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Naive set theory, real numbers

• Let a, b ∈ Q. Prove a(−b) = −ab from the axiom of the real numbers.

Solution. We use

– definition of negative: −x is the unique real number such that x+ (−x) = 0

– distributive law (x+ y)z = xz + yz

– definitions of zero and negative

Indeed, we have

ab+ a(−b) = a(b+ (−b)) (distributive law)
= a · 0 (definition of negative)
= 0 (definition of zero)

and by the definition of negative, a(−b) = −(ab).

• Let a, b ∈ Q. Prove that a−1b−1 = (ab)−1.

• Let a, b, c, d ∈ Q. Prove a
b ·

c
d = ac

bd .

Solution. We use

– commutativity and associativity of product

– definition of fraction x
y = xy−1

– a−1b−1 = (ab)−1

Indeed, we have

a

b
· c
d
= ab−1cd−1 (definition of fraction)

= acb−1d−1 (commutativity and associativity)

= ac(bd)−1 (exercise)

=
ac

bd

• Let a, b, c, d ∈ Q. Prove a
b +

c
d = ad+bc

bd .

• For rational numbers a, b, c, prove that if a < b and b < c, then a < c.

Solution. We use

– if x < y, then x+ z < y + z
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Figure 1: The set of all points (x, y) ∈ Z× Z with y > x+ 2.

– if 0 < x, 0 < y, then 0 < x+ y

– associativity

Indeed, we have 0 < b− a by adding −a to a < b. Similarly, 0 < c− b. By taking the sum,
we get 0 < (b− a) + (c− b) = c− a. Adding a to both side, we get a < c.

• Let A = {0, 1, 2, 3}, B = {x ∈ Z : there is y ∈ Z such that x = 2y}. What are A ∩ B and
A ∪B?

Solution. B is the set of even numbers, hence A ∩B = {0, 2}. A ∪B does not have a nice
representation, but formally it is A∪B = {x ∈ Z : x = 1, 3 or there is y ∈ Z such that x =
2y} = {0, 1, 2, 3, 4, 6, 8, · · · }.

• Let A = {x ∈ Z : there is y ∈ Z such that x = 3y}, B = {x ∈ Z : there is y ∈
Z such that x = 2y}. What is A ∩B?

• Let An = {x ∈ Z : there is y ∈ Z such that x = ny}. What are
⋂

n∈N,n≥2An and⋃
n∈N,n≥2An?

Solution. Let x ∈ Z. If x = 0, then x ∈ An for all n, hence x ∈
⋂

n∈N,n≥2An. On the other
hand, if x ̸= 0,−1, then x /∈ Ax+1, hence x /∈

⋂
n∈N,n≥2An. If x = −1, x /∈ A2, hence

x /∈
⋂

n∈N,n≥2An. Altogether,
⋂

n∈N,n≥2An = {0}.
For x ̸ 1,−1, x ∈ Ax (if x is potivive) or x ∈ A−x (if x is negative). On the other hand,
1,−1 /∈ An for any n ≥ 2. Altogether,

⋃
n∈N,n≥2An = {x ∈ Z : x ̸= 1,−1}.

• Let A = Z, and B = {(x, y) ∈ A × A : y > x + 2}. Draw (a part of) its graph. What if
A = Q?

Solution. See Figure 1.

• Draw the graph of the set {(x, y) ∈ Q×Q : y = x}.
Solution. See Figure 2.

• Draw the graph of the set {(x, y) ∈ Q×Q : y = x2}.
Solution. Note that

– if x = 1, y = 12 = 1.
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Figure 2: The set of all points (x, y) ∈ Q×Q with y = x.

– if x = 0.5, y = 0.52 = 0.25.

– if x = 0.1, y = 0.12 = 0.01.

– if x = 2, y = 22 = 4.

– if x = 3, y = 32 = 9.

– if x = −1, y = (−1)2 = 1.

This is known as a parabola. See Figure 3.

• Draw the graph of the set {(x, y) ∈ Q×Q : y < x2 + 1}.
Solution. Note that one has to take the region below the parabola y = x2 + 1. See Figure
4.

• Prove that 2
√
2 is irrational.

Solution 1. Follow the proof of irrationality of
√
2.

Solution 2. Use the fact that
√
2 is irrational. If 2

√
2 were rational, then 2

√
2 = p

q for
some p, q ∈ N, but this would imply that

√
2 = p

2q is rational, which is a contradiction.
Therefore, 2

√
2 must be irrational.

• Prove that
√
3 is irrational.

Solution. Follow the proof of irrationality of
√
2. Use the fact that x2 is a multiple of 3 if

and only if x is a multiple of 3 (why?).

• Let A = {1, 12 ,
1
3 , · · · } = { 1

n : n ∈ N}. Determine inf A and supA.

Solution. 1 is the largest element in A, hence supA = 1.

0 is a lower bound of A. On the other hand, for any ϵ > 0, there is an n ∈ N such that
1
n < ϵ (the Archimedean principle). This means that any positive number ϵ cannot be a
lower bound. Therefore, 0 is the greatest lower bound: inf A = 0.

• Let A = {0.9, 0.99, 0.999, · · · }. Determine inf A and supA.

Solution.

0.9 is the smallest element in A, hence inf A = 0.9.
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(2, 4)

(1, 1)

(−0.5, 0.25)

Figure 3: The set of all points (x, y) ∈ Q×Q with y = x.
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Figure 4: The set of all points (x, y) ∈ R× R with y < x2 + 1.
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Figure 5: [−1, 2] ∪ (−3,−2) ∪ (0, 5] = [−1, 5] ∪ (−3,−2).
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Figure 6: [−4, 0) ∪ (2, 3).

1 is an upper bound of A. On the other hand, for any ϵ > 0, there is an n ∈ N such
that 1

n < ϵ (the Archimedean principle). We can take 0.0 · · · 01 < 1
n , and 1 − 0.0 · · · 01 =

0.09 · · · 99, and the next element in A is larger than it. This means that for any positive
number 1− ϵ cannot be an upper bound Therefore, 1 is the least upper bound: supA = 1.

• Let B = {0.3, 0.33, 0.333, · · · }. Determine inf A and supA.

Solution. We have B = 1
3A, where A is the set in the previous exercise. It holds that

supB = 1
3 supA = 1

3 , inf B = 1
3 inf A = 0 (why? See the proof of the theorem supA +

supB = sup(A+B)).

• x = 0.000001. For which n does it hold that 1
n < x?

Solution. x = 1/1000000. So we can take n = 1000001.

Intervals, induction, functions.

• Draw the set on the line [−1, 2] ∪ (−3,−2) ∪ (0, 5].

Solution. See Figure 5

• Determine the inf and sup of A = [−4, 0) ∪ (2, 3).

Solution. inf A = −4, supA = 3. See Figure 6

• Determine the set (1, 3) + (−2, 2].

Solution. (−1, 5). See Figure 7

• Determine the set 5 · (2, 3).
Solution. (10, 15).

• Represent the set {x ∈ R : x2 − 2x < 0} as an interval.
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Figure 7: (1, 3) + (−2, 2] = (−1, 5).
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Solution. The condition x2 − 2x < 0 can be written equivalently as

x2 − 2x < 0 ⇐⇒ x(x− 2) < 0

⇐⇒ (x < 0, x− 2 > 0) or (x > 0, x− 2 < 0)

⇐⇒ (x < 0, x > 2) or (x > 0, x < 2)

⇐⇒ (0 < x < 2)

hence it is the interval (0, 2).

• Represent the set {x ∈ R : x2 − 5x+ 6 > 0} as a union of intervals.

Solution. The condition x2 − 5x+ 6 > 0 can be written equivalently as

x2 − 5x+ 6 > 0 ⇐⇒ (x− 2)(x− 3) > 0

⇐⇒ (x− 2 < 0, x− 3 < 0) or (x− 2 > 0, x− 3 < 0)

⇐⇒ (x < 2, x < 3) or (x > 2, x > 3)

⇐⇒ x < 2 or x > 3

hence it is the union (−∞, 2) ∪ (3,∞).

• Determine the decimal representation of 3
7 .

Solution. Let 3
7 = a0.a1a2 · · · . Note that 3

7 < 1, hence we have a0 = 0. Next, 3
7 × 10 =

30
7 = 4 + 2

7 , hence we have a1 = 4. Next, 2
7 × 10 = 20

7 = 2 + 6
7 , hence we have a2 = 2, and

so on.

Therefore, we have 3
7 = 0.428571428571 · · · .

0. 4 2 8 5 7 1
7 ) 3

0
3 0
2 8

2 0
1 4

6 0
5 6

4 0
3 5

5 0
4 9

1 0
7
3

• Give an algorithm to produce a nonrepeating decimal representation.

Solution. Just an example. Set 0.101001000100001000001 · · · .

• Compute
∑5

k=1(2k + 1).

Solution.

5∑
k=1

(2k + 1) = (2 + 1) + (4 + 1) + (6 + 1) + (8 + 1) + (10 + 1) = 3 + 5 + 7 + 9 + 11 = 35.
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• Compute
∑6

k=2(2(k − 1) + 1).

Solution.
6∑

k=2

(2(k − 1) + 1) = (2 + 1) + (4 + 1) + (6 + 1) + (8 + 1) + (10 + 1)

= 3 + 5 + 7 + 9 + 11 = 35.

• Prove the formula
∑n

k=1(2k − 1) = n2.

Solution. By induction. For n = 1, we have
∑1

k=1(2k−1) = 1 = 12. Assuming the formula
for n, we compute

n+1∑
k=1

(2k − 1) =

n∑
k=1

(2k − 1) + (2(n+ 1)− 1)

= n2 + 2n+ 1 = (n+ 1)2.

• Write
∑n

k=1(2k − 1) as a sum from k = 0 to n− 1.

Solution.
∑n−1

k=0(2(k + 1)− 1) =
∑n−1

k=0(2k + 1).

• Compute the sum
∑n

k=1 10
−k.

Solution. By the formula for the sum of powers, we have

0.1(1− 0.1n)

1− 0.1
=

0.09 · · · 9︸ ︷︷ ︸
n-times

0.9
= 0.1 · · · 1︸ ︷︷ ︸

n-times

.

n∑
k=1

10−k = 0.1 + 0.01 + 0.001 · · · 0. 0 · · · 0︸ ︷︷ ︸
n−1-times

1 = 0.1 · · · 1︸ ︷︷ ︸
n-times

.

• Compute the sum
∑n

k=1 2
−1.

Solution. By the formula for the sum of powers, we have
n∑

k=1

2−1 =
1
2(1− (12)

n)

1− 1
2

= 1−
(
1

2

)n

.

1∑
k=1

2−1 =
1

2
.

2∑
k=1

2−1 =
1

2
+

1

4
=

3

4
.

3∑
k=1

2−1 =
1

2
+

1

4
+

1

8
=

7

8
.

• Expand (x+ y)5.

Solution. By the binominal theorem,

(x+ y)5 =

(
5

0

)
x5 +

(
5

1

)
x4y +

(
5

2

)
x3y2 +

(
5

3

)
x2y3 +

(
5

4

)
xy4 +

(
5

5

)
y5

=
5!

0!5!
x5 +

5!

1!4!
x4y +

5!

2!3!
x3y2 +

5!

3!2!
x2y3 +

5!

4!1!
xy4 +

5!

5!0!
y5

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.
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• Prove that
∑n

k=0

(
n
k

)
= 2n.

Solution. By the binominal theorem, 2n = (1 + 1)n =
∑n

k=0

(
n
k

)
1k1n−k =

∑n
k=0

(
n
k

)
.

• Prove that
∑n

k=0(−1)k
(
n
k

)
= 0.

Solution. By the binominal theorem, 0 = 0n = ((−1) + 1)n =
∑n

k=0

(
n
k

)
(−1)k1n−k =∑n

k=0

(
n
k

)
(−1)k.

• Determine the domains of the following

– f(x) =
√
x2 − 1

Solution. To have the square root, the number must be positive or zero. That is,

x2 − 1 ≥ 0 ⇐⇒ (x− 1)(x+ 1) ≥ 0

⇐⇒ (x− 1 ≥ 0, x+ 1 ≥ 0) or (x− 1 ≤ 0, x+ 1 ≤ 0)

⇐⇒ (x ≥ 1, x ≥ −1) or (x ≤ 1, x ≤ −1)

⇐⇒ (x ≥ 1) or (x ≤ −1)

hence the domain is (−∞,−1] ∪ [1,∞).
– f(x) = 1

x3+2x2−x−2

Solution. To have the division, the denominator must not be zero. That is,

x3 + 2x2 − x− 2 ̸= 0 ⇐⇒ (x+ 2)(x2 − 1) ̸= 0

⇐⇒ (x+ 2)(x− 1)(x+ 1) ̸= 0

hence the domain is (−∞,−2) ∪ (−2,−1) ∪ (−1, 1) ∪ (1,∞).

• Determine the inverse functions of the following.

– f(x) = x+ 1

Solution. The inverse f−1 should satisfy f−1(x+1) = x. We see that f−1(x) = x−1.
Then we indeed have (x− 1) + 1 = x.

– f(x) = 1
x on (0,∞).

Solution. The inverse f−1 should satisfy f−1( 1x) = x. We see that f−1(x) = 1
x . Then

we indeed have
1
1
x

= x.

Compare the graphs. How can one obtain one from the other?

– f(x) = x2, g(x) = (x− 1)2 + 2.
Solution. g can be obtained by shifting f by (1, 2). Indeed, their graphs are

f = {(x, y) ∈ R× R : y = x2}
g = {(x′, y′) ∈ R× R : y′ = (x′ − 1)2 + 2} = {(x′, y′) ∈ R× R : y′ − 2 = (x′ − 1)2}

Therefore, if the point (x, y) is on the graph of f , then the point (x′, y′) = (x+1, y+2)
is on the graph of g.

– f(x) = 1
2x

3 − x, g(x) = x3

16 − x
2 .

Solution. g(x) = 1
2(

x
2 )

3 − x
2 can be obtained by dilating the x-direction of f by 2.

Indeed, their graphs are

f = {(x, y) ∈ R× R : y =
1

2
x3 − x}

g = {(x′, y′) ∈ R× R : y′ = 1
2(

x′

2 )
3 − x′

2 }

Therefore, if the point (x, y) is on the graph of f , then the point (x′, y′) = (2x, y) is
on the graph of g.
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Figure 8: The graphs of y = x2 and y = (x− 1)2 + 2.

Figure 9: The graphs of y = 1
2x

3 − x and y = x3

16 − x
2 .
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Figure 10: The graphs of y = x3 − x and y = 1
2(x

3 − x).

– f(x) = x3 − x, g(x) = x3−x
2

Solution. g(x) can be obtained by dilating the y-direction of f by 1
2 . Indeed, their

graphs are

f = {(x, y) ∈ R× R : y = x3 − x}
g = {(x′, y′) ∈ R× R : y′ = 1

2(x
′3 − x′)} = {(x′, y′) ∈ R× R : 2y′ = x′3 − x′}

Therefore, if the point (x, y) is on the graph of f , then the point (x′, y′) = (x, y2 ) is
on the graph of g.

– f(x) =
√
1− x2, g(x) = 1

3

√
1− 4(x+ 2)2

Solution. g(x) can be obtained by dilating the y-direction of f by 1
3 and by dilating

by 1
2 then shifting the x-direction by −2 . Indeed, their graphs are

f = {(x, y) ∈ R× R : y =
√
1− x2}

g = {(x′, y′) ∈ R× R : y′ = 1
3

√
1− 4(x′ + 2)2}

= {(x′, y′) ∈ R× R : 3y′ =
√
1− (2(x′ + 2))2}

Therefore, if the point (x, y) is on the graph of f , then the point (x′, y′) = (x2 − 2, y3 )
is on the graph of g.

Limit of sequences and functions.

• Let an = 1√√
n

and ϵ = 0.01. Find N such that for n > N it holds |an| < ϵ.
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Figure 11: The graphs of y =
√
1− x2 and y = 1

3

√
1− 4(x+ 2)2.

Solution. Note that
√√

100000000−1 =
√√

0.00000001 = 0.01, hence if n > 100000000,
then 1√√

n
< 1√√

100000000
= 0.01. We can take N = 100000000.

• Let an = 1
2n and ϵ = 0.00001. Find N such that for n > N it holds |an| < ϵ.

Solution. Note that 217 = 131072 > 100000, hence 1
217

< 1
100000 = 0.00001. As 1

2n > 1
2n+1 ,

we can take N = 17.

• Show that a constant sequence an = C ∈ R is convergent.

Solution. For any given ϵ > 0 we can take N = 1 and then for any n > 1 we have
|an − C| = |C − C| = 0 < ϵ.

• Tell whether {an} converges, and if it does, compute the limit an = 1
1+ 1

n

.

Solution. 1
n converges to 0, and 1 + 1

n converges to 1 (sum), and 1
1+ 1

n

converges to 1
1 = 1

(quotient with nonzero denominator).

• Tell whether {an} converges, and if it does, compute the limit an = n
1+n .

Solution. Note that n
n+1 = 1

1+ 1
n

, hence this converges to 1 by the previous problem.

• Tell whether {an} converges, and if it does, compute the limit an = n3+n2+4
n3+100

. Solution.

Note that n3+n2+4
n3+100

=
1+ 1

n
+ 4

n2

1+ 100
n3

. The numerator tends to 1 and the denominator tends to 1

as well, therefore, an → 1.

• Let x = 0.12341234 · · · . Represent x as a rational number.

Solution. x is approximated by

0.1 + 0.02 + 0.003 + 0.0004 + · · · =
n∑

k=1

1234 · 10000−k

=
1234(1− 10000−n

1− 10000
→ 1234

10000− 1
=

1234

9999
.

• Compute limx→2 x
2.

Solution. We have seen that f(x) = x is continuous, therefore, limx→2 x = 2 and with
g(x) = x · x we have limx→2 x

2 = 2 · 2 = 4.
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Figure 12: The graphs of f(x) =

{
x2 if x ≥ 1

0 if x ≤ 1
.

• Compute limx→1
x+2
x−3 .

Solution. It is easy to see that f(x) = x+2 and g(x) = x−3 are continuous, therefore, the
quotient x+2

x−3 is continuous as long as x ̸= 3. That is, limx→1
x+2
x−3 = limx→1 x+2

limx→1x−3 = 3
−2 = −3

2 .

• Compute limx→−1
x2+3x+2
x2−1

.

Solution. As it is written, the denominator tends to 0 as x → −1. But actually we have
x2+3x+2
x2−1

= (x+2)(x+1)
(x−1)(x+1) =

x+2
x−1 for x ̸= −1. Therefore,

lim
x→−1

x2 + 3x+ 2

x2 − 1
= lim

x→−1

x+ 2

x− 1
=

1

−2
= −1

2
.

• Let f(x) =

{
x2 if x ≥ 1

0 if x ≤ 1
. Is f continuous or not? If not, where is it not continuous?

Solution. We know that x2 and 0 are continuous for x > 1 and x < 1, respectively. The
problem is at x = 1. If xn > 1, xn → 1, then f(xn) = x2n → 1, but if xn < 1, xn → 1, then
f(xn) = 0 → 0, and they do not conincide. Hence f is not continuous at x = 1.

• Let f(x) =

{
x2+3x+2
x2−1

for x ̸= 1,−1

−1
2 for x = −1

, defined on R \ {1}. Is f continuous or not? If not,

where is it not continuous?

Solution. As we saw before, x2+3x+2
x2−1

= x+2
x−1 and limx→−1

x2+3x+2
x2−1

= −1
2 . As f(−1) = −1

2
by definition, f is continuous at x = −1. It is also continuous at x ̸= 1. Therefore, it is
continuous on R \ {1} (not defined at x = 1).

• Let f(x) = x4 + 3x3 − x− 2. Show that the equation f(x) = 0 has at least two solutions.

Solution. Note that f(0) = −2, f(1) = 1. Hence by the intermediate value theorem there
is x1 ∈ (−2, 1) such that f(x1) = 0. Similarly, f(0) = −2, f(−3) = 1. Hence by the
intermediate value theorem there is x2 ∈ (−3, 0) such that f(x2) = 0.

• Compute limx→1

√
x+ 3

√
x.

Solution. We know that
√
x = x

1
2 is continuous (on R+ ∪ {0}), hence limx→1

√
x = 1.

Further x + 3
√
x is continuous and limx→1 x + 3

√
x = 4. Finally limx→1

√
x+ 3

√
x is

continuous (on R+ ∪ {0}) and limx→1

√
x+ 3

√
x =

√
4 = 2.

13



Figure 13: The graph of f(x) = x2+3x+2
x2−1

.

Figure 14: The graphs of f(x) = x4 + 3x3 − x− 2.
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• Compute limn→∞

√
n

1
n + 3

√
n

1
n .

Solution. We know that n
1
n → 1. By combining with the above, the limit is 2.

• Compute limn→∞(n+ n2)
1
n .

Solution. Clearly 1 < (n+ n2)
1
n < (2n2)

1
n = 2

1
n (n

1
n )2 → 1, so by squeezing the limit is 1.

• For a > 1, compute limn→∞
n1.5

an .

Solution. Clearly 0 < n1.5

an < n2

an → 0, so by squeezing the limit is 0.

• Show that a
1
n b

1
n = (ab)

1
n for a, b ≥ 0.

Solution. Note that (a
1
n b

1
n )n = (a

1
n )n(b

1
n )n = ab, hence we can take the n-th root of both

sides.

• Compute limx→0
1−

√
1−x2

x2 .

Solution. At first sight, it would yield 0
0 . However, for x ̸= 0, we have

1−
√
1− x2

x2
=

(1−
√
1− x2)(1 +

√
1− x2)

x2(1 +
√
1− x2)

=
1− (1− x2)

x2(1 +
√
1− x2)

=
1

1 +
√
1− x2

Therefore, limx→0
1−

√
1−x2

x2 = limx→0
1

1+
√
1−x2

= 1
2 .

• Compute limx→0

√
1−x−

√
1+x

x .

Solution.
√
1− x−

√
1 + x

x
=

(
√
1− x−

√
1 + x)(

√
1− x+

√
1 + x)

x(
√
1− x+

√
1 + x)

=
(1− x)− (1 + x)

x(
√
1− x+

√
1 + x)

=
−2√

1− x+
√
1 + x

Therefore, limx→0

√
1−x−

√
1+x

x = limx→0
−2√

1−x+
√
1+x

= −1.

• Consider f(x) = x2. For ϵ = 0.1, find a δ which shows the continuity of f at x = 1.

Solution. Note that (1 + y)2 = 1 + 2y + y2. We need that |2y + y2| < 0.1, and this is
achieved with |y| < 0.04.

• Consider f(x) = x
1
3 . For ϵ = 0.1, find a δ which shows the continuity of f at x = 0.

Solution. We need that x
1
3 < 0.1, hence x < 0.001 (and x ≥ 0).

Exponential, logarithm and their limits.

• Prove that for p, q, r, s ∈ N, we have (a
p
q )

r
s = a

pr
qs .

Solution. We have

((a
p
q )

r
s )qs = (a

p
q )qr = ((a

p
q )q)r = apr,

and hence by taking the qs-th root of both sides we obtain the claim.
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• Let an = (−1)n

n . Determine sup{ak : k ≥ n} and inf{ak : k ≥ n}.
Solution. Note that an ≥ 0 if n is even, and an < 0 if n is odd. In addition, |an| = 1

n is
monotonically decreasing.

If n is even, then an is the largest in {ak : k ≥ n}, hence sup{ak : k ≥ n} = 1
n , while the

smallest element is an+1, hence inf{ak : k ≥ n} = − 1
n+1 .

Similarly, if n is odd, then sup{ak : k ≥ n} = 1
n+1 , while inf{ak : k ≥ n} = − 1

n .

• Compute 2x for x = 1, 2, 3, 4, 12 ,−
3
2 .

Solution. 21 = 2, 22 = 4, 23 = 8, 24 = 16, 2
1
2 =

√
2, 2−

3
2 = 1

2
√
2
.

• Compute (19)
x for x = 1, 2,−3,−1

2 ,
3
2 .

Solution. (19)
1 = 1

9 , (
1
9)

2 = 1
81 , (

1
9)

−3 = 729, (19)
− 1

2 = 3, (19)
3
2 = 1

27 .

• Imagine that there is a pond and the leaves of lotus doubles each day. If the pond is
completely filled on day 100, when is the pond half filled?

Solution. It’s day 99, because on the next day the pond is filled completely.

• Compute log3(81), log81 3, log2 0.125.

Solution. 81 = 34, hence log3 81 = 4. 3 = 81
1
4 , hence log81 3 = 1

4 .

0.125 = 1
8 = 2−3, hence log2 0.125 = −3.

• Compute (1 + 1
3)

3.

Solution. (43)
3 = 64

27 = 2.370370...

(1 + 1
5)

5 = 2.48832.

(1 + 1
10000)

10000 = 2.718145927.

The true value e = limn→∞(1 + 1
n)

n = 2.718281828....

• If y = Ceax, what is the relation between z = log y and x?

Solution. We have ez = y, hence ez = Ceax, and by taking log, we have z = ax+ logC.

• If y = Cxp, what is the relation between z = log y and w = log x?

Solution. We have ez = y, ew = x, hence ez = Cepw, and by taking log, we have z =
pw + logC.

• Calculate the integer part of log10(232720).

Solution. Note that 105 = 100000 = 232720 < 1000000 = 106. As log10 x is monotonically
increasing, 5 < log10 232720 < 6. Therefore, its integer part is 5.

• Calculate the integer part of log2(13567).

Solution. Note that 213 = 8192 < 13567 < 16384 = 214. As log2 x is monotonically
increasing, 13 < log2 13567 < 14. Therefore, its integer part is 13.

• Compute limn→∞(1 + 1
n)

n2 .

Solution. We know that limn→∞(1 + 1
n)

n = e. In particular, for sufficiently large n, we
have (1 + 1

n)
n > 2, and hence (1 + 1

n)
n2

> 2n → ∞.

• Compute limx→0
loga(1+x)

x .

Solution. Use the change of base loga(1 + x) = loga e log(1 + x), and hence

lim
x→0

loga(1 + x)

x
= loga e lim

x→0

log(1 + x)

x
= loga e.
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• Compute limx→0
ax−1
x .

Solution. Use the change of vaiables: ax = e(log a)x, and if x → 0, then (log a)x → 0.
Therefore,

lim
x→0

ax − 1

x
= lim

x→0

e(log a)x − 1

x
= lim

x→0

e(log a)x − 1

(log a)x
· log a = lim

y→0

ey − 1

y
· log a = log a.

• Compute limx→0
sinhx

x .

Solution.

lim
x→0

sinhx

x
= lim

x→0

ex − e−x

2x
= lim

x→0

ex − 1 + 1− e−x

2x
= lim

x→0

ex − 1

2x
+

e−x − 1

−2x
=

1

2
+

1

2
= 1.

• Compute limx→∞ tanhx.

Solution.

lim
x→∞

sinhx

coshx
= lim

x→∞

ex − e−x

ex + e−x
= lim

x→∞

1− e−2x

1 + e−2x
= 1.

• Compute limx→0
sinhx
ex−1 .

Solution.
lim
x→0

sinhx

ex − 1
= lim

x→0

sinhx

x

x

ex − 1
= 1 · 1 = 1.

• Compute limx→0
(1+x)a−1

x .

Solution.

lim
x→0

(1 + x)a − 1

x
= lim

x→0

ea log(1+x) − 1

x
= lim

x→0

ea log(1+x) − 1

log(1 + x)

log(1 + x)

x

= lim
y→0

eay − 1

y
lim
x→0

log(1 + x)

x
= a.

Trigonometric functions, open and closed sets, uniform continuity.

• Compute cos 5π
4 , sin 7π

3 , sin 115π
4 , sin(−23π

3 ).

Solution.

– cos 5π
4 = − cos π

4 = − 1√
2
.

– sin 7π
3 = sin π

3 =
√
3
2 .

– sin 115π
4 = sin 3π

4 = cos π
4 = 1√

2
.

– sin(−23π
3 ) = sin(π3 ) =

√
3
2 .

• Compute cos π
12 , sin

π
12 , sin

π
8 .

Solution. Use cos2 θ = cos 2θ+1
2 , sin2 θ = 1−cos 2θ

2 .

– cos π
12 =

√
√
3

2
+1

2 .

– sin π
12 =

√
1−

√
3

2
2 .

– sin π
8 =

√
1− 1√

2

2 .

17



sinβ

B

A

cosβ

α

α

β

Figure 15: The formula cos(α + β) = cosα cosβ − sinα sinβ. A = cosβ cosα,B = sinβ sinα
and A−B = cos(α+ β).

• Compute cos π
4 , sin

π
4 using cos π

2 = 0 and some of the general formulas.

Solution. Use cos2 θ = cos 2θ+1
2 , sin2 θ = 1−cos 2θ

2 . cos π
4 =

√
cos π

2
+1

2 = 1√
2
, sin π

4 =√
1−cos π

2
2 = 1√

2
.

• What is the domain of tan θ?

Solution. tan θ = sin θ
cos θ , hence it is defined where cos θ ̸= 0. cos θ = 0 if and only if

θ = (2n+1)π
2 , hence tan θ is defined for θ ̸= (2n+1)π

2 .

• Using the figure, explain the formula cos(α+ β) = cosα cosβ − sinα sinβ.

Solution. See Figure 15.

• Write cos 3θ, sin 3θ in terms of cos θ, sin θ.

Solution.

– cos 3θ = cos 2θ cos θ − sin 2θ sin θ = (cos2 θ − sin2 θ) cos θ − 2 cos θ sin2 θ.
– sin 3θ = sin 2θ cos θ + cos 2θ sin θ = 2 cos2 θ sin θ + (cos2 θ − sin2 θ) sin θ.

• Prove that the union of open sets is open.

Solution. If p ∈
⋃

j∈J Aj and Aj are open, then p ∈ Ak for some k ∈ J and there is ϵ > 0
such that (p− ϵ, p+ ϵ) ⊂ Ak ⊂

⋃
j∈J Aj ,

⋃
j∈J Aj is open.

• Prove that the intersection of closed sets is closed.

Solution.

If an ∈
⋂

j∈J Aj and Aj are closed, then an ∈ Aj for all j ∈ J If an → a, then a ∈ Aj for
all j because Aj is closed, hence a ∈

⋂
j∈J Aj hence

⋂
j∈J Aj is closed.

• Prove that the intersection of two open sets is open.

Solution. If p ∈ A1∩A2 and A1, A2 are open, then p ∈ A1, A2 and there are ϵ1, ϵ2 > 0 such
that (p − ϵ1, p + ϵ1) ⊂ A1, (p − ϵ2, p + ϵ2) ⊂ A2. Let ϵ be the smallest of the two. Then
(p− ϵ, p+ ϵ) ⊂ A1 ∩A2, hence A1 ∩A2 is open.
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• Find an example of intersection of infinitely many open sets which is not open.

Solution. For example, consider (− 1
n ,

1
n). It holds that

⋂
n∈N(−

1
n ,

1
n) = {0}. This is not

open.

• Find a subset of R which is both open and closed.

Solution. Let A be open and closed (and nonempty). Let a ∈ A. Consider Ac∩[a,∞). This
is bounded below, hence if it is not empty, there is inf(Ac∩[a,∞)). If x = inf(Ac∩[a,∞)) /∈
Ac, then there is ϵ > 0 such that (x − ϵ, x + ϵ) ⊂ Ac because A is closed (hence Ac

is closed), hence there are points below x and in Ac ∩ [a,∞), which contradicts that
x = inf(Ac ∩ [a,∞)). Hence x ∈ A. But then (x− ϵ, x+ ϵ) ⊂ A because A is open, which
contradicts that x = inf(Ac ∩ [a,∞)). Therefore, Ac ∩ [a,∞) must be empty. Similarly,
Ac ∩ (−∞, a] is empty. That is, A = R. Then indeed A is both open and closed.

• Find a function, continuous defined on R but bounded.

Solution. sin θ, cos θ, tanhx, and so on.

• Find a function, not continuous defined on R but bounded.

Solution. signx, x− [x], and so on.

• Tell whether y = cosx admits maxima and minima, and if so, list them up.

Solution. As cos2 x + sin2 x = 1, it holds that −1 ≤ cosx ≤ 1. cosx = 1 if and only if
x = 2nπ, n ∈ Z. cosx = −1 if and only if x = (2n+ 1)π, n ∈ Z.

• Tell whether y = tanhx admits maxima and minima, and if so, list them up.

Solution. As tanhx = ex−e−x

ex+e−x , this is monotonically increasing. Indeed,

tanhx =
1− e−2x

1 + e−2x

and if x > y, then 1 − e−2x > 1 − e−2y while 1 + e−2x < 1 − e−2y, hence tanhx > tan y.
This means that there is no maxima nor minima.

• Tell whether y = x is uniformly continuous or not, and prove it.

Solution. For any x ∈ R and ϵ > 0, we can take δ = ϵ, then for y such that |y− x| < δ = ϵ
we have |f(y)− f(x)| = |y − x| < ϵ. Therefore, this is uniformly continuous.

• Tell whether y = x2 is uniformly continuous or not, and prove it.

Solution. Let ϵ = 1. For any δ > 0, we can take x > 1
δ then f(x+δ)−f(x) = (x+δ)2−x2 =

2xδ + δ2 > 2 > ϵ. Therefore, this is not uniformly continuous.

• Tell whether y = sinx is uniformly continuous or not, and prove it.

Solution. By the Heine-Cantor theorem, y = sinx restricted to [0, 4π] is uniformly con-
tinuous. That is, for any ϵ > 0 there is δ > 0 such that | sin(x) − sin(y)| < ϵ if
|x − y| < δ, x, y ∈ [0, 4π]. Then, for any x, y ∈ R such that |x − y| < δ, there is n such
that x+ 2nπ, y + 2nπ ∈ [0, 4π]. Therefore, |f(x)− f(y)| = |f(x+ 2nπ)− f(y + 2nπ)| < ϵ.
Therefore, this is uniformly continuous.

• Tell whether y = tanhx is uniformly continuous or not, and prove it.

Solution. Let ϵ > 0.

We know that limx→∞ tanhx = 1, limx→−∞ tanhx = −1. Therefore, there is M > 0 such
that 1 − ϵ

2 < tanx < 1 for x > M . Similarly, −1 < tanx < −1 + ϵ
2 for x < −M . On the
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other hand, on [−M,M ], tanhx is uniformly continuous, hence there is δ > 0 such that if
|x− y| < δ then | tanhx− tanh y| < ϵ

2 .

Then, for any two points x, y such that |x − y| < δ, | tanhx − tanh y| < ϵ
2 + ϵ

2 = ϵ by
possibly taking the point in the middle M or −M . Therefore, this is uniformly continuous.

Derivative and some applications.

• Compute the derivative of f(x) =

{
x2 for x ≥ 0

0 for x < 0
.

Solution. For x ̸= 0 we know f ′(x) =

{
2x for x > 0

0 for x < 0
. For x = 0, let us compute

the left and right derivatives. We compute limh→0−
f(h)−f(0)

h = limh→0−
0−0
h = 0 and

limh→0+
f(h)−f(0)

h = limh→0+
h2−0
h = limh→0+ h = 0. So the left and right derivatives

coincide, therefore, f ′(0) = 0.

• Tell whether f(x) =

{
x sin 1

x for x ̸= 0

0 for x = 0
is continuous and is differentiable at x = 0.

Solution. We have f(h)−f(0)
h =

h sin 1
h
−0

h = sin 1
h and this does not have the limit h → 0.

But it is continuous at x = 0, because | sin 1
x | ≤ 1, hence limx→0 |x sin 1

x | ≤ limx→0 |x| = 0.

• Tell whether f(x) =

{
x2 sin 1

x for x ̸= 0

0 for x = 0
is continuous and is differentiable at x = 0.

Solution. We have limh→0
f(h)−f(0)

h = limh→0
h2 sin 1

h
−0

h = limh→0 h sin
1
h = 0, hence it is

differentiable and in particular continuous.

• Compute the derivative of f(x) = x3 based on the definition.

Solution.

lim
h→0

(x+ h)3 − x3

h
= lim

h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h

= lim
h→0

(3x2 + 3xh+ h2) = 3x2.

• Compute the derivative of f(x) = x2 + x based on the definition.

Solution.

lim
h→0

(x+ h)2 + (x+ h)− x2 − x

h
= lim

h→0

x2 + 2xh+ h2 + (x+ h)− x2 − x

h

= lim
h→0

(2x+ h+ 1) = 2x+ 1.

• Compute the derivative: f(x) = x2 − cos(3x).

Solution. By the chain rule and linearity, it is 2x+ 3 sin(3x).

• Compute the derivative: f(x) =
√
x2 + 1.

Solution. By the chain rule with
√
x2 + 1 = (x2 + 1)

1
2 , it is 2x · 1

2(x
2 + 1)−

1
2 = x√

x2+1
.

• Compute the derivative: f(x) = sin(x+2
ex ).

Solution. By the chain rule, f ′(x) = ex−ex(x+2)
e2x

cos(x+2
ex ) = −e−x(x+ 1) cos(x+2

ex ).
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Figure 16: The x-axis is the beach, and the boat sails on the line y = 4.

• Compute the derivative: f(x) = sin(cos(x2)).

Solution. By the chain rule, f ′(x) = D(cos(x2)) cos(cos(x2)) = −2x sin(x2) cos(cos(x2)).

• Compute the derivative: f(y) = log y, using that log y is the inverse function of ex.

Solution. With y = ex, f ′(y) = 1
ex = 1

y .

• Compute the derivative: f(y) =
√
y using that √

y is the inverse function of x2.

Solution. With y = x2, f ′(y) = 1
2x = 1

2
√
y .

• Find the stationary points of y = x3 − 3x2 + 3x.

Solution. With f(x) = x3 − 3x2 + 3x, f ′(x) = 3x2 − 6x+ 3 = 3(x2 − 2x+ 1) = 3(x− 1)2,
hence x = 1 is the only stationary point.

• Find the stationary points of y = sin(x2).

Solution. With f(x) = sin(x2), f ′(x) = 2x cos(x2), and f ′(x) = 0 if and only if x = 0 or
cos(x2) = 0, hence x = 0 or x = ±

√
nπ
2 for n ∈ N odd.

• Consider the relation y2 − x2 = 1. Write y as an explicit function of x, and take the
derivative. Differentiate it implicitly and find a relation.

Solution. y(x)2 = x2 + 1 and hence y(x) = ±
√
x2 + 1 and y′(x) = ± x√

x2+1
, we see the

relation y′(x)y(x) = x.

By differentiating the relation, we obtain 2y(x)y′(x) = 2x, and hence y(x)y′(x) = x.

• Consider the relation y5 + xy − 2x3 = 0. Check that (x, y) = (1, 1) satisfy this equation.
Assume that this defines an implicit function y(x), and compute y′(1).

Solution. 15 + 1 · 1 − 2 · 13 = 0. We have 5y′(x)y(x)4 + y + xy′(x) − 6x2 = 0, and hence
y′(1) = 6−1

5+1 = 6
5 .

• A boat sails parallel to a straight beach at a constant speed of 12 miles per hour, staying
4 miles offshore. How fast is it approaching a lighthouse on the shoreline at the instant it
is exactly 5 miles from the lighthouse?

Solution. Let us say that at time t the boat is at the position (12t, 4), and the lighthouse
is at (0, 0). The distance between the lighthouse and the boat is r(t) =

√
(12t)2 + 42 =

4
√
9t2 + 1, or r(t)2 = (12t)2 + 42.

The speed with which the boat approaches the lighthouse is r′(t). By differentiating the
above relation by t, we have 2r(t)r′(t) = 288t. Furthermore, When r(t) = 5, we have
t = ±1

4 . Therefore, 2 · 5r′(±1
4) = ±72 and r′(t) = ±36

5 .
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Higher derivatives and curve sketching.

• Determine where the function is increasing or decreasing. f(x) = x3 − 3x.

Solution. f ′(x) = 3x2 − 3 = 3(x− 1)(x+ 1). Hence f is increasing when f ′(x) > 0, that is
x < −1 or x > 1 and f is decreasing when f ′(x) < 0, that is −1 < x < 1.

• Determine where the function is increasing or decreasing. f(x) = ex − x.

Solution. f ′(x) = ex − 1. Hence f is increasing when f ′(x) > 0, that is x > 0 and f is
decreasing when f ′(x) < 0, that is x < 0.

• Determine where the function is increasing or decreasing. f(x) = x+ 1
x , x > 0.

Solution. f ′(x) = 1 − 1
x2 . Hence f is increasing when f ′(x) > 0, that is x > 1 and f is

decreasing when f ′(x) < 0, that is x < 1.

• Determine where the function is increasing or decreasing. f(x) = x
x2+1

.

Solution. f ′(x) = x2+1−2x2

(x2+1)2
= −(x−1)(x+1)

(x2+1)2
. Hence f is increasing when f ′(x) > 0, that is

−1 < x < 1 and f is decreasing when f ′(x) < 0, that is x < −1, x > 1.

• Find the local maxima and minima using the second derivative. f(x) = 2x3 − 3x2.

Solution. f ′(x) = 6x2 − 6x = 6x(x − 1). Hence f ′(x) = 0 if and only if x = 0, 1.
f ′′(x) = 12x − 6, f ′′(0) = −6 < 0 hence x = 0, f(0) = 0 is a local maximum, while
f ′′(1) = 6 > 0 hence x = 1, f(1) = −1 is a local minimum.

• Find the local maxima and minima using the second derivative. f(x) = xex.

Solution. f ′(x) = ex + xex = ex(x + 1). Hence f ′(x) = 0 if and only if x = −1. f ′′(x) =
2ex + xex, f ′′(−1) = 2

e −
1
e = 1

e > 0 hence x = −1, f(−1) = −1
e is a local minimum.

• Find the asymptotes of f(x) =
√
x2 + 1.

Solution.

lim
x→∞

√
x2 + 1

x
= lim

x→∞

√
1 +

1

x2
= 1

and

lim
x→∞

√
x2 + 1− x = lim

x→∞

(
√
x2 + 1− x)(

√
x2 + 1 + x)√

x2 + 1 + x
= lim

x→∞

1√
x2 + 1 + x

= 0.

Hence y = x is an asymptote for x → ∞. Similarly,

lim
x→−∞

√
x2 + 1

x
= lim

x→−∞
−
√
1 +

1

x2
= −1

and
lim

x→−∞

√
x2 + 1− (−x) = lim

x→−∞

1√
x2 + 1− x

= 0.

Hence y = −x is an asymptote for x → −∞.

• Find the asymptotes of f(x) = x+ 1
x .

Solution.

lim
x→∞

x+ 1
x

x
= lim

x→∞
1 +

1

x2
= 1,

and
lim
x→∞

x+
1

x
− x = lim

x→∞

1

x
= 0.

hence y = x is an asymptote for x → ∞. Similarly, y = −x an asymptote for x → −∞.
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• Sketch the graph of f(x) = x2−5
x−3 .

Solution.

– Domain: x ̸= 3.

– Vertical asymptote: x = 3.
Oblique asymptotes: limx→∞

x2−5
x(x−3) = 1, and

lim
x→∞

x2 − 5

x− 3
− x = lim

x→∞

x2 − 5− x(x− 3)

x− 3
= lim

x→∞

3x− 5

x− 3
= 3,

hence y = x+ 3 is an asymptote for x → ∞. Similarly, y = x+ 3 is an asymptote for
x → −∞.

– f ′(x) = 2x(x−3)−(x2−5)
(x−3)2

= x2−6x+5
(x−3)2

= (x−1)(x−5)
(x−3)2

. f ′(x) > 0 if and only if x < 1, x > 5

and f ′(x) < 0 if and only if 1 < x < 3, 3 < x < 5.

– From this, x = 1 is a local maximum and x = 5 is a local minimum.

x 1 3 5

f ′(x) + 0 − nd − 0 +
f ′′(x) − nd +
f(x) ↗ 2 ↘ nd ↘ 10 ↗

• Sketch the graph of f(x) =
√

x3

x−1 .

Solution.

– Domain: x ̸= 1, and x3

x−1 ≥ 0, that is x > 1 or x ≤ 0.

– Vertical asymptote: x = 1.

Oblique asymptotes: limx→∞

√
x3

x−1
1
x = limx→∞

√
x3

x2(x−1)
= 1, and

lim
x→∞

√
x3

x− 1
− x = lim

x→∞
x

(√
x

x− 1
− 1

)
= lim

x→∞
x
(
√
x−

√
x− 1)(

√
x+

√
x− 1)√

x− 1(
√
x+

√
x− 1)

= lim
x→∞

x
x− (x− 1)√

x− 1(
√
x+

√
x− 1)

=
1

2
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hence y = x + 1
2 is an asymptote for x → ∞. Similarly, limx→−∞

√
x3

x−1
1
x =

limx→−∞−
√

x3

x2(x−1)
= −1, and

lim
x→−∞

√
x3

x− 1
− (−x) = lim

x→−∞
x

(
−
√

−x

−x+ 1
+ 1

)
= lim

x→−∞
x
(
√
−x−

√
−x+ 1)(

√
−x+

√
−x+ 1)√

−x+ 1(
√
−x+

√
−x+ 1)

= lim
x→−∞

x
−x− (−x+ 1)√

−x+ 1(
√
−x+

√
−x+ 1)

= −1

2

hence y = −x− 1
2 is an asymptote for x → −∞.

– f ′(x) = 3x2(x−1)−x3

2(x−1)2f(x)
= x2(2x−3)

2(x−1)2f(x)
. f ′(x) > 0 if x > 3

2 and f ′(x) < 0 if x < 3
2 .

f(32) =
√

27
4 .

x 0 1 3
2

f ′(x) − nd − 0 +
f ′′(x) nd +

f(x) ↘ 0 nd ↘
√

27
4 ↗

• A truck is to be driven 300 miles on a freeway at a constant speed of x miles per hour.
Speed laws require 30 < x < 60. Assume that fuel is consumed at the rate of 2 + x2/600
gallons per hour. Which speed should the track driver go to save the fuel cost?

Solution. The truck has to drive fo 300/x hours, and then consumes f(x) = 300
x (2+ x2

600) =
600
x + x

2 gallons.

Considering this as a function of x, we find its minimum in 30 < x < 60. f ′(x) = −600
x2 + 1

2 ,
hence f(x) = 0 if x =

√
1200 ∼= 34.6. f ′′(x) = 1200

x3 , hence this is a local minimum.

Bernoulli-de l’Hôpital rule, higher order Taylor formula.

• Compute the limit. limx→0
sin2 x
x2 .

Solution. We have D(sin2 x) = 2 sinx cosx,D(x2) = 2x, and hence limx→0
sin2 x
x2 =

limx→0
2 sinx cosx

2x = 1.

• Compute the limit. limx→0
sinx−x

x3 .
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Solution. We have D(sinx − x) = cosx − 1, D(x3) = 3x2, and further D(cosx − 1) =
− sinx,D(3x2) = 6x hence

lim
x→0

sinx− x

x3
= lim

x→0

cos−1

3x2
= lim

x→0

− sinx

6x
= −1

6
.

• Compute the limit. limx→∞
log (x3+1)

log x .

Solution. We have D(log(x3 + 1)) = 3x2

x3+1
, D(log x) = 1

x and hence

lim
x→∞

log(x3 + 1)

log x
= lim

x→∞

3x2

x3+1
1
x

= lim
x→∞

3x3

x3 + 1
= 3.

• Compute the limit. limx→0 x log x.

Solution. We have limx→0 x log x = limx→0
log x

1
x

and D(log x) = 1
x , D( 1x) =

−1
x2 and hence

limx→0 x log x = limx→0

1
x
−1

x2

= limx→0(−x) = 0.

• Find the second order Taylor formula. f(x) = sin(x2) as x → 0.

Solution. We have f ′(x) = 2x cos(x2), f ′′(x) = 2 cos(x2)−4x2 sin(x2) and f(0) = 0, f ′(0) =

0, f ′′(0) = 2, and hence f(x) = 0 + 0x+ 2x2

2! + o(x2) = x2 + o(x2) as x → 0.

• Find the second order Taylor formula. f(x) =
√
x2 + 1 as x → 1.

Solution. We have f ′(x) = x√
x2+1

, f ′′(x) =

√
x2+1−x x√

x2+1

x2+1
= 1

(x2+1)
3
2

and hence f(1) =

√
2, f ′(1) = 1√

2
, f ′′(1) = 1

2
3
2
. Therefore, f(x) =

√
2+ (x−1)√

2
+ (x−1)2

2
5
2

+ o((x− 1)2) as x → 1.

• Find the second order Taylor formula. f(x) = sin(x)− 1 as x → π
2 .

Solution. We have f ′(x) = cosx, f ′′(x) = − sinx and hence f(π2 ) = 0, f ′(π2 ) = 0, f ′′(π2 ) =

−1. Therefore, f(x) = − (x−π
2
)2

2 + o((x− π
2 )

2) as x → π
2 .

• Find the second order Taylor formula. f(x) = ex−1
cosx as x → 0.

Solution. We have f ′(x) = ex cosx+(ex−1) sinx
cos2 x

,

f ′′(x)

=
(ex(cosx− sinx) + (ex sinx+ (ex − 1) cosx)) cos2 x

cos4 x

− (ex cosx+ (ex − 1) sinx)(−2 sinx cosx)

cos4 x

=
(2ex − 1) cos3 x+ 2ex sinx cos2 x+ 2ex sin2 x cosx− 2 sin2 x cosx

cos4 x

and hence f(0) = 0, f ′(0) = 1, f ′′(0) = 1. Therefore, f(x) = x+ x2

2 + o(x2) as x → 0.

• Find the n-th order Taylor formula. f(x) = cos(x) as x → 0.

Solution. f (4n)(x) = cosx, f (4n+1)(x) = − sinx, f (4n+2)(x) = − cosx, f (4n+3)(x) = sinx,
and hence f (4n)(0) = 1, f (4n+1)(0) = 0, f (4n+2)(0) = −1, f (4n+3)(0) = 0, and

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)nx2n

(2n)!
+ o(x2n)

=

n∑
k=0

(−1)kx2k

(2k)!
+ o(x2n).
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• Find the n-th order Taylor formula. f(x) = log(1 + x) as x → 0.

Solution. f (2n)(x) = −(2n−1)!
(1+x)2n

, f (2n+1)(x) = (2n)!
(1+x)2n+1 , and f (2n)(0) = (2n−1)!, f (2n+1)(0) =

−(2n)!, and

log(1 + x) = x− x2

2
+

x3

3
− · · ·+ (−1)n+1xn

n
+ o(xn)

=
n∑

k=1

(−1)k+1xk

k
+ o(xn).

• Find the n-th order Taylor formula. f(x) = sin(x2) as x → 0.

Solution. We know sin y =
∑n

k=0
(−1)ky2k+1

(2k+1)! + o(y2n+1) as y → 0 and hence sin(x2) =∑n
k=0

(−1)kx4k+2

(2k+1)! + o(x4n+2) as x → 0

• Compute the limit.

lim
x→0

ex + cos(x)− sin(x)− 2

tan(2x3)
.

Solution. As x → x0 = 0, we have

– ex = 1 + x+ x2

2 + x3

6 + o(x3)

– cosx = 1− x2

2 + o(x3)

– sinx = x− x3

6 + o(x3)

– tan(2x3) = 2x3 + o(x3)

Then it holds, as x → 0,

ex + cos(x)− sin(x)− 2

tan(2x3)

=
1 + x+ x2

2 + x3

6 + 1− x2

2 − x+ x3

6 − 2 + o(x3)

2x3 + o(x3)

=
x3

3 + o(x3)

2x3 + o(x3)

hence limx→0
ex+cos(x)−sin(x)−2

tan(2x3)
= 1

6 .

• For which α does the following limit exist?

lim
x→0

(
1+x2

1−x2

)
− α sin(x)− 1

1− cos(x)

Solution. As x → x0 = 0, we have

– 1+y
1−y = 1 + 2y + o(y) and 1+x2

1−x2 = 1 + 2x2 + o(x2)

– sinx = x+ o(x2)

– 1− cosx = x2

2 + o(x2)

Then it holds, as x → 0,(
1+x2

1−x2

)
− α sin(x)

1− cos(x)
=

1 + 2x2 − αx− 1 + o(x2)
x2

2 + o(x2)

hence limx→0 limx→0

(
1+x2

1−x2

)
−α sin(x)−1

1−cos(x) exists if and only if α = 0, and in that case, the limit
is 4.
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· · ·

Figure 17: The upper and lower sum for f(x) = x2.

Integral, primitive (and Taylor formula).

• Compute the integral
∫ 1
0 x2dx based on the definition (using the upper and lower sums).

Solution. Let us take a partition Pn = {[0, 1
n), [

1
n ,

2
n), · · · , [

n−1
n , 1]} of [0, 1].

– Let f(x) = x2.

SI(f, Pn) =

n∑
j=1

(
j

n

)2

· 1
n

=
1

n3
·

n∑
j=1

j2

=
1

n3
· n(n+ 1)(2n+ 1)

6

Analogously,

SI(f, Pn) =

n∑
j=1

(
j − 1

n

)2

· 1
n
=

1

n3
·

n∑
j=1

(j − 1)2

=
1

n3
·
n−1∑
j=0

j2

=
1

n3
· (n− 1)n(2(n− 1) + 1)

6

Therefore, by taking n → ∞, we obtain limn→∞ SI(f, Pn) = limn→∞ SI(f, Pn) =
1
n3 ·

n(n+1)(2n+1)
6 = 1

3 while limn→∞ SI(f, Pn) = limn→∞ SI(f, Pn)
1
n3 · (n−1)n(2(n−1)+1)

6 = 1
3

.

• Compute
∫ 1
−1(x

4 + (x− 2)3 + x(x− 1))dx.
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Solution. We have ∫ 1

−1
(x4 + (x− 2)3 + x(x− 1))dx

= [
x5

5
+

(x− 2)4

4
+

x3

3
− x2

2
]1−1

= (
1

5
+

1

4
+

1

3
− 1

2
)− (

−1

5
+

81

4
+

−1

3
− 1

2
)

=
2

5
− 20 +

2

3
=

6− 300 + 10

15
= −284

15
.

• Compute
∫ π

2
0 sin(2(x+ π

6 ))dx. We have∫ π
2

0
sin(2(x+

π

6
))dx

= [−1

2
cos(2(x+

π

6
))]

π
2
0

= −1

2
(cos

2π

3
− cos

π

3
)

= −1

2
(−1

2
− 1

2
) =

1

2
.

Solution.

• Compute
∫ 1
−1 e

2(x−1)dx.

Solution. We have ∫ 1

−1
e2(x−1)dx

= [
1

2
e2(x−1)]1−1

=
1

2
(e0 − e−4)

=
1

2
(1− e−4)

• Compute
∫ 2
1

x2+3x+1
x dx.

Solution. ∫ 2

1

x2 + 3x+ 1

x
dx

=

∫ 2

1
(x+ 3 +

1

x
)dx

= [
x2

2
+ 3x+ log x]21

= (
4

2
+ 6 + log 2)− (

1

2
+ 3 + log 1)

=
9

2
+ log 2

• Compute
∫ π
0 sin2 xdx.
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Solution. Note that cos 2x = 1− 2 sin2 x, hence sin2 x = 1−cos 2x
2 and∫ π

0
sin2 xdx

=

∫ π

0

1− cos 2x

2
dx

=
1

2
[x− 1

2
sin 2x]π0

=
1

2
((π − 0)− (0− 0)) =

π

2
.

• Compute
∫ 1
0

x2

1+x2dx.

Solution. Note that D(arctanx) = 1
x2+1

.∫ 1

0

x2

1 + x2
dx

=

∫ 1

0

x2 + 1− 1

1 + x2
dx

= [x− arctanx]10

= (1− π

4
)− (0− 0) = 1− π

4

• Find the 2nd order Taylor formula for f(x) =
√
1 + 2x around x = 0.

Solution. We have f ′(x) = 2 · 1
2
√
1+2x

= 1√
1+2x

, f ′′(x) = 2 · (−1
2

1

(1+2x)
3
2
) = − 1

(1+2x)
3
2
.

Therefore, f(x) = 1 + x+ −x2

2 + o(x2).

• Find the 3nd order Taylor formula for f(x) = log(x+ 1) around x = 2.

Solution. We have f ′(x) = 1
x+1 , f

′′(x) = − 1
(x+1)2

.

Therefore, f(x) = log 3 + (x−2)
3 − (x−2)2

18 + o((x− 2)2).

• Compute the limit. limx→0
x4

cosx−1+x2

2

.

Solution. We have cosx = 1− x2

2 + x4

4! + o(x4), and hence

lim
x→0

x4

cosx− 1 + x2

2

= lim
x→0

x4

x4

24 + o(x4)
= 24.

• Determine α ∈ R for which the limit limx→0
(sinx)2−x2+αx4

ex6−1
exists, and in that case, compute

the limit.

Solution. We have

– sinx = x− x3

3! +
x5

5! + o(x5)

– sin2 x = x2 − x4

3 + ( 2
5! + ( 1

3!)
2)x6 + o(x6)

– ey = 1 + y + o(y)

– ex
6
= 1 + x6 + o(x6)

and hence
(sinx)2 − x2 + αx4

ex6 − 1
=

(α− 1
3)x

4 + 4
45x

6 + o(x6)

x6 + o(x6)

The limit x → 0 exists if and only if α − 1
3 = 0, that is, α = 1

3 and in that case, the limit
is 4

45 .
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Integral calculus.

• Calculate the indefinite integral.
∫
xexdx.

Solution. By integration by parts,∫
xexdx = xex −

∫
exdx+ C

= xex − ex + C.

• Calculate the indefinite integral.
∫
ex sinxdx.

Solution. By integration by parts,∫
ex sinxdx = ex sinx−

∫
ex cosxdx+ C

= ex sinx−
(
ex cosx−

∫
ex(− sinx)dx

)
+ C,

hence
∫
ex sinxdx = 1

2(e
x(sinx− cosx)) + C.

• Calculate the definite integral.
∫ 1
0 x2e−xdx.

Solution. By integration by parts,∫ 1

0
x2e−xdx = [−x2e−x]10 +

∫ 1

0
2xe−xdx

= −1

e
− [2xe−x]10 +

∫ 1

0
2e−xdx

= −3

e
− [2e−x]10 = 2− 5

e

• Calculate the indefinite integral.
∫
x
√
1− x2dx.

Solution. By substitution φ(x) = −x2, φ′(x) = −2x,∫
x
√

1− x2dx = −1

2

∫
(−2x)

√
1− x2dx = −1

2
· 2
3
(1− x2)

3
2 + C

= −1

3
(1− x2)

3
2 + C.

• Calculate the indefinite integral.
∫
xex

2
dx.

Solution. By substitution φ(x) = x2, φ′(x) = 2x,∫
xex

2
dx =

1

2

∫
2xex

2
dx =

1

2
ex

2
+ C

• Calculate the definite integral.
∫ 1
0 x3ex

2
dx.

Solution. By integration by parts and substitution φ(x) = x2, φ′(x) = 2x,∫ 1

0
x3ex

2
dx =

1

2

∫ 1

0
x2 · 2xex2

dx =
1

2
[x2ex

2
]10 −

1

2

∫ 1

0
2xex

2
dx

=
e

2
− 1

2
[ex

2
]10 =

1

2
.
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• Calculate the indefinite integral.
∫

x
x2−1

dx.

Solution 1. By substitution φ(x) = x2 − 1, φ′(x) = 2x,
∫

x
x2−1

dx = 1
2 log |x

2 − 1|+ C.

Solution 2. Let us find the partial fractions. x2 − 1 = (x− 1)(x+ 1).

x

x2 − 1
=

x

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
=

A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)
,

and from this we have x = A(x+ 1) +B(x− 1) = (A+B)x+A−B, therefore, A−B =
0, A+B = 1, and A = 1

2 , B = 1
2 .∫

x

x2 − 1
dx =

∫ (
1

2(x− 1)
+

1

2(x+ 1)

)
dx =

1

2
(log |x− 1|+ log |x+ 1|) + C.

• Calculate the definite integral.
∫ 1
0

1
x3−2x2+x−2

dx.

Solution. Let us find the partial fractions. x3 − 2x2 + x− 2 = (x2 + 1)(x− 2).

1

x3 − 2x2 + x− 2
=

Ax+B

x2 + 1
+

C

x− 2
=

(Ax+B)(x− 2) + C(x2 + 1)

(x2 + 1)(x− 2)

and from this we have 1 = (A + C)x2 + (B − 2A)x + (C − 2B), and hence A + C =
0, B − 2A = 0, C − 2B = 1. By solving this, C = 1

5 , A = −1
5 , B = −2

5 . That is,∫
1

x3 − 2x2 + x− 2
dx =

1

5

∫ (
−x− 2

x2 + 1
+

1

x− 2

)
dx

=
1

10
(− log(x2 + 1)− 4 arctanx+ 2 log |x− 2|).

Therefore,
∫ 1
0

1
x3−2x2+x−2

dx = − π
10 − 3 log 2

10 .

• Calculate the indefinite integral.
∫

1
cosxdx.

Solution 1. By substitution t = φ(x) = sinx, φ′(x) = cos t,∫
1

cosx
dx =

∫
1

cos2 x
cosxdx

=

∫
1

1− sin2 x
φ′(x)dx =

∫
1

1− t2
dt

=
1

2

∫
(

1

1 + t
+

1

1− t
)dt =

1

2
log

|1 + t|
|1− t|

.

That is,
∫

1
cosxdx = 1

2 log
| sinx+1|
| sinx−1| .

Solution 2. By change of variables x = φ(t) = 2 arctan t, or t = tan x
2 , φ′(t) = 2

t2+1
, cosx =

1−t2

t2+1
, ∫

1

cosx
dx =

∫
2

1− t2
dt =

∫
(

1

t+ 1
− 1

t− 1
)dt = log

|t+ 1|
|t− 1|

.

That is,
∫

1
cosxdx = log

| tan x
2
+1|

| tan x
2
−1| .

• Calculate the indefinite integral.
∫

1
cosx+sinxdx.
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Solution. By change of variables By change of variables x = φ(t) = 2 arctan t, or t = tan x
2 ,

φ′(t) = 2
t2+1

, sinx = 2t
t2+1

,∫
1

cosx+ sinx
dx =

∫
1

1−t2

t2+1
+ 2t

t2+1

· 2

t2 + 1
dt

= −
∫

2

t2 − 2t− 1
dt

= − 1√
2

∫ (
1

t− 1−
√
2
− 1

t− 1 +
√
2

)
dt

= − 1√
2
log

|t− 1−
√
2|

|t− 1 +
√
2|
.

That is,
∫

1
cosx+sinxdx = − 1√

2
log

| tan x
2
−1−

√
2|

| tan x
2
−1+

√
2| .

• Calculate the definite integral.
∫ √

2

−
√
2

√
4− x2dx.

Solution. Change of variables x = 2 sin t. Note that sin(−π
4 ) = −

√
2
2 , sin π

4 =
√
2
2 . There-

fore, with dx
dt = 2 cos t,∫ √

2

−
√
2

√
4− x2dx =

∫ π
4

−π
4

√
4− 4 sin2 x · 2 cos tdt

= 4

∫ π
4

−π
4

cos2 tdt

= 4

∫ π
4

−π
4

cos(2t) + 1

2
dt

= 4

[
sin(2t)

4
+

t

2

]π
4

−π
4

= 2 + π

• Calculate the indefinite integral.
∫ 2
0

√
8− x2dx.

Solution. Change of variables x = 2
√
2 sin t. Note that sin 0 = 0, sin π

4 =
√
2
2 . Therefore,

with dx
dt = 2

√
2 cos t, ∫ 2

0

√
4− x2dx =

∫ π
4

0

√
8− 8 sin2 x · 2

√
2 cos tdt

= 8

∫ π
4

0
cos2 tdt

= 8

∫ π
4

0

cos(2t) + 1

2
dt

= 8

[
sin(2t)

4
+

t

2

]π
4

0

= 2 + π

• Calculate the integral.
∫ 1
−1 sin(sinx)dx.

Solution. Note that sin(sin(−x)) = sin(− sin(x)) = − sin(sinx), and the interval [−1, 1] is
symmetric, hence this is 0.

• Calculate the inproper integral.
∫∞
0 xe−xdx.

32



Solution. Note that with F (x) = −e−x − xe−x, F ′(x) = xe−x. Therefore,∫ β

0
xe−xdx = [−e−x − xe−x]β0 = −e−β − βe−β + 1

and as β → ∞, this tends to 1. Hence
∫∞
0 xe−xdx = 1.

Improper integrals.

• Calculate the following improper integral.
∫∞
0 x

1
3 e−x

4
3 dx

Solution. The function x
1
3 ex

4
3 is bounded on any bounded interval. The integral is improper

only as x → ∞. Let us compute
∫ β
0 x

1
3 e−x

4
3 dx:∫ β

0
x

1
3 e−x

4
3 dx = −3

4

[
e−x

4
3

]β
0

= −3

4
(e−β

4
3 − e0)

By taking the limit β → ∞, we have
∫∞
0 x

1
3 e−x

4
3 dx = 3

4 .

• Calculate the following improper integral.
∫∞
1

log x
x2 dx

Solution. The function log x
x2 is bounded on any interval of the form [1, β]. The integral is

improper only as x → ∞. Let us compute
∫ β
1

log x
x2 dx:∫ β

1

log x

x2
dx =

[
− log x

x

]β
1

+

∫ β

1

1

x2
dx

= − log β

β
+ 0 +

[
−1

x

]β
1

= − log β

β
+ (− 1

β
− (−1))

By taking the limit β → ∞, we have
∫ β
1

log x
x2 dx = 1.

• Determine whether the following improper integral converges.
∫∞
1

x3

x4+1
dx.

Solution 1. The function x3

x4+1
is bounded on any interval of the form [1, β]. The integral

is improper only as x → ∞. Furthermore, x3

x4+1
is asymptotically equal to 1

x as x → ∞,
that is,

x3

x4+1
1
x

=
x4

x4 + 1
→ 1 as x → ∞.

On the other hand, we know that
∫ β
1

1
xdx = [log x]β0 = log β diverges as β → ∞. Therefore,

the integral
∫∞
1

x3

x4+1
dx diverges as well.

Solution 2.
∫∞
1

x3

x4+1
dx = 1

4 [log(x
4 + 1)]β1 = 1

4(log(β
4 + 1) − log 2) and this diverges as

β → ∞.

• Determine whether the following improper integral converges.
∫ 2
1

x2

(x−1)
1
2
dx.

Solution. The function x2

(x−1)
1
2

is bounded on any interval of the form [1 + ϵ, 2] for ϵ > 0.

The integral is improper only as x → 1. Furthermore, x2

(x−1)
1
2

is asymptotically equal to
1

(x−1)
1
2

as x → 1, that is,

x2

(x−1)
1
2

1

(x−1)
1
2

= x2 → 1 as x → 1.
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On the other hand, we know that
∫ 2
1+ϵ

1

(x−1)
1
2
dx = [2(x− 1)

1
2 ]21+ϵ = 2− 2ϵ

1
2 converges (to

2 as ϵ → 0) as ϵ → 0. Therefore, the improper integral x2

(x−1)
1
2

is also convegent.

• Determine whether the following improper integral converges.
∫ 1
0

x2

sinx−xdx.

Solution. The function x2

sinx−x is bounded on any interval of the form [ϵ, 1] for ϵ > 0. The
integral is improper only as x → 0. Furthermore, as sinx − x = −x3

6 + o(x3), x2

sinx−x is
asymptotically equal to x2

x3

6

as x → 0, that is,

x2

sinx−x

x2

−x3

6

→ 1 as x → 0.

On the other hand, we know that
∫ 1
ϵ

x2

−x3

6

dx = −6[log x]1ϵ = 6 log ϵ diverges as ϵ → 0.

Therefore, the improper integral x2

sinx−x is also divergent.

• Calculate the area of the region surrounded by y = x2 − 1 and the x-axis.

Solution. The function y = x2 − 1 and the x-axis intersects when x2 − 1 = 0, that is, at
x = −1, 1. Therefore, the region is given by D = {(x, y) : −1 ≤ x ≤ 1, x2 − 1 ≤ y ≤ 0}.
Its area is by definition ∫ 1

−1
0− (x2 − 1)dx = [x− x3

3
]1−1 =

4

3
.

• Calculate the area of the region surrounded by y = x2 and y = 5x+ 6.

Solution. The function y = x2 and y = 5x + 6 intersects when x2 = 5x + 6, that is, at
x = −1, 6. Therefore, the region is given by D = {(x, y) : −1 ≤ x ≤ 6, x2 ≤ y ≤ 5x + 6}.
Its area is by definition∫ 6

−1
(5x+ 6− x2)dx = [

5x2

2
+ 6x− x3

3
]6−1 = (90 + 36− 72)− (

5

2
− 6− 1

3
) =

343

6
.

• Calculate the area of the region given by {(x, y) : a2x2 + b2y2 ≤ 1}.
Solution. The condiction can be written equivalently as b2y2 ≤ 1− a2x2,

−1

b

√
1− a2x2 ≤ y ≤ 1

b

√
1− a2x2.

Furthermore, there is such x if and only if 1− a2x2 ≥ 0, that is, − 1
a ≤ x ≤ 1

a .

This region can be written as

D =

{
(x, y) : −1

a
≤ x ≤ 1

a
,−1

b

√
1− a2x2 ≤ y ≤ 1

b

√
1− a2x2

}
.

The area is given, with the change of variables x = t
a and dx

dt = 1
a , t = sin θ, dt

dθ = cos θ, by∫ 1
a

− 1
a

1

b

√
1− a2x2 − (−1

b

√
1− a2x2)dx

=
2

b

∫ 1
a

− 1
a

√
1− a2x2dx =

2

b

∫ 1

−1

√
1− t2

1

a
dt =

2

ab

∫ π
2

−π
2

cos2 θdθ

=
2

ab
[
cos 2θ + 1

2
]
π
2

−π
2
=

2π

ab
.
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• Calculate the length of the curve given by f(x) = x2

2 from x = − e− 1
e

2 to x =
e− 1

e
2 .

Solution. By definition, we need to compute f ′(x) = x and the length is∫ e− 1
e

2

− e− 1
e

2

√
1 + x2dx.

By the change of variables x = sinh t = et−e−t

2 , dx
dt = cosh t and

√
1 + sinh2 t = cosh t,

hence ∫ e− 1
e

2

− e− 1
e

2

√
1 + x2dx

=

∫ 1

−1
cosh2 tdt =

∫ 1

−1

e2x + 2 + e−2x

2
dt

=
1

4
[e2x + 2x− e2x]1−1 = 1 +

e2 − e−2

2
.

Series.

• Compute the series
∑∞

n=1
3
4n .

Solution. We have
∑n

k=1 a
k = a+ a2 + a3 + · · ·+ an = a−an+1

1−a .

∞∑
n=1

3

4n
= 3

∞∑
n=1

(
1

4

)n

= 3
1
4

1− 1
4

= 3
1
4
3
4

= 1

Note: We have
∑n

k=0 a
k = 1 + a+ a2 + a3 + · · ·+ an = 1−an+1

1−a .

• Compute the series
∑∞

n=1
1

n(n+1)(n+2) .

Solution. Note that
1

n(n+ 1)(n+ 2)
=

1

2(n+ 1)

(n+ 2)− n

n(n+ 2)
=

1

2(n+ 1)

(
1

n
− 1

n+ 2

)
=

1

2

(
1

n(n+ 1)
− 1

(n+ 1)(n+ 2)

)
So

∑∞
n=1

1
n(n+1)(n+2) is a telescopic series with bn = 1

2n(n+1) , and limn→∞ bn = 0, therefore,

∞∑
n=1

1

n(n+ 1)(n+ 2)
=

∞∑
n=1

(bn − bn+1) = b1 =
1

4

• Compute the series
∑∞

n=2
1

n2−1
.

Solution. Note that
1

n2 − 1
=

1

(n+ 1)(n− 1)
=

1

2

(n+ 1)− (n− 1)

(n+ 1)(n− 1)
=

1

2(n− 1)
− 1

2(n+ 1)

Therefore,
∞∑
n=2

1

n2 − 1

=
1

22 − 1
+

1

32 − 1
+

1

42 − 1
+

1

52 − 1
+ · · ·

=
1

2
− 1

6
+

1

4
− 1

8
+

1

6
− 1

10
+

1

8
− 1

12
+ · · · = 1

2
+

1

4
=

3

8
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• Compute the series
∑∞

n=1
1+n
n! .

Solution. Recall that

ex =

∞∑
n=0

xn

n!

hence e = e1 =
∑∞

n=0
1
n! = 1 + 1 + 1

2 + 1
6 + · · · , and

∑∞
n=1

1
n! = (1 + 1

2 + 1
6 + · · · ) = e− 1.

Similarly,
∑∞

n=1
n
n! =

∑∞
n=1

1
(n−1)! =

∑∞
n=0

1
n! = e.

Therefore, the sum is e− 1 + e = 2e− 1.

• Determine whether
∑

n
n

n2+1
converges.

Solution. This diverges because
∑

n
1
n diverges and

lim
n→∞

1
n
n

n2+1

= lim
n→∞

n2 + 1

n2
= 1.

• Determine whether
∑

n
(n!)2

(2n)! converges.

Solution.

Put an = (n!)2

(2n)! . Then

lim
n

an+1

an
= lim

n

(n+1)!2

2(n+1)!

(n!)2

(2n)!

= lim
n

(n+ 1)2

(2n+ 2)(2n+ 1)
=

1

4
< 1

Hence by ratio test this converges.

• Determine whether
∑

n
2n+3n

5n converges.

Hint. Use root test, and 2n + 3n = 3n((23)
n + 1).

Or, compute two terms separately (geometric series).

• Determine whether
∑

n
logn
n2 converges.

Solution.

We know that
∑

n
1

n
3
2

converges, and

logn
n2

1

n
3
2

=
log n

n
1
2

→ 0.

Hence this converges by comparison.

Or one can use also the condensation principle.

• Determine whether
∑

n
1

(logn)2
converges.

Solution. Note that (log n)2 < n for sufficiently large n, hence 1
n < 1

(logn)2
, and we know

that
∑

n
1
n diverges, hence also the given series diverges.

Or use the condensation principle.

• Determine whether
∑

n
(−1)nn
n2+1

converges.

Solution. This is an alternating series and with an = n
n2+1

, an → 0 and an is decreasing
(because f(x) = x

x2+1
is decreasing for sufficiently large x, by computing the derivative).

Hence by Leibniz criterion this is convergent.
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• Determine whether
∑

n
(−1)n

n logn converges.

Solution. Use the Leibniz criterion with an = 1
n logn and this is convergent.

• Determine for which x,
∑

n
x2n

x2n+1
converges.

Solution.

Put an = x2n

x2n+1
.

If |x| > 1, then an = 1
1+ 1

x2n
→ 1, hence the series does not converge.

If |x| = 1, then an = 1
2 hence the series does not converge.

If |x| < 1, then an < x2n and
∑

n x
2n converges (geometric series), hence also the given

series converges.

• Determine for which x,
∑

n
n2x2n

(2n)! converges.

Solution. Converges for all x. Indeed, if we put an = n2x2n

(2n)! , we have

an+1

an
=

(n+1)2x2(n+1)

(2(n+1)!

n2x2n

(2n)!

=
(n+ 1)2x2

n2(2n+ 2)(2n+ 1)
→ 0

for all x ∈ R. Therefore, by the ratio test, this converges for all x ∈ R.

• Determine for which x,
∑

n
(−1)nxn

n converges.

Solution. Let us put an = |x|n
n . This is a positive sequence, and an+1

an
= |x|n+1n

|x|n(n+1)
|x|n
n+1 to |x|.

Therefore, if |x| < 1, then the series converges absolutely.

On the other hand, if |x| > 1, then an diverges and in particular the series does not
converge.

Finally, if x = 1, the series is
∑

n
(−1)n

n which converges by Leibniz criterion. If x = −1,
then the series is

∑
n

(−1)n(−1)n

n =
∑

n
1
n which diverges.

Altogether, the series converges if and only if x ∈ (−1, 1].

Differential equations.

• Solve the following differential equation. y′ = 2y with y(0) = 2.

Solution. The general solution is y(x) = Ce2x. Indeed, y′(x) = 2Ce2x = 2y(x). With the
initial condition y(0) = 2, and y(0) = Ce0 = 2, hence C = 2, and y(x) = 2e2x.

• Solve the following differential equation. y′ = −3y with y(1) = −1.

Solution. The general solution is y(x) = Ce−3x. Indeed, y′(x) = −3Ce−3x = −3y(x).

With the initial condition y(1) = −1, and y(1) = Ce−3 = −1, hence C = −e3, therefore,
y(x) = −e3e−3x.

• Solve the following differential equation. y′ = x3 with y(0) = 2.

Solution. More precisely, we have y′(x) = x3. Therefore, y(x) = x4

4 + C. With the initial
condition y(0) = 2, we obtain y(0) = 04

4 + C = 2, therefore, C = 2, and y(x) = x4

4 + 2.

• Solve the following differential equation. y′ = e2x with y(1) = −1.

Solution. More precisely, we have y′(x) = e2x. The general solution is y(x) = 1
2e

2x + C.
With the initial condition y(1) = −1, y(1) = 1

2e
2 +C = −1, C = −1− 1

2e
2 and altogether

y(x) = 1
2e

2x − 1− 1
2e

2.
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• Solve the following differential equation. y′ + 2x2y = 0 with y(0) = 2.

Solution. We can rewrite this as y′ = −2x2y and D(log y) = y′

y = −2x2.

Therefore,

log y =

∫
(−2x2)dx+ C = −2x3

3
+ C

and y(x) = e−
2x3

3
+C . With the given initial condition, y(0) = eC = 2 and hence C = log 2,

y(x) = 2e−
2x3

3 .

• Solve the following differential equation. y′ + xexy = 0 with y(1) = 1.

Solution. The general solution is log y =
∫
−xexdx+C = −xex + ex +C. With the initial

condition 0 = log y(1) = −e1 + e1 + C, hence C = 0 and

y(x) = e−xex+ex .

• Solve the following differential equation. xy′ − 3y = x5 with y(1) = 1.

Solution. The differential equation can be written as y′ − 3
xy = x4. With P (x) = − 3

x and
Q(x) = x4, we have A(x) = −

∫ x
1

3
t dt = −3 log x. Furthermore,∫ x

1
Q(t)eA(t)dt =

∫ x

1
t4e−3 log tdt =

∫ x

1
tdx =

x2

2
− 1

2
.

Hence the general solution is

y(x) = Ce3 log x + e3 log x(
x2

2
− 1

2
) = Cx3 + x3(

x2

2
− 1

2
)

With the initial condition y(1) = 1, we have C = 1 and y(x) = x3 + x3(x
2

2 − 1
2).

• Solve the following differential equation. y′ + xy = x with y(0) = 2.

Hint. With P (x) = x and Q(x) = x, we have A(x) =
∫ x
0 tdt = x2

2 . Furthermore,∫ x

0
Q(t)eA(t)dt =

∫ x

0
te

t2

2 dt = e
x2

2 − 1.

Hence the general solution is

y(x) = Ce−
x2

2 + e−
x2

2 · (e
x2

2 − 1) = (C − 1)e−
x2

2 + 1

• A thermometer is stored in a room whose temperature is 35◦C. Five minutes after being
taken outdoor is 25◦C. After another five minutes, it reads 20◦C. Compute the outdoor
temperature.

Solution. With T the outside temperature, we know that the temperature y(x) of the
thermometer obeys

y(x) = T + (35− T )e−kx

Since y(0) = 30, y(5) = 25 and y(10) = 20 we have that (35 − T )(1 − e−5k) = 10 and
(35− T )(e−5k − e−10k) = 5, hence e−5k = 1

2 and 35− T = 20, that is, T = 15.

• The half-life for Caesium-137 is about 30 years. Compute the percentage of a given quantity
of Caesium that disintegrates in 10 years.

Solution. Let the initial quantity C, then the quantity at time x (years) is

y(x) = C2−x/30.

With x = 10, y(x) = C2−10/30 = C2−1/3 ∼= 0.79C hence the quantity that disintegrates in
the meantime is 21%.
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• Solve the following differential equation. y′′ + 4y = 0 with y(0) = 1, y′(0) = 1.

Solution. The general solution is

y(x) = C1 sin(2x) + C2 cos(2x).

With the initial condition y(0) = C2 = 1, y′(0) = 2C1 = 1, hence C1 =
1
2 . Altogether,

y(x) =
1

2
sin(2x) + cos(2x).

• Solve the following differential equation. y′′ − 4y′ + 3y = 0 with y(0) = 1, y′(0) = 1.

Hint. The general solution is

y(x) = C1e
−x + C2e

−3x.

With this, it is straightforward to determine C1 and C2.

• Solve the following differential equation. y′′ − y = x with y(1) = 1, y′(1) = 1.

Hint. There is a solution y(x) = −x to the differential equation. A general solution is given
as the sum of y(x) = −x and and a general solution of y′′ − y = 0, that is, C1e

x + C2e
−x,

hence the general solution of y′′ − y = x is

y(x) = −x+ C1e
x + C2e

−x.

• Solve the following differential equation. y′′ − y = x2 with y(0) = 1, y′(0) = 1.

Hint. There is a solution y(x) = −x2 − 2 to the differential equation. A general solution
is given as the sum of y(x) = −x2 − 2 and and a general solution of y′′ − y = 0, that is,
C1e

x + C2e
−x, hence the general solution of y′′ − y = x2 is

y(x) = −x2 − 2 + C1e
x + C2e

−x.

• Solve the following differential equation. y′′ + y = ex with y(0) = 1, y′(0) = 1.

Hint. There is a solution y(x) = 1
2e

x to the differential equation. A general solution
is given as the sum of y(x) = 1

2e
x and and a general solution of y′′ + y = 0, that is,

C1 sinx+ C2 cosx, hence the general solution of y′′ − y = x2 is

y(x) =
1

2
ex + C1 sinx+ C2 cosx.

Differential equations and complex numbers.

• Find a relation between y and x for the following differential equation. y′ = x3

y2
.

Solution.

This equation is a separable equation with Q(x) = x3, R(y) = 1
y2

.

This is equivalent to
y2y′ = x3.

By integrathing these by y and x respectively,

y3

3
=

x4

4
+ C.

Explicitly, we have y = (34x
4 + C)

1
3 .

(A formal way to remember this is to see y′ = dy
dx , and

dy

R(y)
= Q(x)dx.)
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• Find a relation between y and x for the following differential equation. y′ = (y− 1)(y− 2).

Solution. This is a separable equation with Q(x) = 1, R(y) = (y − 1)(y − 2), and hence∫
1

(y − 1)(y − 2)
dy =

∫
1dx+ C

By 1
(y−1)(y−2) =

A
y−1+

B
y−2 = −1

y−1+
1

y−2 , we have
∫
( −1
y−1+

1
y−2)dy = log(y−2)− log(y−1) =

log y−2
y−1 = x+ C.

This can be solved explicitly as y−2
y−1 = C ′ex and solving this with respect to y: y − 2 =

(y − 1)C ′ex and hence y(1− C ′ex) = −C ′ex + 2, or y = −C′ex+2
1−C′ex .

• Find a relation between y and x for the following differential equation. y′ = x2+y2

xy .

Solution.

The right-hand side is a homogeneous function of x, y, therefore, by introducing v = y
x , or

y = xv and y′ = v + xv′ and

v + xv′ =
1 + ( yx)

2

y
x

=
1 + v2

v
,

or v′ = (1+v2

v − v) 1x = 1
v
1
x . Hence vv′ = 1

x and v2

2 = log |x| + C, or by v = y
x we get

y2

2x2 = log |x|+ C

y2 = 2x2(log |x|+ C).

or y = ±|x|
√

2(log |x|+ C).

• Find a relation between y and x for the following differential equation. y′ = 1 + y
x .

Solution.

The right-hand side is a homogeneous function of x, y, therefore, by introducing v = y
x , or

y = xv and y′ = v + xv′ and
v + xv′ = 1 + v,

or v′ = 1
x . This is separable, hence v = log x+ C, or y

x = log x+ C, y = x log x+ Cx.

• Calculate the product 3 + 2i and 1− 2i.

Solution.

(3 + 2i)(1− 2i) = 3 · 1 + 2i · 1− 3 · 2i− 2i · 2i = 3 + 2i− 6i− (−1) · 2
= 7− 4i

• Calculate the inverse of 2 + i.

Solution.

1

2 + i
=

2− i

(2 + i)(2− i)
=

2− i

4 + 2i− 2i− i2
=

2− i

5
=

2

5
− 1

5
i.

(In general,

1

a+ ib
=

a− ib

(a+ ib)(a− ib)
=

a− ib

a2 + abi− abi− b2i2
=

a− bi

a2 + b2
.)
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• Calculate the 3rd root of i.

Solution.

We have i = (0, 1) = (1 cos π
2 , 1 sin

π
2 ) and hence i

1
3 = (1 cos π

6 , 1 sin
π
6 ) = (

√
3
2 , 12).

• Calculate the 4th root of −1.

Solution.

We have −1 = (−1, 0) = (1 cosπ, 1 sinπ) and hence (−1)
1
4 = (1 cos π

4 , 1 sin
π
4 ) = ( 1√

2
, 1√

2
).

• Solve the equation x2 + 2x+ 5 = 0.

Solution.

(x+ 1)2 + 4 = 0, or (x+ 1) = ±
√
−4 = ±2i, hence x = −1± 2i.

• Solve the equation x3 + 1 = 0.

Hint.

There is one solution x = −1, indeed, (−1)3 + 1 = −1 + 1 = 0. Then we can divide x3 + 1
by x+ 1 and get x2 − x+ 1, hence we only have to solve x2 − x+ 1 = 0.

• Represent e
πi
2 in the form of a+ ib.

Hint. Use the fact that eiθ = cos θ + i sin θ.

• Find z ∈ C such that ez = 1.

Hint. If we take z = iθ, then ez = cos θ + i sin θ, and this is equal to 1 if θ = 2πn, where
n ∈ Z.
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