
1 Taylor expansion and limit

Problem. For various α ∈ R, study the limit:

lim
x→0

2 cosx− 2 + x2
√
1 + 3x+ αx3

(log(1 + x2))2

and find α such that this converges, and calculate the limit.
Solution. As x → 0, log(1 + x2) → 0, thus the denominator tends to 0. For the whole limit
to converge, the numerator must also tend to 0, and we need to study the behaviours of the
numerator and the denominator as x → 0. For this purpose, we calculate the Taylor formula of
both the numerator and the denominator. The general formula (to the 4th order, see below why
the 4th order is enough) is

f(x) = f(a)+f ′(a)(x−a)+
1

2!
f ′′(a)(x−a)2+

1

3!
f (3)(a)(x−a)3+

1

4!
f (4)(a)(x−a)4+o((x−a)4),

as x → a. We take a = 0.

• Put f(x) = cosx. Then f ′(x) = − sinx, f ′′(x) = − cosx, f (3)(x) = sinx, f (4)(x) = cosx.
Applying the general Taylor formula with a = 0, we get cosx = 1− 1

2x
2 + 1

24x
4 + o(x4) as

x → 0.

• In general, if g(x) = a0+a1x+a2x
2+o(x2), then we have x2g(x) = a0x

2+a1x
3+a2x

4+o(x4),
That is, the Taylor formula can be multiplied. This can simplify some calculations.

• For g(x) =
√
1 + 3x we have g′(x) = 3

2(1+3x)−
1
2 , g′′(x) = −9

4(1+3x)−
3
2 . Thus

√
1 + 3x =

1 + 3
2x− 9

8x
2 + o(x2) as x → 0.

• By applying the formula for product (see above), x2
√
1 + 3x = x2(1+ 3

2x−
9
8x

2+ o(x2)) =
x2 + 3

2x
3 − 9

8x
4 + o(x4).

• As log(y) = y+o(y), we have log(1+x2) = x2+o(x2) and hence (log(1+x2))2 = x4+o(x4).

Now the numerator is

2 cosx− 2 + x2
√
1 + 3x+ αx3

= 2

(
1− 1

2
x2 +

1

24
x4 + o(x4)

)
− 2 +

(
x2 +

3

2
x3 − 9

8
x4 + o(x4)

)
+ αx3

=

(
3

2
+ α

)
x3 − 25

24
x4 + o(x4)

To have a finite limit of limx→0
( 3
2
+α)x3− 25

24
x4+o(x4)

x4+o(x4)
, we must have 3

2+α = 0, because otherwise
the limit diverges. Therefore, α = −3

2 , and the given limit is

lim
x→0

−25
24x

4 + o(x4)

x3 + o(x3)
= −25

24

Note: limx→0
a
x4 converges if and only if a = 0 (otherwise diverges). Similarly, we have

limx→0
a+bx2+cx3

x4 converges if and only if a = b = c = 0 (otherwise diverges).
The symbol g(x) = o(x4) means that limx→0

g(x)
x4 = 0. In particular, we can calculate

limx→0
ax4+o(x4)

x4 = limx→0
a+

o(x4)

x4

1 = a.
Examples of Taylor series: ex = 1 + x + x2

2 + x3

6 + o(x3) as x → 0, log x = 0 + (x − 1) −
(x−1)2

2 + (x−1)3

3 as x → 1.
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2 Series

Problem. Calculate the finite sum for x = i in
∑2

n=0
2n−1
n! (x+ 1)2n and study the convergence

of the infinite series
∑∞

n=0
2n−1
n! (x+ 1)2n, with various x.

Solution. The finite sum is
∑2

n=0 an = a0+a1+a2. Recall that a0 = 1 for all a ∈ C and 0! = 1
by convention. In the case at hand with x = i, (i+ 1)0 = 1, (i+ 1)2 = 2i, (i+ 1)4 = −4, thus

2∑
n=0

2n − 1

n!
(x+ 1)2n

=
20 − 1

0!
(i+ 1)0 +

21 − 1

1!
(i+ 1)2 +

22 − 1

2!
(i+ 1)4

= 0 + 2i+
3

2
· (−4) = −6 + 2i.

As for the convergence, we use the ratio test. The ratio test tells, for a series
∑∞

n=0 an with
an > 0, that if limn→∞(an)

1
n = L < 1, then the series

∑∞
n=0 an converges, and if L > 1, then

the series diverges.
To apply the ratio test to our case, for x ∈ R, we set an = 2n−1

n! (x + 1)2n (no need to take
the absolute value, as (x+1)2n ≥ 0 and 2n − 1 ≥ 0), and see if L > 1 or L < 1, depending on x.

To calculate the limit,

lim
n→∞

an+1

an
= lim

n→∞

2n+1−1
(n+1)! (x+ 1)2(n+1)

2n−1
n! (x+ 1)2n

= lim
n→∞

(2n+1 − 1)(x+ 1)2

(2n − 1)(n+ 1)

≤ lim
n→∞

4(x+ 1)2

(n+ 1)

= 0

(we used that 2n+1 − 1 < 2n+1 and 2n − 1 > 2n−1, thus 2n+1−1
2n−1 < 2n+1

2n−1 = 4). By squeezing, we
conclude that limn→∞

an+1

an
= 0 < 1.

Therefore, the ratio test tells that, for all x ∈ R, the series
∑∞

n=0
2n−1
n! (x+ 1)2n converges.

This means that for any specific value of x, for example x = −3
2 , the series converges (abso-

lutely).
Problem. Calculate the infinite sum

∑∞
n=0

(
3
5

)n.
Solution. This is a geometric series, that is a series of the form

∑∞
n=0 a

n for some a ∈ R.
We know that hthis converges for −1 < a < 1 and for such a it holds that

∑∞
n=0 a

n = 1
1−a .

Therefore, with a = 3
5 ,

∑∞
n=0

(
3
5

)n
= 1

1− 3
5

= 5
2 .

Note: a series
∑

an is a new sequence obtained from the sequence an by a0, a0 + a1, a0 + a1 +
a2, · · · . For example, if an = 1

2n , then
∑N

n=0 an are 1
1 = 1, 1 + 1

2 , 1 + 1
2 + 1

4 , 1 + 1
2 + 1

4 + 1
8 , · · ·

(N = 0, 1, 2, 3).
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3 Graph of functions

Problem. Study the graph of the function f(x) = (x−1)3

x(x+1) .
Solution.

• Domain. 1
x−a is defined only for x ̸= a. We have f(x) = (x − 1)3 · 1

x
1

x+1 , therefore, it is
not defined for x = 0,−1. Altogether, the domain is (−∞,−1) ∪ (−1, 0) ∪ (0,∞).

• Asymptotes.

– Vertical asymptotes. As x → 0, (x−1)3

x(x+1) → ±∞ (the sign depends on whether x → 0+

or x → 0−). Similarly, limx→−1
(x−1)3

x(x+1) = ±∞. There are vertical asysmptotes at
x = 0,−1.

– Horizontal asymptote. As x → ±∞, note that (x−1)3

x(x+1) → ±∞. Hence there is no
horisontal asymptote.

– Oblique asymptote. We calculate limx→±∞
(x−1)3

x(x+1)
1
x = limx→±∞

x3−3x2+3x−1
x3+x2 = 1.

Furthermore,

lim
x→±∞

(x− 1)3

x(x+ 1)
− x = lim

x→±∞

x3 − 3x2 + 3x− 1− x2(x+ 1)

x(x+ 1)
− x

= lim
x→±∞

−4x2 + 3x− 1

x2 + x
= −4,

therefore, y = x− 4 is an oblique asymptote.

• The derivative. We can use the rule for quotient: ( gh)
′ = g′h−gh′

h2 . In our case, g(x) = (x−1)3

and h(x) = x(x+ 1), therefore, we get

f ′(x) =
3(x− 1)2 · x(x+ 1)− (x− 1)3 · (2x+ 1)

x2(x+ 1)2

=
(x− 1)2(3x(x+ 1)− (x− 1)(2x+ 1))

x2(x+ 1)2
=

(x− 1)2(x2 + 4x+ 1)

x2(x+ 1)2
.

• In particular, f ′(2) = 13
36 .

• Stationary points. They are points x in the domain where f ′(x) = 0 holds. As we have
computed f ′(x), the condition is that (x− 1)2(x2 + 4x+ 1) = 0, x ̸= 0,−1. Clearly, x = 1
is a stationary point. Moreover, the equation x2+4x+1 = (x+2)2− 3 = 0 has two (real)
solutions x = −2±

√
3. Altogether, there are 3 stationary points.

• Behaviour of the graph. Recall that the function f is monotonically increasing in an interval
if f ′(x) > 0 there, and is monotonically decreasing in an interval if f ′(x) < 0.

The factor g(x) = x2+4x+1 has a minumum at x = −2 and it is monotonically increasing
on x > −2. Furthermore, g(3) = 22 > 0, thus g(x) > 0 for x ∈ [3, 4]. This implies that
f ′(x) > 0 for x ∈ [3, 4], therefore, f is monotonically increasing in that interval.

Note: the graph of a function f(x) is the collection of points (x, f(x)) where x is in the domain
of f .
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4 Integral

Problem. Calculate the integral ∫ 3

1

log x

x2
dx.

Solution. Recall the general formula of integration by parts∫ b

a
f(x)g′(x)dx = [f(x)g(x)]ba −

∫ b

a
f ′(x)g(x).

We can easily find
∫

1
x2dx = − 1

x . Therefore, by integration by parts and (log x)′ = 1
x , with

f(x) = log x, g(x) = − 1
x , g

′(x) = 1
x2 ,∫ 3

1

log x

x2
dx =

[
−1

x
· log x

]3
1

−
∫ 3

1

(
−1

x

)
· 1
x
dx

= − log 3

3
+

[
−1

x

]3
1

=
2

3
− log 3

3
.

Note: other useful techniques are substitution (example:
∫
xex

2
dx by putting t = x2) and

change of variables (example:
∫

1√
x2+1

dx by putting x = sin t, dxdt = cos t, resulting
∫

1√
x2+1

dx =∫
1√

sin2 x+1
cos tdt =

∫
dt = t = arcsinx).
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5 Improper integrals

Problem. For various α ∈ R, study the improper integral
∫∞
0 x exp(αx2)dx.

Solution. The function f(x) = x exp(αx2) is bounded on any finite interval, but the integration
region [0,∞) is infinite. Therefore, we need to take β > 0 and calculate the integral on [0, β].
Noting that (αx2)′ = 2αx, thus by substitution, for α ̸= 0,∫ β

0
x exp(αx2)dx =

1

2α

∫ β

0
2αx exp(αx2)dx

=
1

2α

[
exp(αx2)

]β
0

=
1

2α
(exp(αβ2)− exp 0).

As β → ∞, this is convergent only if α < 0, and in that case, the limit is − 1
2α .

If α = 0, then the integral is∫ β

0
xdx =

1

2

[
x2

]β
0
=

1

2
(β2 − 0),

and this diverges as β → ∞.
Altogether, the improper integral converges only for α < 0. For the specific value α = −5,

the integral is − 1
2α = 1

10 .
Note: Actually, it is not necessary to divide into two parts as suggested in the Moodle

question, but the results are the same.
Problem. Choose all improper integrals that are convergent.

•
∫∞
0 log x/xdx

•
∫∞
0 log x/x2dx

•
∫∞
1 log x/xdx

•
∫∞
1 log x/x2dx

•
∫∞
0 exp(−x)/xdx

•
∫∞
0 exp(x)/xdx

•
∫∞
1 exp(−x)/x2dx

•
∫∞
1 exp(x)/x2dx

Solution.
Each of the functions is integrated over an infinite interval, and is possibly unbounded some-

where. Therefore, we need to look at whether the integral converges for large x and whether it
converges when the function diverges.

•
∫∞
0 log x/xdx. As x → ∞, log x/x > 1

x , and we know that
∫∞
1

1
xdx diverges, thus this

diverges as well.

•
∫∞
0 log x/x2dx. As x → 0, | log x/x2| > 1/x2 and we know that

∫ 1
0

1
x2dx diverges, thus this

diverges as well.

•
∫∞
1 log x/xdx. As x → ∞, log x/x > 1

x , and we know that
∫∞
1

1
xdx diverges, thus this

diverges as well.
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•
∫∞
1 log x/x2dx. The function is bounded. As x → ∞, | log x/x2| < 1/x1.5 and we know

that
∫ 1
0

1
x1.5dx converges, thus this integral converges as well.

•
∫∞
0 exp(−x)/xdx. As x → 0, | exp(−x)/x2| > 1/2x2 and we know that

∫ 1
0

1
2x2dx diverges,

thus this diverges as well.

•
∫∞
0 exp(x)/xdx. As x → ∞, the function diverges, thus the integral diverges as well.

•
∫∞
1 exp(−x)/x2dx. The function is bounded. As x → ∞, exp(−x)/x2 < exp(−x) and we

know that
∫∞
1 exp(−x)dx is convergent, thus this integral is convergent as well.

•
∫∞
1 exp(x)/x2dx. As x → ∞, the function diverges, thus the integral diverges as well.

Note: An integral is improper if the interval is unbounded or the function is unbounded. In
that case, we define ∫ b

a
f(x)dx = lim

ϵ→0

∫ c

a+ϵ
f(x)dx+ lim

ϵ→0

∫ b−ϵ

c
f(x)dx,

where c ∈ (a, b).
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