ∈ R2 :
√
x2 + y2 ≤ a}, with radius a, then D can be also written as

y2 ≤ a2 − x2 ⇐⇒ −
√
a2 − x2 ≤ y ≤

√
a2 − x2.

Furthermore, −a ≤ x ≤ a because, if x > a then there is no y such that x2 + y2 ≤ a2.
Therefore,

D = {(x, y) ∈ R2 : −a ≤ x ≤ a,−
√
a2 − x2 ≤ y ≤

√
a2 − x2}

for which we can compute the area.

By our definition,

area(D) =

∫ a

−a
(
√
a2 − x2 − (−

√
a2 − x2))dx

= 2

∫ a

−a

√
a2 − x2dx.

By change of variables x = a sin θ with dx
dθ = a cos θ, this integral corresponds to that on

the interval [−π
2 ,

π
2 ] because a sin π

2 = a, a sin(−π
2 ) = −a,∫ a

−a

√
a2 − x2dx =

∫ π
2

−π
2

√
a2 − a2 sin2 θa cos θdθ.
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Using cos2 θ = cos 2θ+1
2 ,

area(D) = 2

∫ π
2

−π
2

√
a2 − a2 sin2 θa cos θdθ

= 2

∫ π
2

−π
2

a2 cos2 θdθ

= a2
∫ π

2

−π
2

(cos 2θ + 1)dθ

= a2
[
sin 2θ

2
+ θ

]π
2

−π
2

= a2π.

Length

A curve can be, at least partially, described using a function.

• segment. {(x, y) : x ∈ I, y = ax+ b}.

• semicircle. {(x, y) : x ∈ (−a, a), y =
√
a2 − x2}.

• parabola. {(x, y) : x ∈ R, y = x2}.

• hyperbola. {(x, y) : x ∈ R, y =
√
x2 + 1}.

As we defined the area of a general region using integral, we can define the length of a curve
with integral.

Definition 179. For a curve represented by Gf := {(x, y) : x ∈ [a, b], y = f(x)}, where f is
differentiable and f ′ is continuous, we define the length by

ℓ(Gf ) :=

∫ b

a

√
1 + f ′(x)2dx.

If G is a union of such graphs, then ℓ(G) is defined to be the sum of the lengths of the partial
graphs.

Let us see that this coincides with the usual length in the case of segment: a segment that
goes by a horizontally and b vertically is represented by {(x, y) : x ∈ [0, a], y = b

ax}. Hence

f(x) = b
ax, f

′(x) = b
a . By definition, ℓ(Gf ) =

∫ a
0

√
1 + ( ba)

2dx = a
√
1 + ( ba)

2 =
√
a2 + b2, which

coincides with the length of the segment by the theorem of Pytagoras.
Another possibile definition is to approximate a curve by segments: let f(x) be a function

on I = [a, b] and take a parition P by a = x0 < x1 < · · · < xn = b. Correspondingly, we
consider the attached segments Pf ({xk}): (x0, f(x0)), (x1, f(x1)), · · · , (xn, f(xn)). Let us recall
|P | = max1≤k≤n−1{xk+1 − xk}.

Proposition 180. Let f be differentiable and f ′ be continuous. Then for any ϵ there is δ such
that if a = x0 < x1 < · · · < xn = b is a partition P with |P | < δ, then |ℓ(Gf )− ℓ(Pf ({xk}))| < ϵ.

Proof. By the mean value theorem, there are xk ≤ ξk ≤ xk+1 such that f(xk) − f(xk+1) =
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Figure 77: The length and segments.

f ′(ξk)(xk − xk+1). Since Pf ({xk}) is the union of segments,

ℓ(Pf ({xk}) =
n−1∑
k=0

√
(xk+1 − xk)2 + (f(xk+1)− f(xk))2

=

n−1∑
k=0

√
(xk+1 − xk)2 + f ′(ξk)2(xk+1 − xk)2

=
n−1∑
k=0

√
1 + f ′(ξk)2(xk+1 − xk).

On the other hand,
√
1 + f ′(x)2 is continous and hence integrable. By uniform continuity, there

is δ such that |
√
1 + f ′(x)2 −

√
1 + f ′(y)2| < ϵ

b−a if |x− y| < δ. With such a parition, we have
SI(
√

1 + f ′(x)2, P ) ≤ ℓ(Pf ({xk}) ≤ SI(
√
1 + f ′(x)2, P ).

If |P | is small, the difference between these sides are smaller than ϵ, and SI(
√

1 + f ′(x)2, P ) ≤
ℓ(Gf ) ≤ SI(

√
1 + f ′(x)2, P ). Therefore, |ℓ(Gf )− ℓ(Pf ({xk}))| < ϵ.

Example 181. Semicircle. I = [−1, 1], f(x) =
√
1− x2, f ′(x) = x√

1−x2
.

ℓ(Gf ) =

∫ 1

−1

√
1 + f ′(x)2dx

=

∫ 1

−1

1√
1− x2

dx = [arcsinx]1−1 = π

(note that this is an improper integral). That is, the length of the circle is 2π.

Dec. 11. Series

Zeno’s paradox

The Achilles and Tortoise paradox goes as follows: Achilles (ancient Greek hero, runs very fast)
running behind a tortoise (walks very slowly). At the beginning, Achilles is 10 meter behind the
tortoise. In the next moment, Achilles arrives at the position where the tortouse was there, but
in the meantime it moves by 1 meter. Then Achilles arrives at the position where the tortoise
was there in the previous moment, but in the meantime it moves by 0.1 meter. Then Achilles
arrives...

So how can we be sure that Achilles catches up with the tortoise?
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Series and convergence

Let us recall that we have considered sequences of numbers a1, a2, · · · , an, · · · , and the series∑n
k=1 ak, that is a new sequence

a1, a1 + a2, a1 + a2 + a3, · · · ,
n∑

k=1

ak, · · ·

As this is a new sequence, we can consider its convergence or divergence.
That is, we say that a series

∑n
k=1 ak converges to S ∈ R if for each ϵ > 0 there is N ∈ N

such that for n > N it holds that |S −
∑n

k=1 ak| < ϵ. We say that the series diverges if for any
R > 0 there is N ∈ N such that for n > N it holds that |

∑n
k=1 ak| > R. In other cases we just

say that the series does not converge.
If a series converges, we denote the limit by

∑∞
k=1 ak. Sometimes we just write

∑
n an a

general term in a series.

Example 182. •
∑n

k=1 k = n(n+1)
2 . This diverges.

•
∑n

k=1 k
2 = n(n+1)(2n+1)

6 . This diverges.

•
∑n

k=0 a
k = 1−an+1

1−a (if a ̸= 1) This converges if and only if |a| < 1.

For these examples, we know the exact form of the n-th sum. For other series, it is difficult
to compute such general term, but still we may be able to say whether the series converges or
not.

For example, let us take an = 1
n and consider

∑n
k=1

1
k . This is called the harmonic series.

As we have seen, this sum is larger than the integral of 1
x on [1, n+ 1]:∫ n+1

1

1

x
dx ≤

n∑
k=1

1

k
.

On the other hand, we can calculate the left-hand side and we obtain
∫ n+1
1

1
xdx = [log x]n+1

1 =
log(n+ 1), and this diverges as n→ ∞. Therefore,

∑n
k=1

1
k diverges as well.

Lemma 183. If
∑∞

k=1 ak converges, then ak → 0 as k → ∞.

Proof. As
∑∞

k=1 ak is convergent to S, for any ϵ > 0 there is N such that if n > N then
|
∑n

k=1 ak−S| <
ϵ
2 . In particular, we have S− ϵ

2 <
∑n

k=1 ak < S+ ϵ
2 and S− ϵ

2 <
∑n+1

k=1 ak < S+ ϵ
2 .

From this it follows that −ϵ <
∑n+1

k=1 ak −
∑n

k=1 ak < ϵ, that is, |
∑n+1

k=1 ak −
∑n

k=1 ak| =
|an+1| < ϵ. This means that an → 0.

Example 184. •
∑n

k=1 k does not converge because ak = k diverges.

•
∑n

k=1(
1
2)

k converges to 1, and in this case indeed (12)
k converges to 0.

Although 1
k converges to 0, it does not mean that

∑n
k=1

1
k converges (and in this case we

know that it diverges by comparing with the integral
∫∞
1

1
xdx)

Theorem 185. (i) Let
∑∞

k=1 ak be convergent. Then for any c ∈ R,
∑∞

k=1 cak is also conver-
gent and

∑∞
k=1 cak = c

∑∞
k=1 ak.

(ii) Let
∑∞

k=1 ak and
∑∞

k=1 bk be convergent. Then
∑∞

k=1(ak + bk) is also convergent and∑∞
k=1 ak +

∑∞
k=1 bk =

∑∞
k=1(ak + bk)

(iii) Let
∑∞

k=1 ak convergent and
∑∞

k=1 bk be non convergent. Then
∑∞

k=1(ak + bk) is non
convergent.
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Proof. (i)(ii) These follow from the properties of sequences.

(iii) Suppose the contrary that
∑∞

k=1(ak + bk) converges. Then by (ii)
∑∞

k=1 bk =
∑∞

k=1(ak +
bk) − ak would converge, which contradicts the assumption that

∑∞
k=1 ak + bk does not

converge.

Example 186. • The series
∑

n((−1)n+ 1
2n ) does not converge, because

∑
n(−1)n does not

converge while
∑

n
1
2n converges.

• The series
∑

n 1 and
∑

n−1 both diverge, but the sum
∑

n(1− 1) =
∑

n 0 converges to 0.

Let us consider some cases where the sum converges.

Example 187. • Telescopic series. Let bn a sequence and an = bn+1 − bn. We call such∑
n an a telescopic series. (Any series can be written in the form of telescopic series, but

we are interested in the case where bn is simpler than an)

Then we have
n∑

k=1

an = (b2 − b1) + (b3 − b2) + · · ·+ (bn+1 − bn) = bn+1 − b1.

From this we infer that
∑

n an is convergent if and only if bn is convergent.

For example, consider an = 1
n(n+1) . This can be written as

an =
1

n(n+ 1)
=

1

n
− 1

n+ 1
,

hence with bn = − 1
n , this is a telescopic series. By the argument above, we see that∑n

k=1
1

n(n+1) = bn+1 − b1 = 1− 1
n+1 , and

∑∞
k=1 an = 1.

Next let us take an = log(n/(n + 1)). Then it holds that an = log n − log(n + 1), hence
with bn = − log n this is a telescopic series. As bn → −∞, the series

∑
n an diverges.

• Geometric series. Let us take x ∈ R, x ̸= 1. We know that
∑n

k=0 a
k = 1−an+1

1−a . It is clear
that the series converges to 1

1−a if |a| < 1, and diverges if |a| > 1. If a = 1, then the series
is simply

∑n
k=1 1 = n+ 1 and diverges as well.

Geometric series can be seen as a function of x: For a given number x ∈ R, we consider a
sequence an(x) = xn and it holds for |x| < 1 that

∞∑
n=0

an(x) =
1

1− x
.

The right-hand side is again a function of x. In this sense, a convergent series which depends on
x defines a new function.

We have seen other examples of this type:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+

x5

120
· · ·

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
+ · · ·

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2
+
x4

24
+ · · ·
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In all these cases, for a fixed x ∈ R, we have seen that the right-hand converges by the Taylor
formula with remainder.

In a similar way, we can define many other useful functions by series.
As for the question of Achilles and tortoise, although one can observe infinitely many pro-

cesses, the time Achilles needs to catch up the tortoise is finite:
∑∞

k=0(
1
10)

k = 1
1− 1

10

= 10
9 .

Dec. 13. Convergence criteria for positive series

Let{an} ⊂ R be a sequence. We have considered a series
∑n

k=1 ak, which is a new sequence
and its convergence or divergence. Note that the convergence or divergence of the series is not
affected if we change finitely many elements of the sequence {an}.

When all the term are non-negative: an ≥ 0, there are some criteria that can be often used
to determine the convergence or divergence.

Theorem 188. We have the following.

• Let {an}, {bn} be two sequences, an ≥ 0, bn ≥ 0 such that there is c > 0 and an ≤ cbn for
n sufficiently large. In this case, if

∑
bn converges, then so does

∑
an. If

∑
an diverges,

so does
∑
bn.

• Let {an}, {bn} be two sequences, an ≥ 0, bn ≥ 0 such that an/bn → c, c ̸= 0,∞. Then
∑
an

converges if and only if
∑
bn converges.

Proof. • As an ≥ 0, bn ≥ 0, the series
∑

n an,
∑

n bn are increasing. If
∑

n bn is convergent
and an ≤ cbn, then

∑n
k=1 ak ≤

∑n
k=1 cbk ≤

∑∞
k=1 cbk, hence the former is bounded and

increasing, therefore, it must converge. The other case is analogous.

• If an/bn → c ̸= 0, then this implies that c
2bn ≤ an ≤ 2cbn for sufficiently large n, hence the

previous point applies.

We have seen that, for 0 < a < 1,
∑n

k=1 a
k converges (to a

1−a). We can use this fact to show
the convergence of some other series.

Theorem 189 (root test). Let an > 0 be a sequence.

(i) If a
1
n
n ≤ θ < 1 for n sufficiently large, then

∑
n an converges.

(ii) If a
1
n
n ≥ θ > 1 for n sufficiently large, then

∑
n an diverges.

(iii) Let a
1
n
n → a. If a < 1,

∑
n an converges. If a > 1,

∑
n an diverges.

Proof. The series
∑

n θ
n converges if θ < 1 (the geometric series) and diverges if θ > 1 (θn does

not tend to 0). By Theorem 188, and a
1
n
n < θ or a

1
n
n > θ, the first two claims follow.

If a
1
n
n → a < 1, then we can take θ such that a

1
n
n < θ < 1 for n sufficiently large. The case

a
1
n
n → a > 1 is analogous.

Example 190. •
∑

n
1

n3n is convergent.

•
∑

n
n2n

3n is convergent.

•
∑

n
n
2n is convergent.

When limn a
1
n
n = 1, this criterion does not give information. Indeed,

∑
n

1
n is divergent, but∑

n
1
n2 is convergent (compare it with

∑ 1
n(n−1)), while in both cases lim( 1n)

1
n = lim( 1

n2 )
1
n = 1.
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Proposition 191 (ratio test). Let an > 0 be a sequence.

(i) If an+1

an
≤ θ < 1 for n sufficiently large, then

∑
n an converges.

(ii) If an+1

an
≥ θ > 1 for n sufficiently large, then

∑
n an diverges.

(iii) Let an+1

an
→ a. If a < 1,

∑
n an converges. If θ > 1,

∑
n an diverges.

Proof. Let an+1

an
≤ θ < 1 for n ≥ N . Then,

aN+m ≤ aN+m−1θ ≤ aN+m−2θ
2 ≤ · · · ≤ aNθ

m.

Now
∑

n aNθ
m is convergent, hence by Theorem 188,

∑
n an is convergent. If an+1

an
≥ θ > 1, then

an is increasing and does not convergent to 0.
If an+1

an
→ a < 1 or > 1, then an+1

an
≤ θ < 1 or > 1 for n sufficiently large, hence the claim

follow from (i), (ii).

Example 192. •
∑ n

2n is convergent.

•
∑ n2

n! is convergent.

•
∑ (n!)2

2n2 is convergent.

When an+1/an → 1 or a
1
n
n → 1, we need to study the series better.

Lemma 193 (integral test). Let {an} be a decreasing sequence of positive numbers and assume
that there is a positive decreasing function f(x) defined on [1,∞). If an ≤ f(n) and

∫∞
1 f(x)dx

converges, then
∑

n an converges. If an ≥ f(n) and
∫∞
1 f(x)dx diverges, then

∑
n an diverges.

Proof. For the first case, we have
∑n

k=2 ak ≤
∫ n
1 f(x)dx, and the later converges, hence so does

the former.
For the first case, we have

∑n
k=1 an ≥

∫ n+1
1 f(x)dx, and the later diverges, hence so does the

former.

Example 194. Let us fix s ∈ R and consider
∑∞

n=1
1
ns . We can compare this with fs(x) = 1

ns .
We know that

∫∞
1 fs(x)dx converges if and only if s > 1.

ζ(s) is called the Riemann zeta function.

Lemma 195 (condensation principle). Let {an} be a decreasing sequence of positive numbers.
Then

∑
an converges if and only if so does

∑
2na2n.

Proof. Since an is decreasing and positive, a2n ≥ a2n+1 ≥ · · · ≥ a2n+1 , hence

2na2n ≥
2n+1−1∑
k=2n

ak ≥ 2na2n+1 .

By summing this with respect to n,

N∑
n=1

2na2n ≥
N∑

n=1

2n+1−1∑
k=2n

ak =

2N+1−1∑
n=1

ak ≥
N∑

n=1

2na2n+1 =
1

2

N∑
n=1

2n+1a2n+1 =
1

2

(
N+1∑
n=1

2na2n − a1

)
.

Therefore,
∑

n an converges if and only if
∑

n 2
na2n converges by Theorem 188.

Example 196.
∑ 1

n(logn)α . By condensation principle, it is enough to study
∑

2n 1
2n(log 2n)α =∑ 1

(n log 2)α = 1
log 2α

∑ 1
nα . Hence this converges if and only if α > 1.
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Dec. 14. Convergence criteria for general series

Some convergence criteria

Let {an} be a sequence, not necessarily positive. We say that the series
∑

n an converges
absolutely if

∑
n |an| converges.

Lemma 197. If
∑

n |an| converges, then so does
∑

n an.

Proof. As
∑

n |an| converges, for ϵ > 0 there is N ∈ N such that for m > n > N it holds that∑m
k=n |an| < ϵ. Then it holds that |

∑m
k=n ak| < ϵ by the triangle inequality. This means that∑n

k=1 ak is a Cauchy sequence, hence it converges.

This Lemma, combined with the criteria for positive series, enables us to show convergence
of many series.

Example 198. •
∑∞

n=1
1

(−1)nns converges absolutely if s > 1. Indeed, with an = 1
(−1)nns ,

|an| = 1
ns , and we know that

∑∞
n=1

1
ns converges if and only if s > 1.

•
∑∞

n=1
n

(−1)n2n converges absolutely. Indeed, with an = n
(−1)n2n , |an| = n

2n and by root test,

( n
2n

) 1
n
=
n

1
n

2
→ 1

2
< 1.

Therefore,
∑

n |an| converges.

If a series
∑

n an converges absolutely, its limit does not depend on the order: indeed, as

it is absolutely convergent, then its positive elements bn =

{
an if an > 0

0 if an ≤ 0
and the negative

elements cn = an − bn are both convergent. Therefore, even if we sum first the positive elements∑
n bn and then the negative elements

∑
n cn, the result is the same:

∑
n bn +

∑
n cn =

∑
n an.

On the other hand, if a series
∑

n an converges but not absolutely, their positive and negative
parts both diverges (because otherwise it would be absolute convergence). By rearranging the
sum, one can make it diverge to ∞ (by taking many elements of bn) or to −∞ (by taking many
elements of cn).

A series whose terms change sign at each step sis called an alternating series. That is, for
an > 0, it is given by

∞∑
n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · · ,

Lemma 199 (Leibniz criterion). Let {an} be a decreasing sequence with positive terms and
assume that an → 0. Then

∑
(−1)n−1an converges.

Proof. Let sn =
∑n

k=1(−1)kak. Then s2n =
∑n

k=1(−a2k−1 + a2k) is decreasing. Analogously
s2n+1 = −a1+

∑n
k=1(a2k−a2k+1) is increasing. In addition, s2n−s2n+1 = −(−a2n+1) = a2n+1 ≥

0. Hence s2n and s2n+1 converge to s and s, respectively, and s ≥ s. But s2n+1 ≤ s ≤ s ≤ s2n
and s2n − s2n+1 = a2n+1 → 0, hence s = s.

Example 200. •
∑

n(−1)n−1 1
n is convergent. Note that this series is not absolutely conver-

gent, indeed,
∑

n
1
n is divergent.

•
∑

n(−1)n−1 1
log(n+1) is convergent. Note that this series is not absolutely convergent, indeed,∑

n
1

log(n+1) is divergent.
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• The sequence
∑n

k=1
1
k − log n converges. Indeed, this can be seen as

1 +
1

2
+

1

3
· · ·+ 1

n
−
∫ 2

1

1

x
dx−

∫ 3

2

1

x
dx+ · · · −

∫ n

n−1

1

x
dx

=
1

1
−
∫ 2

1

1

x
dx+

1

2
−
∫ 3

2

1

x
dx+ · · · −

∫ n

n−1

1

x
dx+

1

n
,

and the last expression is an alternating series. Note that 1
k >

∫ k+1
k

1
xdx >

1
k+1 . Further-

more, 1
k → 0 as k → ∞. Therefore, the Leibniz criterion applies and the series converges

(to a number known as the Euler-Mascheroni constant).

Note that the asymptotic comparison (Theorem 188) does not hold for series an, bn that are
not necessarily positive. A counterexample is the following:

• an = (−1)n

n + 1
n logn

• bn = (−1)n

n .

Then,
∑

n bn is convergent by the Leibniz criterion, an
bn

= 1 + (−1)n

logn → 1 as n → ∞, but
∑

n an

is divergent because
∑

n
1

n logn is divergent, e. g. by the condensation principle: it is divergent
because

∑
n

2n

2n log 2n =
∑

n
1

n log 2 is divergent.

Sequences of functions

Instead of series of numbers, we can consider series of functions {fn(x)}. If this converges for
some x, then this defines a new function.

Example 201. We know that ex =
∑∞

k=0
xk

k! . The right-hand sinde can be seen as a series of
functions, fn(x) =

∑n
k=0

xk

k! .

We say that a sequence of functions {fn(x)} converges uniformly to another function f(x)
on an interval I if for any ϵ > 0 there is N , independent of x ∈ I, such that |fn(x) − f(x)| < ϵ
for n ≥ N .

Lemma 202. Let I = (a, b) and assume that {Fn(x)} are a sequence of continuous func-
tions on I. If {Fn(x)} converge uniformly to F (x), then F (x) is continuous and in particular,
limx→x0 F (x) = F (x0) = limn→∞ Fn(x0).

Proof. Let ϵ > 0. There is N such that |Fn(x) − F (x)| < ϵ
3 if n > N for all x ∈ I. Let n > N

such natural number.
Take x0 ∈ I. As Fn is continuous at x0, there is δ > 0 such that |Fn(x) − Fn(x0)| < ϵ

3 if
|x− x0| < δ. Then, for such x,

|F (x)− F (x0)| ≤ |F (x)− Fn(x)|+ |Fn(x)− Fn(x0)|+ |Fn(x0)− F (x)| < ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

This shows the continuity of F at x0.

Theorem 203. Let I = (a, b), fn(x) be differentiable on I, f ′n(x) be continuous and assume that
f(x) = limn→∞ fn(x) and g(x) = limn→∞ f ′n(x) converge uniformly. Then f ′(x0) = g(x0) =
limn→∞ f ′n(x0) for any x0 ∈ I.

Proof. Let x0 ∈ I. Consider the function

Fn(x) =

{
fn(x)−fn(x0)

x−x0
if x ̸= x0

f ′n(x0) if x = x0
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By assumption, Fn(x) is continuous. Note that

F (x) = lim
n→∞

Fn(x) =

{
f(x)−f(x0)

x−x0
if x ̸= x0

f ′(x0) if x = x0

Let ϵ > 0. There is N such that, for all z ∈ I, |fm(z)− fn(z)| < ϵ, |f ′m(z)− f ′n(z)| < ϵ for
m,n ≥ N . Let us fix x ∈ I. For such m,n, by the mean value theorem applied to fm(x)−fn(x),
there is z ∈ (x, x0) or (x0, x) such that

Fm(x)− Fn(x) =
(fm(x)− fn(x))− (fm(x0)− fn(x0))

x− x0
= f ′n(z)− f ′m(z).

This shows that Fn(x) converges uniformly as n → ∞. By Lemma 202, F (x) = limn→∞ Fn(x)
is continuous and f ′(x0) = limx→x0 F (x) = limn→∞ Fn(x0) = limn→∞ f ′n(x).

Example 204. Let f(x) =
∑∞

k=0
xk

k! . Then fn(x) =
∑n

k=0
xk

k! , f
′
n(x) =

∑n
k=1

xk−1

(k−1)! =
∑n−1

k=0
xk

k! .
Therefore, we have f ′(x) = limn→∞ f ′n(x) = f(x). Actually, f(x) = ex.

If f(x) is a 2π-periodic function and if it’s higher derivatives are continuous, then one has

f(x) =

∞∑
n=0

an cos(nx) +

∞∑
n=1

bn sin(nx)

for some an, bn. This is called Fourier expansion.

Dec. 18. Ordinary differential equations

Many scientific questions are expressed in terms of differential equation (equation about functions
and their derivatives).

• The equation of motion in a gravitational field md2x
dt2

= −mMG
x2

• The heat equation ∂u
∂t = α∂u2

∂x2 (this is partial differential equation, because it contains
partial derivatives, studied in Mathematical Analysis II) .

• The SIR model in epidemiology dS
dt = −βS(t)I(t)

N , dIdt = βS(t)I(t)
N − γI(t), dRdt = γI(t)

This is because the rate of change (the derivative) is often determined by the current status (the
function). For example, in the equation of motion, the gravitational force −mMG

x2 depends on
the place of a particle x(t), while the force determines the the rate of change of the speed (the
acceleration), and the speed is x′(t), hence the second derivative appears on the left-hand side.

Once the scientific problem is written in the form of differential equation, it is a mathematical
problem to solve it, that is, to find functions that satisfies the given equation.

In the following, y(x) will be a function of x and the derivatives are denoted by y′(x), y′′(x)
and so on. Some more examples of differential equation are

• y′(x) = y(x)

• y′(x) = x3y(x) + sin(xy′′(x))

• Sometimes we just write this as y′ = x3y + sin(xy′′), keeping in mind that y is a function
of x.

In a differential equation, certain higher derivative of y may appear. The highest order of
the derivative of y is called the order of the differential equation. For example,
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• y′(x) = 2y(x) is a first-order differential equation.

• y′(x) = x3y(x) + sin(xy′′(x)) is a second-order differential equation.

We need to find functions y(x) that satisfy the given equation. This is why it is called a differential
equation. Compare it with an algebraic equation x2+3x−4 = 0, where we need to find numbers
that satisfy this equation.

Let us consider first-order differential equations. In an abstract form, we can write it as

y′ = f(x, y),

where f is explicitly written in examples, while y is the unknown functions which we need to
find. In the example y′(x) = 2y(x), we take f(x, y) = 2y. A solution of a differential equation
is a (differentiable) function that satisfies this equation. For example, by taking y(x) = Ce2x,
we can check that this is a solution:

y′(x) = 2Ce2x = 2y(x).

Some first-order differential equations

The simplest case is where f does not depend on y: that is,

y′(x) = f(x).

This means that f is the derivative of y, or y is a primitive of f . Therefore, y can be obtained by
integrating f : y(x) =

∫
f(x)dx + C. Indeed, this y satisfies the given equation for any C ∈ R,

and there is no other solution.

Example 205. When a ball falls freely without drag, the speed −gx is proportional to the time
x. As the speed is the derivative of the position y, we have the equation

y′(x) = −gx.

This can be solved by integration, that is y(x) =
∫
(−gx)dx = −gx2

2 + C. The constant C
depends on the position where the ball starts to fall.

As we see in this example, a differential equation may have many solutions. In practice, we
are interested in one of them which satisfies additional conditions, the initial conditions or
boundary conditions, that give the value of y, y′ at a given time x.

Next, let us consider again the simplest differential equation y′ = f(x, y) where f depends
on y.

Theorem 206. Let a,C ∈ R. Then there is only one (differentiable) function y such that
y′(x) = ay(x) and y(0) = C.

Proof. We know that there is one such function: y(x) = Ceax. Indeed, we can check that
y′(x) = aCeax = ay(x) and y(0) = Ce0 = C.

Suppose that there is g(x) with the same condition. Let h(x) = e−axg(x), then h′(x) =
−ae−axg(x) + e−axg′(x) = −ae−axg(x) + ae−axg(x) = 0 for all x ∈ R, hence h(x) must be a
constant. As h(0) = e0g(0) = C, h(x) = C hence g(x) = Ceax.

Let us consider when we see the equation y′ = ay.

• A very typical example is radioactive atoms. Let y(x) be the number of a single species
of radioactive atoms at time x. It is known that each atom decays, independently from
other atoms, in a certain time period by a certain probability. This means that, at each
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Figure 78: The exponential decay y(x) = Ce−ax = C2−ax/ log 2 The half-life is T = log 2/a.

moment, the rate of decrease in numbers y(x) is proportional to y(x). With a constant a,
we can write this as

y′(x) = −ay(x).

If there are C atoms at time x = 0, we know that the solution is y(x) = Ce−ax, hence the
number of radioactive atoms decays exponentially. This can be written more conveniently
as y(x) = Ce−ax = C2−ax/ log 2. Then with T = log 2

a , we have y(x) = C2−x/T , and it is
clear that the number of atoms halves in time T . T is called the half life of this particular
species of atom.

• Another instance is the SIR model in epidemiology. We consider the total populationN , the
numbers of S(t) (succeptible), I(t) (infected) and R(t) (removed/recovered). It is assumed
that each infected people has contact with a certain number of people in each day, hence
this number is proportional to S(t)

I(t) , and assume that in each such contact transmission
occurs by the rate β. On the other hand, each infected people lose infectivity by the rate
γ.

dS

dt
= −βS(t)I(t)

N
dI

dt
=
βS(t)I(t)

N
− γI(t)

dR

dt
= γI(t)

It is difficult to solve this set of equations. Yet, we can understand the behaviour when
there are few infected people I(t) compared to the total number N . When I(t) is small,
then R(t) is also small and S(t) = N − I(t)−R(t) is close to N . By putting S(t) = N , we
have

dI

dt
= (β − γ)I(t).

As a function of t, we know that I(t) = Ce(β−γ)t, where C is the number of infected at day
t = 0. This epidemic grows when β − γ > 0, and decays when β − γ < 0. R0 =

β
γ is called

the basic reproduction number in the SIR model. When R0 > 1 the epidemic grows
and when R0 it decays.

Dec. 20. Ordinary differential equations

Linear equations with constant coefficients

Let us next consider a linear differential equation of the form

y′′(x) + P (x)y′(x) +Q(x)y(x) = R(x).

112



This contains the second derivative y′′, hence it is a second-order differential equation. Here,
P (x), Q(x), R(x) are a known function and we have to find a function y(x) which satisfies this
equation. Such an equation is called linear differential equation of second-order. (Linear
means that there is no term containing y2, y3, (y′)2 etc.) If R(x) = 0, then it is called homoge-
neous.

If y1, y2 are two solutions of a homogeneous equation, then then so is y3(x) = ay1(x)+by2(x),
because

y′′3(x) + P (x)y′3(x) +Q(x)y3(x)

= ay′′1(x) + by′′2(x) + P (x)(ay′1(x) + by2(x)) +Q(x)(ay1(x) + by2(x))

= a(y′′1(x) + P (x)y′1(x) +Q(x)y′′1(x)) + b(y′′2(x) + P (x)y′2(x) +Q(x)y′′2(x)) = 0

If y1, y2 are two solutions of a linear equation, then the difference y1 − y2 is a solution of the
equation where R(x) is set to 0.

A simplest of such equations is one where P (x), Q(x), R(x) are constant:

y′′(x) + ay′(x) + by(x) = 0.

As we will see, such equations appear naturally in physics.
An even simpler case is where a = 0:

y′′(x) + by(x) = 0.

Let us start with solutions of this type.

• Case 1. b = 0. In this case, we have y′′(x) = 0. This means that y′(x) = C1 (constant)
and further y(x) = C1x+ C2. It is easy to see that any solution is of this form.

• Case 2. b < 0. In this case, the equation can be written as y′′(x) = k2y(x) where
b = −k2 and we can take easily check that y(x) = C1e

kx + C2e
−kx is a solution for any

constant C1, C2. Indeed, y′(x) = kC1e
kx−kC2e

−kx and y′′(x) = k2C1e
kx+(−k)2C2e

−kx =
k2(C1e

kx + C2e
−kx) = k2y(x).

• Case 3. b > 0. In this case, the equation can be written as y′′(x) = −k2y(x) where
b = −k2. There are solutions of the form y(x) = C1 sin(kx) + C2 cos(kx) is a solution for
any constant C1, C2.

These solutions are all, and no other solutions (we present later the general uniqueness theorem).
Note that, in all these cases, there are two constants C1, C2. If we require an initial condition

• y(a) = b1

• y′(a) = b2

these constants are fixed.
For example, in Case 2 with a = 0, y(x) = C1e

kx+C2e
−kx, we should have y(0) = C1+C2 = b1

and y′(0) = kC1 − kC2 = b2, hence C1 =
1
2(b1 +

b2
k ), C2 =

1
2(b1 −

b2
k ).

Let us consider the general case y′′(x) + ay′(x) + by(x) = 0. This can be reduced to the
special case above as follows. We write y(x) = u(x)e−

ax
2 , then

y′(x) = u′(x)e−
ax
2 − a

2
u(x)e−

ax
2 = u′(x)e−

ax
2 − a

2
y(x)

y′′(x) = u′′(x)e−
ax
2 − a

2
u′(x)e−

ax
2 − a

2
u′(x)e−

ax
2 +

a2

4
u(x)e−

ax
2

= u′′(x)e−
ax
2 − au′(x)e−

ax
2 +

a2

4
u(x)e−

ax
2
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Therefore, if y is a solution of this equation, it must hold that

0 = (u′′(x)e−
ax
2 − au′(x)e−

ax
2 +

a2

4
u(x)e−

ax
2 ) + a(u′(x)e−

ax
2 − a

2
u(x)e−

ax
2 ) + bu(x)e−

ax
2

= u′′(x)e−
ax
2 +

(
b− a2

4

)
u(x)e−

ax
2

hence if u safisfies u′′(x) +
(
b− a2

4

)
u(x) = 0, then y(x) = u(x)e−

ax
2 satisfies y′′ + ay′ + by = 0.

We know how to solve the former, hence so the latter.

Example 207. Consider the equation y′′(x)+y′(x)−y(x) = 0. Then we can write y(x) = ue−
x
2

and then u should satisfy u′′(x) − 5
4u(x) = 0. We know that u(x) = C1e

√
5

2
x + C2e

−
√
5
2
x is a

solution of this, hence y(x) = C1e
√
5−1
2

x + C2e
−

√
5+1
2

x.

Next, let us consider the inhomogeneous case, that is y′′(x)+ay′(x)+ by(x) = R(x). In some
cases we can find solutions.

Example 208. Take R(x) = x2. Then y(x) = 1
b (x

2 − 2ax
b + 2a2−2b

b2
) is a solution. Indeed,

y′(x) = 1
b (2x− 2a

b ), y
′′(x) = 2

b .
A general solution can be obtained by adding a solution of the homogeneous version y′′(x)+

ay′(x) + by(x) = 0 to this solution.

Physical examples

• Simple harmonic motion. Consider a mass m which is attached to a spring. Let us call
x(t) the position of the mass. When a spring is stretched by the distance r, then it pulls
back the mass by the force kr. Similarly, when a spring is pressed by the distance r (hence
the mass is displaced to −r), then it pushes back the mass by the force kr. Together with
the direction of the force, it can be written as −kx(t).
The equation of motion is about the variable x(t) and the acceleration is a(t) = x′′(t),
hence F (x) = ma = mx′′ becomes

mx′′(t) = F (x) = −kx.

That is, x′′(t) + k
mx(t) = 0. The general solution of this is

x(t) = C1 sin

√
k

m
t+ C2 cos

√
k

m
t.

If we pull the mass to a and leave quietly at time t = 0, then the solution should have
x(0) = a, x′(0) = 0. That is, C2 = a and C1 = 0, and the special solutions is

x(t) = a cos

√
k

m
t.

This means that the mass oscilates between −a and a.s

In general, if we specify the values x(0) and x′(0), then there is only one solution. These
values are called the initial conditions.

• In addition to the previous example, let us consider the case where the mass lies on a floor
hence receives the friction. The friction is proportional to the velocity and in the converse
direction. Therefore, the equation of motion is

mx′′(t) = −kx(t)− cx′(t),
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or x′′(t) + c
mx(t) +

k
mx(t) = 0.

The solution is given by solving u′′(t) + ( k
m − 1

4(
c
m)2)u(t) = 0. If −s2 = k

m − 1
4(

c
m)2 < 0,

then we have x(t) = C1e
−( c

2m
−s)t + C2e

−( c
2m

+s)t.

If x(0) = a, x′(0) = 0, then C1+C2 = a,−( c
2m−s)C1+−( c

2m+s)C2 = 0 hence C1 = C2 =
a
2 ,

and
x(t) =

a

2

(
e−( c

2m
−s)t + e−( c

2m
+s)t

)
Note that c

2m > s, hence this decays exponentially. This means that the mass arrives at 0
without going back and forth.

We leave the remaining case k
m − 1

4(
c
m)2 ≥ 0 as exercises.

Dec. 21. Ordinary differential equations

General remarks

Many interesting differential equations are nonlinear: just for example, the motion in a gravita-
tional field is given by

mx′′(t) = −mMG

x(t)2

(in one-dimension). And it is difficult to solve such nonlinear equations.
Let us consider a first-order differential equation

y′(x) = f(x, y(x)),

that is, f is a given function of two variables and the question is to find a function y(x) such
that y′(x) = f(x, y(x)) for x in a certain interval.

If from the differential equation y′(x) = f(x, y(x)) we can derive a relation between x, y of
the form

F (x, y, C) = 0,

where F (x, y, C) is another two-variable function with a parameter C (hence 3-variables), then
we say that the differential equation is integrated. This is because the relation F (x, y, C) = 0
for a fixed number C defines a function y(x) implicitly: recall that, if F (x, y, C) = x2 + y2 −C2,
then it defines the function(s) y(x) = ±

√
C2 − x2.

Separable differential equations

We call a first-order differential equation y′(x) = f(x, y(x)) separable if it can be written in
the form y′(x) = Q(x)R(y(x)), where Q(x) is a function of x alone and R(y) is a function of y
alone. For example,

• y′(x) = x3

• y′(x) = y(x)x2

• y′(x) = sin(y(x)) log x.

When R(y) ̸= 0, we can write this in the form A(y(x))y′(x) = Q(x).

Theorem 209. Let G(y) be a primitive of A(y) and H(x) be a primitive of Q(x). Then any
differentiable function y(x) which satisfies

G(y(x)) = H(x)

satisfies the differential equation A(y(x))y′(x) = Q(x), and conversely, any solution y(x) satisfies
this equation for certain H(x).
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Proof. Let y(x) satisfies the equation above, then by the chain rule, we have d
dxG(y(x)) =

y′(x)A(y(x)), while d
dxH(x) = Q(x), hence we obtain A(y(x))y′(x) = Q(x) by differentiating

G(y(x)) = H(x).
Conversely, if y(x) is the solution of the differential equation, then by integrating both sides

of A(y(x))y′(x) = Q(x) by substitution, we have G(y(x)) = H(x)+C for some constant C. Note
that H(x) + C is a primitive of Q(x), hence we proved the claim.

Example 210. • Consider y′(x) = y(x)2x. This can be written as y′(x)
y(x)2

= x. Each sides
can be integrated, and we obtain

− 1

y(x)
=
x2

2
+ C,

or y(x) = − 1
x2

2
+C

.

• Consider y′(x) = x
y(x) . This can be written as y(x)y′(x) = x. Each sides can be integrated,

and we obtain
y(x)2

2
=
x2

2
+ C,

or y(x) = ±
√
x2 + 2C.

• Consider xy′(x)+y(x) = y(x)2. This can be written as y′(x) = y(x)(y(x)−1)
x , or y′(x)

y(x)(y(x)−1) =
1
x . Each sides can be integrated, and we obtain

log

∣∣∣∣1− 1

y

∣∣∣∣ = log x+ C,

or |1− 1
y(x) | = C ′x for some constant C ′ = eC .

Not many equations are separable, but some can be reduced to a separable equation. For
example, consider the case where y′(x) = f(x, y(x)) and

f(tx, ty) = f(x, y)

for any t ̸= 0. In this case, we can introduce v(x) = y(x)
x , or y(x) = v(x)x and hence y′(x) =

v′(x)x+ v(x). Therefore, if y′(x) is the solution of the equation above, then it must hold that

v′(x)x+ v(x) = y′(x) = f(x, y(x)) = f(1, y(x)/x) = f(1, v(x)).

This can be written as v′(x) = (f(1, v(x)) − v(x)) 1x , hence is separable. Once v(x) is obtained
as a function of x, we can recover y(x) = v(x)x.

Example 211. Consider y′(x) = y(x)−x
x+y(x) . f(tx, ty) =

ty−tx
tx+ty = y−x

x+y = f(x, y), hence this is can
be solved by introducing y(x) = v(x)x.

We have v′(x) = (f(1, v(x))− v(x)) 1x = (v(x)−1
1+v(x) − v(x)) 1x = −1+v(x)2

1+v(x)
1
x , and we have∫

1 + v(x)

1 + v(x)2
dv = arctan(v(x)) +

1

2
log(1 + v(x)2)

−
∫

1

x
dx = − log x+ C

By bringing back y(x) = v(x)x, we have arctan y(x)
x + 1

2 log(x
2 + y(x)2) = C.
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Concrete applications

• Consider a falling body in a resisting medium. For example, we drop a ball from a window.
The gravitational force is constant g when the body moves the distance much shorter than
the radius of the Earth. In addition, the ball is resisted by the air and the resistance
is proportional to the velocity. The equation of motion is mx′′(t) = mg − kx′(t). Let
v(t) = x′(t) be the velocity of the ball at time t, we leave it at time t = 0 from the height
0. Then

mv′(t) = mg − kv(t),

or mv′(t)
mg−kv(t) = 1. This is separable. We have −m

k log(mg − kv(t)) = t + C, or v(t) =

mg−e−
k
m (t+C)

k . As t→ ∞, v(t) tends to mg
k , called the terminal velocity.

• Let us consider a small particle in a large medium. If the temperature of the particle and
that of the medium is different, then the changing rate of the temperature is proportional
to the difference of the temperature. As the medium is large, we may assume that only the
temperature y(t) changes with y(0) = T , while the medium remain in the same temperature
M . In a differential equation,

y′(t) = k(M − y(t)).

This is again separable.

Jan. 08. Ordinary differential equations

Applications of Taylor series to ordinary differential equations

Let us recall that some good functions have the Taylor expansion

y(x) =

∞∑
n=0

y(n)(0)

n!
xn,

where the series is convergent for some x.
This can be used to solve certain differential equations. For example, Let us take −2y(x) =

(1− x2)y′′(x).
Problem: Find a function y(x) such that −2y(x) = (1− x2)y′′(x) with y(0) = 1, y′(0) = 1.
Solution:

Step 1. Assume that y(x) =
∑∞

n=0 anx
n. If this and the derivatives converge uniformly in an

interval containing 0,

y′(x) =
∞∑
n=1

nanx
n−1, y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2.

Step 2. y(x) must satisfy

−2y(x) = −2
∞∑
n=0

anx
n = (1− x2)y′′(x)

= (1− x2)

∞∑
n=2

n(n− 1)anx
n−2

=
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n

=

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

n(n− 1)anx
n
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Figure 79: The integral curves of y′(x) = x.

Step 3. We must have −2an = (n+2)(n+1)an+2−n(n−1)an. Equivalently, (n+2)(n+1)an+1 =
[n(n− 1)− 2]an = (n+ 1)(n− 2)an, or an+2 =

n−2
n+2an.

Step 4. −a0 = a2, a4 = 0 = a6 · · · . a3 = −1
3a1, a5 = 1

5a3 = − 1
5·3a1, a7 = 3

7a5 = − 1
7·5a1, in

general, a2n+1 = − a1
(2n+1)(2n−1) .

Step 5. By y(0) = 1, a0 = 1 and y′(0) = 1, a1 = −1. Hence y(x) = 1−x2+
∑∞

n=0
1

(2n+1)(2x−1)x
2n+1.

Step 6. This is convergent for |x| < 1.

Integral curves

As in previous example, upon solving a differential equation y′(x) = f(x, y(x)), it is typical that
we obtain an implicit equation F (x, y, C) = 0. This means that, for each value of C, we have
a relation between x, y, and in certain cases, it defines a function y of x. As this function (a
solution) y(x) satisfies the differential equation y′(x) = f(x, y(x)), y′(x) should mean the slope
of the curve y(x) at the point (x, y(x)).

For example, consider the equation y′(x) = x. This can be integrated and y(x) = x2

2 + C,
and depending on the value of C, we have different parabolas. On the other hand, at each point
in the xy-plane, we can draw an arrow which goes from (x, y) to (x+ ϵ, y+y′(x)ϵ). These arrows
are tangent to the curve which represents the solution.

This plot of arrows is called a vector field, and a solution is obtained by “connecting” these
arrows.

(One can visualize the arrows by a command VectorPlot[1,f(x,y)] on Wolfram Alpha,
and the stream by StreamPlot[1,f(x,y)], where we took ϵ = 1).

Euler method

At the end, for applications in science and engineering, we are satisfied with having sufficiently
good approximate solutions.

There are many methods to obtain a numerical solution of a differential equation. One of the
simplest of them is called the Euler’s method, and it literally chase the vector field as follows.

Let us consider the differential equation y′ = f(x, y) with the inizial condition y(x0) = y0,
where x0, y0 ∈ R. This means that the solution y(x) passes the point (x0, y0). Furthermore, by
“chasing the arrows”, the slope of the curve y(x) at the point (x0, y0) is f(x0, y0). That is, if we
take a small step ϵ, then the next point on the curve is close to (x0+ϵ, y0+f(x0, y0)ϵ) = (x1, y1).
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Figure 80: The Euler method to solve y′(x) = x with (x0, y0) = (0, 1) with ϵ = 0.5.

Then, again at the point (x1, y1), the slope of the curve is f(x1, y1), hence the next point on the
curve is close to (x1 + ϵ, y1 + f(x1, y1)ϵ) = (x2, y2), and so on. In this way, we obtain a union of
segments which approximates the solution.

If we take smaller ϵ, the approximation gets better, while we need do more computations.

Existence and uniqueness of solution

We have considered ordinary differential equations y′(x) = f(x, y) and found solutions to some
of them, some numerical solutions to others. Yet, some differential equation does not have a
solution for a given initial condition, and others have many solutions.

• Consider (y′(x))2 − xy′(x) + y(x) + 1 = 0: no solution with y(0) = 0, because then
y′(0)2 + 1 = 0, which is impossible because y′(0) should be a real number.

• Consider y′ = 3y
2
3 : the initial condition y(0) = 0 has two solutions y = 0 and y(x) = x3.

Yet, as we have seen, a differential equation gives a vector field as in Figure 79, and it
should be enough to “chase the arrows”. For this to be possible, f(x, t) should have certain nice
properties. We only state the theorem, and leave the proof to a more advanced book.

For this purpose, we need the following concept: Let f(x, y) be a function of two variables,
that is, f gives a number for a given pair of numbers (x, y). For each fixed y, we can think of
f(x, y) as a function of x, and hence take the derivative with respect to x. This is called the
partial derivative with respect to x, and denoted by ∂f

∂x .

Example 212. • Let f(x, y) = x2 + y2. Then ∂f
∂x = 2x.

• Let f(x, y) = xy. Then ∂f
∂x = y.

• Let f(x, y) = sin(xy2). Then ∂f
∂x = y2 cos(xy2).

It is also possible to consider ∂f
∂y . The detail will be explained in Mathematical Analysis II.

Theorem 213. Suppose that f(x, y) and ∂f
∂x are continuous on a rectangle

R = {(x, y) : x0 − δ < x < x0 + δ, y0 − ϵ < y < y0 + ϵ}.

Then there is δ1 such that the equation y′(x) = f(x, y) has a unique solution y(x) with initial
condition y(x0) = y0 for x0 − δ1 < x < x0 + δ1.
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Similar results hold for higher-order differential equations. If we consider a “good” equation
motion x′′(t) = F (x(t), x′(t), t), the fact that we iniziate a system giving a positition x0 and a
velocity v0, the rest is determined by the equation of motion.

Once the existence and uniqueness are established, one can be assured that the numerical
methods give the right answer.

A few codes in Python

In the language Python, it is very easy to write a code to solve a differential equation. Let us
see some examples3

The following code solves the equation y′(x) = x, x0 = 0, y0 = 1.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

x = np.linspace(0, 5, 500)

# parameter k
k = 0.5

# equation y’ = k y

def deriv(y, x):
return k*y

# the initial condition x0 = 0
y0 = 10

# solve the equation numerically
ret = odeint(deriv , y0, x)
y = ret

# plot the graph
plt.plot(x,y, label=’Solution of y\’(x)=’+str(k)+’y with y(0)=’+str(y0))
legend = plt.legend ()
plt.show()

To solve a second-order differential equation y′′(x) + b = 0, use the trick of doubling the
variables: y′0 = y1 and y′1 + b = 0, which means y′′0 + b = 0.

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

x = np.linspace(0, 5, 500)

# parameter k
k = -50

3The plot part is taken from the book by Christian Hill, https://scipython.com/book/chapter-8-scipy/
additional-examples/the-sir-epidemic-model/.
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c = -1

# equation y’’ = ky + cy’, that is, y_0 ’ = y_1 and y_1 ’ = - k y_0

def deriv(y, x):
return [y[1], k*y[0] + c*y[1]]

# the initial condition
y0 = [1,0]

# solve the equation numerically
ret = odeint(deriv , y0, x)
y_0 ,y_1 = ret.T

# plot the graph
plt.plot(x,y_0 , label=’Solution of y\’\’(x)=’+str(k)+’y with y(0)=’+str(y0[0])+’ and y\’(0)=’+str(y0[1]))
legend = plt.legend ()
plt.show()

It is also possible to solve a differential equation with more variables, for example the SIR
model

dS

dt
= −βS(t)I(t)

N
,

dI

dt
=
βS(t)I(t)

N
− γI(t),

dR

dt
= γI(t),

see for example this page.

Jan. 10. Complex numbers

Consider the equation x2+1 = 0. There is no real solution x that satisfies this equation because
x2 > 0, hence x2 + 1 > 0. Yet, it is possible to extend the set of real numbers in such a way to
include solutions to this equation. One of such solutions is denoted by i, that means i2 = −1.

Complex numbers as ordered pairs

We expect that i behaves in a way similar to the real numbers. We can consider a+ ib, a, b ∈ R,
it should hold that (a+ ib)(c+ id) = ac+ i2bd+ i(ad+ bc) = ac− bd+ i(ad+ bc).

This can be formulated as follows: A complex number is a pair (a, b) of real numbers, and
we define

• (Equality) (a, b) = (c, d) as complex numbers if and only if a = c and b = d.

• (Sum) (a, b) + (c, d) = (a+ c, b+ d).

• (Product) (a, b)(c, d) = (ac− bd, ad+ bc).

This is a formal definition, and it is customary to denote (a, b) by a + ib. a is called the real
part and b is called the imaginary part.

The set of complex numbers is denoted by C.

Theorem 214. For x, y, z ∈ C, we have the following.
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• (Commutativity) x+ y = y + x, xy = yx.

• (Associativity) x+ (y + z) = (x+ y) + z, x(yz) = (xy)z.

• (Distributive law) x(y + z) = xy + xz.

Proof. All these properties can be shown by calculating both sides and using the properties of
real numbers. For example, for x = a + ib = (a, b), y = c + id = (c, d), x + y = (a, b) + (c, d) =
(a+ c, b+ d) = (c+ a, d+ b) = y+ x, xy = (a, b)(c, d) = (ac− bd, ad+ bc) = (ca− db, da+ cb) =
(c, d)(a, b) = yx.

Other properties are left as exercises.

Real numbers in complex numbers

Let us consider the complex number (0, 0). For any other complex number (a, b), it holds that
(0, 0)(a, b) = (0, 0) and (0, 0) + (a, b) = (a, b). That is, (0, 0) plays the same role of 0 ∈ R.

Next, we consider (1, 0). For any other complex number (a, b), it holds that (1, 0)(a, b) =
(a, b). That is, (1, 0) plays the same role of 1 ∈ R.

For any (a, b) ∈ C, it holds that (a, b) + (−a,−b) = (0, 0). We write −(a, b) for (−a,−b).
For any (a, b) ∈ C, (a, b) ̸= (0, 0), it holds that (a, b)( a

a2+b2
, −b
a2+b2

) = (a
2+b2

a2+b2
, −ab+ba

a2+b2
) = (1, 0).

We write ( a
a2+b2

, −b
a2+b2

) for 1/(a, b), or (a, b)−1.
All these properties tell that C is an object called a field.
For any number a ∈ R, the complex number (a, 0) behaves exactly as a ∈ R. Indeed,

(a, 0) + (b, 0) = (a+ b, 0), (a, 0)(b, 0) = (ab, 0).

Imaginary unit

The complex number (0, 1) satisfies (0, 1)2 = (−1, 0). Indeed, (0, 1)2 = (0− 1, 0 + 0) = (−1, 0).
With the understanding that (−1, 0) = −1 ∈ R, we can interpret this as (0, 1) = i ∈ C.

For a real number a and a complex number (b, c), we have a · (b, c) = (a, 0)(b, c) = (ab, ac).
With this understanding, any complex number (a, b) can be written as a + ib, where a =

(a, 0), b = (b, 0), i = (0, 1). We can perform all the usual computations using i2 = −1, for
example,

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = ac− bd+ i(ad+ bc),

1

a+ ib
=

a− ib

(a+ ib)(a− ib)
=

a− ib

a2 + b2
.

Geometric interpretation

As we represented a real number as a point on the line, we can represent a complex number on
the plane:

This is helpful especially when we consider various operations on complex numbers. For
example, any complex number (a, b) can be considered as a segment from (0, 0). Then the sum
can be found by forming a parallelogram.

As we identify a complex number with a point on the plane, for each complex number (a, b)
the length of the segment (0, 0)–(a, b) is

√
a2 + b2 and the angle from the horizontal axis (the

real numbers), and we can write this as (a, b) = (r cos θ, r sin θ).
With two complex numbers (r1 cos θ1, r1 sin θ1), (r2 cos θ2, r2 sin θ2), we have

(r1 cos θ1, r1 sin θ1)(r2 cos θ2, r2 sin θ2)

= (r1r2(cos θ1 cos θ2 − sin θ1 sin θ2), r1r2(cos θ1 sin θ2 + sin θ1 cos θ2))

= (r1r2 cos(θ1 + θ2), r1r2 sin(θ1 + θ2))
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•2 + i

•−1 + 2i

•−0.5− i

Figure 81: Various complex numbers on the plane

•z1

•
z2

z1 + z2

Figure 82: Sum of two complex numbers

•
z = (r cos θ, r sin θ)

r

θ

Figure 83: Complex number represented by radius and angle
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•z1

z2

−z2

•

Figure 84: The distance of two complex numbers

Therefore, the product has the length r1r2 and the angle θ1 + θ2. In particular, if we take
z = (r cos θ, r sin θ), then we have zn = (rn cosnθ, rn sinnθ).

From this, we can conlude that for any z ∈ C there is the n-th root in C. Indeed, if
z = (r cos θ, r sin θ), then we can take w = (r

1
n cos θ

n , r
1
n sin θ

n).

Fundamental theorem of algebra

In complex numbers, we can solve the second degree equation ax2 + bx+ c = 0. Indeed, we can
use the usual formula

x =
−b±

√
b2 − 4ac

2a
,

where the square root is interpreted as a complex number, which always exists.
In general, a polynomial equation anxn + · · · a1x+ a0 = 0 has n solution in C. This is called

the fundamental theorem of algebra.

Jan. 11. Complex valued functions

Let us consider x = a+ ib ∈ C. We denote by |x| =
√
a2 + b2 the absolute value of x. For two

complex numbers x, y, the disntance between x, y is |x − y|. This distance coincide with the
distance on the plane.

We have the triangle inequality

|x− y| ≤ |x− z|+ |z − y|.

This is literally a triangle inequality, in the sense that |x − y|, |y − z|, |z − x| are the lengths of
the sides of the triangle formed by x, y, z in C.

For x = a+ ib, let Rex = a, Imx = b. We have |x| ≥ |Rex|, |Imx|, while |x| ≤ |Rex|+ |Imx|.

Complex sequences

Let us consider a sequence of complex numbers {xn} and x ∈ C. We say that xn converges to x
(and write xn → x) if |xn − x| → 0. Note that {|xn − x|} is a sequence of real numbers, hence
we can use the definition and results there.

Lemma 215. xn converges to x if and only if Rexn and Imxn converge to Rex and Imx,
respectively.
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Proof. If |xn − x| → 0, then |Rexn − Rex| = |Re (xn − x)| ≤ |xn − x| hence Rexn → Rex.
Similarly for Imx.

If |Rexn−Rex|, |Imxn− Imx| → 0, then |xn−x| ≤ |Rexn−Rex|+ |Imxn− Imx| → 0.

We say that {xn} is a Cauchy sequence if for any ϵ > 0 there is N such that |xm − xn| < ϵ if
m,n > N . In this case, {xn} is convergent.

Complex series

If {zn} are complex numbers, we can also consider the series

n∑
k=0

zk = z0 + z1 + · · ·+ zn.

We can define the convergence of the series as the convergence of the sequence
∑n

k=0 zk just as
with real numbers.

We say that the series
∑n

k=0 zk converges absolutely if
∑n

k=0 |zk| converges.

Lemma 216. If
∑n

k=0 zk converges absolutely, then the series
∑n

k=0 zk converges.

Proof. If
∑n

k=0 zk converges absolutely, then
∑n

k=0 |zk| is a Cauchy sequence, and hence
∑n

k=0 zk
is a Cauchy sequence (in the complex sense as above) because∣∣∣∣∣

n∑
k=0

zk −
m∑
k=0

zk

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=m+1

zk

∣∣∣∣∣ ≤
n∑

k=m+1

|zk| < ϵ

for sufficiently large m,n, by triangle inequality. This implies that Re
∑n

k=0 zk and Im
∑n

k=0 zk
are Cauchy, hence converge. Therefore,

∑n
k=0 zk converges by Lemma 215.

Recall that, for real number x, we have proved

ex =

∞∑
n=0

xn

n!
,

sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
,

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
.

We can extend these functions by replacing x by a complex number z. Indeed, the series

N∑
n=0

zn

n!

is absolutely convergent for any z ∈ C, because

N∑
n=0

|z|n

n!

is convergent by the ratio test: with an = |z|n
n! , an+1

an
= |z|

n+1 → 0.
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Therefore, we can define the complex exponential function ez by ez =
∑∞

n=0
zn

n! . Let us see
what happens if z = iθ, θ ∈ R.

eiθ =

∞∑
n=0

(iθ)n

n!
=

∞∑
n=0

(iθ)2n

(2n)!
+

∞∑
n=0

(iθ)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)nθ2n

(2n)!
+ i

∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

= cos θ + i sin θ.

This last formula is called the Euler formula. In particlar with θ = π, we have eiπ = −1, or
eiπ + 1 = 0.

We can also extend cos z, sin z to complex variables (convergence is proven again by ratio
test). As we have

eθ =
∞∑
n=0

θn

n!
,

e−θ =
∞∑
n=0

(−1)nθn

n!
,

cos(iθ) =
∞∑
n=0

(−1)n(iθ)2n

(2n)!

=

∞∑
n=0

(−1)n(−1)nθ2n

(2n)!

=
∞∑
n=0

θ2n

(2n)!
=

1

2
(eθ + e−θ) = cosh θ,

sin(iθ) =
∞∑
n=0

(−1)n(iθ)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)ni(−1)nθ2n+1

(2n+ 1)!

= i
∞∑
n=0

θ2n+1

(2n+ 1)!
=
i

2
(eθ − e−θ) = i sinh θ,

Furthermore, this explains why the differential equation y′′ + y = 0 has a general solu-
tion y(x) = C1 sinx + C2 cosx. By formally applying (this can be justified by the mate-
rial in Mathematical Analysis II) the chain rule, we have D(eix) = ieix, D2(eix) = −eix and
D(e−ix) = −ie−ix, D2(e−ix) = −e−ix, hence they are formally two solutions of the equation
y′′ + y. Hence their linear combinations sinx = 1

2i(e
ix − e−ix) and cosx = 1

2(e
ix + e−ix) satisfy

the same equation.
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