
1 Taylor expansion and limit

Problem. For various α, β ∈ R, study the limit:

lim
x→0

(x+ 1)
1
2 + (x− 1) expx+ αx+ βx2

sin(x2) · x
,

and find α, β such that this converges, and calculate the limit.
Solution. As x → 0, as | sin(x2)| ≤ 1, the denominator tends to 0. For the whole limit
to converge, the numerator must also tend to 0, and we need to study the behaviours of the
numerator and the denominator as x → 0. For this purpose, we calculate the Taylor formula of
both the numerator and the denominator. The general formula (to the 3rd order, see below why
the 3rd order is enough) is

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f (3)(a)(x− a)3 + o((x− a)3) as x → a.

We take a = 0.

• Put f(x) = (x+1)
1
2 . Then f ′(x) = 1

2(x+1)−
1
2 , f ′′(x) = −1

4(x+1)−
3
2 , f (3)(x) = 3

8(x+1)−
5
2 .

Applying the general Taylor formula with a = 0, we get (x+1)
1
2 = 1+ 1

2x−
1
8x

2+ 1
16x

3+o(x3)
as x → 0.

• In general, if g(x) = a0+a1x+a2x
2+a3x

3+o(x3), then we have xg(x) = a0x+a1x
2+a2x

3+
o(x3), That is, the Taylor formula can be multiplied. This can simplify some calculations.

• ex = 1 + x+ x2

2! +
x3

3! + o(x3) (because (ex)′ = ex)

• By applying the formula for product (see above), (x− 1)ex = x+ x2 + x3

2! − (1 + x+ x2

2! +
x3

3! ) + o(x3) = −1 + 1
2x

2 + 1
3x

3 + o(x3).

• As sin(y) = y + o(y2), we have sin(x2) = x2 + o(x4) and hence x sin(x2) = x3 + o(x3).

Now the numerator is

1 +
1

2
x− 1

8
x2 +

1

16
x3 + o(x3)− 1 +

x2

2
+

x3

3
+ o(x3) + αx+ βx2

=

(
1

2
+ α

)
x+

(
3

8
+ β

)
x2 +

19

48
x3 + o(x3)

To have a finite limit of limx→0

1
2
+α+( 3

8
+β)x2+ 19

48
x3+o(x3)

x3+o(x3)
, we must have 1

2 +α = 0, 38 + β = 0,
because otherwise the limit diverges. Therefore, α = −1

2 , β = −3
8 , and the given limit is

lim
x→0

19
48x

3 + o(x3)

x3 + o(x3)
= lim

x→0

19
48 + o(x3)

x3

1 + o(x3)
x3

=
19

48

Note: limx→0
a
x3 converges if and only if a = 0 (otherwise diverges). Similarly, we have

limx→0
a+bx2

x3 converges if and only if a = b = 0 (otherwise diverges).
The symbol g(x) = o(x3) means that limx→0

g(x)
x3 = 0. In particular, we can calculate

limx→0
ax3+o(x3)

x3 = limx→0
a+

o(x3)

x3

1 = a.
Examples of Taylor series: ex = 1 + x + x2

2 + x3

6 + o(x3) as x → 0, log x = 0 + (x − 1) −
(x−1)2

2 + (x−1)3

3 as x → 1.
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2 Series

Problem. Calculate the finite sum for x = i in
∑2

n=0
3n−1
2n (x+ 1)n and study the convergence

of the infinite series
∑∞

n=0
3n−1
2n (x+ 1)n, with various x.

Solution. The finite sum is
∑2

n=0 an = a0 + a1 + a2. Recall that a0 = 1 for all a ∈ C by
convention. In the case at hand with x = i, (i+ 1)0 = 1, (i+ 1)2 = 2i, thus

2∑
n=0

3n − 1

2n
(i+ 1)n

=
30 − 1

20
(i+ 1)0 +

31 − 1

21
(i+ 1)1 +

32 − 1

22
(i+ 1)2

= 0 + (i+ 1) + 4i = 1 + 5i.

As for the convergence, we use the root test. The root test tells, for a series
∑∞

n=0 an with
an > 0, that if limn→∞(an)

1
n = L < 1, then the series

∑∞
n=0 an converges, and if L > 1, then

the series diverges.
To apply the root test to our case, for x ∈ R, we set an = 3n−1

2n |x + 1|n (need to take the
absolute value), and see if L > 1 or L < 1, depending on x.

To calculate the limit,

lim
n→∞

(an)
1
n = lim

n→∞

(
3n − 1

2n
|x+ 1|n

) 1
n

= lim
n→∞

(3n(1− 1
3n ))

1
n

(2n)
1
n

|x+ 1|

=
3

2
|x+ 1|

(recall that a
1
n → 1 for any a > 0, and 2

3 < 1− 1
3n < 1, thus we can use the squeezing).

Therefore, the root test tells that, if 3
2 |x + 1| < 1, the series

∑∞
n=0

3n−1
2n |x + 1|n converges,

or in other words,
∑∞

n=0
3n−1
2n (x + 1)n converges absolutely. The condition is equivalent to

−2
3 < x+ 1 < 2

3 , or −5
3 < x+ 1 < −1

3 .
For any specific value of x, one has to consider whether −5

3 < x < −1
3 or not. If x = −3

2 , as
−5

3 < −3
2 < −1

3 , the series converges. If x = −1
3 , the root test does give answer, but the series

becomes
∑∞

n=0
3n−1
2n (23)

n and as 3n−1
2n (23)

n → 1, not → 0, the series is divergent.
Note: a series

∑
an is a new sequence obtained from the sequence an by a0, a0 + a1, a0 + a1 +

a2, · · · . For example, if an = 1
2n , then

∑N
n=0 an are 1

1 = 1, 1 + 1
2 , 1 + 1

2 + 1
4 , 1 + 1

2 + 1
4 + 1

8 , · · ·
(N = 0, 1, 2, 3).
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3 Graph of functions

Problem. Study the graph of the function f(x) = log x2+1
x+2 .

Solution.

• Domain. log y is defined only for y > 0. In this case, we should have x2+1
x+2 > 0. As

x2 + 1 > 0 for any x ∈ R, we should have x+ 2 > 0. In addition, the denominator should
never be 0, so x ̸= −2. Altogether, the domain is (−2,∞).

• Asymptotes.

– Vertical asymptotes. As x → −2 keeping x > −2, x2+1
x+2 → ∞ and thus log x2+1

x+2 → ∞.
There is a vertical asysmptote at x = −2.

– Horizontal asymptote. As x → ∞, note that x2+1
x+2 → ∞, and log x2+1

x+2 → ∞. Hence
there is no horisontal asymptote.

– Oblique asymptote. For x > 1
2 ,

log x2+1
x+2

x <
log x2+2x

x+2

x = log x
x → 0 as x → ∞, there is no

oblique asymptote.

• The derivative. We can use the chain rule: if f(x) = g(h(x)), then f ′(x) = h′(x)g′(h(x)).
In our case, g(y) = log y and h(x) = x2+1

x+2 , g′(y) = 1
y , h′(x) = 2x(x+2)−(x2+1)·1

(x+2)2
= x2+4x−1

(x+2)2
,

therefore, we get

f ′(x) =
x+ 2

x2 + 1
· x

2 + 4x− 1

(x+ 2)2
=

x2 + 4x− 1

(x2 + 1)(x+ 2)
.

• In particular, f ′(1) = 4
6 = 2

3 .

• Stationary points. They are points x in the domain where f ′(x) = 0 holds. As we have
computed f ′(x), the condition is that x2 + 4x − 1 = 0, that is x = −2 ±

√
5. However,

−2 −
√
5 < −2, and this is not in the domain of the function. Therefore, −2 +

√
5 is the

only stationary point.

• Behaviour of the graph. Recall that the function f is monotonically increasing in an interval
if f ′(x) > 0 there, and is monotonically decreasing in an interval if f ′(x) < 0.

If x = 0, x2 + 4x − 1 = −1, while if x = 2, x2 + 4x − 1 = 11 > 0. From this it is easy to
see that f ′(x) < 0 for x ∈ [0,−2+

√
5) and f ′(x) > 0 for x ∈ (−2+

√
5, 2]. Therefore, f is

neither decreasing nor increasing in [0, 2].

Note: the graph of a function f(x) is the collection of points (x, f(x)) where x is in the domain
of f .
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4 Integral

Problem. Calculate the integral ∫ 2

1

1

2x + 4 + 3(2−x)
dx

Solution. We change the variables by 2x = t, or equivalently, x = log t
log 2 . From this we get

dt
dx = log 2 · 2x = t log 2. and formally replace dx by 1

t log 2dt, therefore, with 21 = 2, 22 = 4,∫ 2

1

1

2x + 3 + 2(2−x)
dx =

∫ 4

2

1

t log 2(t+ 3 + 21
t )
dt

=

∫ 4

2

1

log 2(t2 + 3t+ 2)
dt.

To carry out this last integral, we need to find the partial fractions: as t2+3t+2 = (t+1)(t+2),
we put 1

(t+1)(t+2) = A
t+1 + B

t+2 = A(t+2)+B(t+1)
t2+3t+2

, or 1 = (A + B)t + 2A + B. By solving this,
B = −1, A = 1. Namely, 1

t2+3t+2
= 1

2(
1

t+1 − 1
t+2). Altogether,∫ 2

1

1

2x + 3 + 2(2−x)
dx =

1

log 2

∫ 4

2

(
1

t+ 1
− 1

t+ 2

)
dt

=
1

log 2
[log(t+ 1− log(t+ 2)]42 dt

=
1

log 2
((log 5− log 6)− (log 3− log 4))

=
20
18

log 2
=

log 10
log 9

log 2
.

Note: other useful techniques are substitution (example:
∫
xex

2
dx by putting t = x2) and

integration by parts (example:
∫
xexdx by noticing that (ex)′ = ex).
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5 Differential equations

Problem. Find the general solution of

y′(x) = −y(x)2 cos(x2)x.

and a special solution with y(0) = 1
2 .

Solution. This is a separable differential equation, because the right-hand side is a product of
a function of x (cos(x2)x) and a function of y (−y(x)2). The solution is given by integrating
separately − 1

y(x)2
and x cos(x2), that is

∫
− 1

y(x)2
y′(x)dx =

∫
x cos(x2) exp(x3)dx+ C,

1

y(x)
=

1

2
sin(x2) + C,

and this is equivalent to y(x) = 1
1
2
sin(x2)+C

.

If y(0) = 1
2 , then 1

2 = 1
0+C , hence C = 2.

Problem. Find the general solution of the following differential equation.

y′′(x) + 2y′(x)− 8y(x) = 0

and a special solution such that y(0) = 3 and limx→∞ y(x) = 0.
Solution. This second order linear differential equation with constant coefficients can be solved
by finding the solutions of the equation z2 + 2z − 8 = 0, that are z = 2,−4. With them,
the general solution is y(x) = C1 exp(2x) + C2 exp(−4x). The term C1 exp(−4x) diverges as
x → −∞, while the term C2 exp(2x) diverges as x → ∞. With the condition y(0) = 3, we have
C1 + C2 = 3, while if C1 ̸= 0, we would have y(x) → (signC1)∞, and this does not satisfy the
given condition, therefore, it must be that C1 = 0 and C2 = 5.
Note: the meaning that y is the solution of the differential equation is that, if we take y(x) =
C1e

2x + C2e
−4x, then it holds that y′′(x) + 2y′(x) − 8y(x) = 0. Indeed, y′(x) = 2C1e

2x −
4C2e

−4x, y′′(x) = 4C1e
2x + 16e−4x and hence

y′′(x) + 2y′(x)− 8y(x)

= 4C1e
2x + 16C2e

−4x + 2(2C1e
2x − 4C2e

−4x)− 8(C1e
2x + C2e

−4x)

= 0.

Similarly, if we take y(x) = 1
1
2
sin(x2)+C

, it satisfies y′(x) = −y(x)2x cos(x2). Indeed,

y′(x) =
−x cos(x2)

(12 sin(x
2) + C)2

= −y(x)2x cos(x2).
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