
1 Taylor expansion and limit

Problem. For various α, β ∈ R, study the limit:

lim
x→0

e−x + x(1 + x)
1
3 + α+ βx2

x sin(x2)
,

and find α, β such that this converges, and calculate the limit.
Solution. As x → 0, the denominator tends to 0. For the whole limit to converge, the numerator
must also tend to 0, and we need to study the behaviours of the numerator and the denominator
as x → 0. We calculate the Taylor formula of both the numerator and the denominator. The
general formula (to the 3rd order, see below why the 3rd order is enough) is

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f (3)(a)(x− a)3 + o((x− a)3) as x → a.

We take a = 0.

• e−x = 1− x+ x2

2! +
x3

3! + o(x3) (because (ex)′ = ex)

• In general, if g(x) = a0+a1x+a2x
2+a3x

3+o(x3), then we have xg(x) = a0x+a1x
2+a2x

3+
o(x3), That is, the Taylor formula can be multiplied. This can simplify some calculations.

• As (1 + x)
1
3 = 1 + x

3 − x2

9 (because with f(x) = (1 + x)
1
3 , f ′(x) = 1

3(1 + x)−
2
3 , f ′′(x) =

−2
9(x+ 1)−

5
3 ), we have x(1 + x)

1
3 = x+ x2

3 − x3

9 .

• As sin(y) = y + o(y2), we have sin(x2) = x2 + o(x4) and hence x sin(x2) = x3 + o(x3).

Now the numerator is

1− x+
x2

2
− x3

6
+ o(x3) + x+

x2

3
− x3

9
+ o(x3) + α+ βx2

= 1 + α+

(
5

6
+ β

)
x2 +

−5

18
x3 + o(x3)

To have a finite limit of limx→0
1+α+( 5

6
+β)x2+−5

18
x3+o(x3)

x3+o(x3)
, we must have 1 + α = 0, 56 + β = 0,

because otherwise the limit diverges. Therefore, α = −1, β = −5
6 , and the given limit is

lim
x→0

−5
18 x

3 + o(x3)

x3 + o(x3)
= lim

x→0

−5
18 + o(x3)

x3

1 + o(x3)
x3

= − 5

18

Note: limx→0
a
x3 converges if and only if a = 0 (otherwise diverges). Similarly, we have

limx→0
a+bx2

x3 converges if and only if a = b = 0 (otherwise diverges).
The symbol g(x) = o(x3) means that limx→0

g(x)
x3 = 0. In particular, we can calculate

limx→0
ax3+o(x3)

x3 = limx→0
a+

o(x3)

x3

1 = a.
Examples of Taylor series: ex = 1 + x + x2

2 + x3

6 + o(x3) as x → 0, log x = 0 + (x − 1) −
(x−1)2

2 + (x−1)3

3 as x → 1.
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2 Series

Problem. Calculate the finite sum for x = 1−i in
∑∞

n=2
4n−2n

n3+2
(x−1)n and study the convergence

of the infinite series
∑∞

n=0
4n−2n

n3+2
(x− 1)n, with various x.

Solution. The finite sum is
∑2

n=0 an = a0+a1+a2. In the case at hand, we have 1− i+1 = −i,
(−i)2 = −1, and

2∑
n=0

4n − 2n

n3 + 2
(−i)n

=
40 − 20

03 + 2
(−i)0 +

41 − 21

13 + 2
(−i)1 +

42 − 22

23 + 2
(−i)2

= 0 +
−2i

3
+

−6

5
.

As for the convergence, we use the root test. The root test tells, for a series
∑∞

n=0 an with
an > 0, that if limn→∞(an)

1
n = L < 1, then the series

∑∞
n=0 an converges, and if L > 1, then

the series diverges.
To apply the root test to our case, for x ∈ R, we set an = 4n−2n

n3+2
|x − 1|n (need to take the

absolute value), and see if L > 1 or L < 1, depending on x.
To calculate the limit,

lim
n→∞

(an)
1
n = lim

n→∞

(
4n − 2n

n3 + 2
|x− 1|n

) 1
n

= lim
n→∞

(
1− 2n

4n

n3 + 2

) 1
n

4|x− 1|

= 4|x− 1|

(recall that (1 + a)
1
n → 0 for any a, and n

1
n → 1).

Therefore, the root test tells that, if 4|x − 1| < 1, the series
∑∞

n=0
4n−2n

n3+2
|x − 1|n converges,

or in other words,
∑∞

n=0
4n−2n

n3+2
(x − 1)n converges absolutely. The condition is equivalent to

−1
4 < x− 1 < 1

4 , or 3
4 < x+ 1 < 5

4 .
For any specific value of x, one has to consider whether 3

4 < x < 5
4 or not. If x = 5

4 , the
root test does not apply, but the series becomes

∑∞
n=0

4n−2n

(n3+2)4n
and as

∑∞
n=0

1
n3+2

converges
absolytely, this series converges absolutely as well.
Note: a series

∑
an is a new sequence obtained from the sequence an by a0, a0 + a1, a0 + a1 +

a2, · · · . For example, if an = 1
2n , then

∑N
n=0 an are 1

1 = 1, 1 + 1
2 , 1 + 1

2 + 1
4 , 1 + 1

2 + 1
4 + 1

8 , · · ·
(N = 0, 1, 2, 3).
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3 Graph of functions

Problem. Study the graph of the function f(x) = arctan
(

x
1+log(x)

)
.

Solution.

• Domain. log y is defined only for y > 0, while arctan y is defined for all y ∈ R. In this case,
we should have x > 0. In addition, the denominator should never be 0, so log x ̸= −1, or
x ̸= 1

e . Altogether, the domain is (0, 1e ) ∪ (1e ,∞).

• Asymptotes.

– Vertical asymptotes. As x → 0, x
1+log(x) → 0 and hence there is no vertical asymptote

at x = 0. As for x → 1
e , we have that x

1+log(x) → ±∞, but y → ±∞, arctan(y) → ±π
2

and there is no vertical asymptote x = 1
e .

– Horizontal asymptote. As x → ∞, note that x
1+log(x) → ∞, and arctan

(
x

1+log(x)

)
→

π
2 . Hence y = π

2 is a horizontal asymptote.

– Oblique asymptote. As both x → ∞ have a horizontal asymptote, there is no oblique
asymptote.

• The derivative. We can use the chain rule: if f(x) = g(h(x)), then f ′(x) = h′(x)g′(h(x)).

In our case, g(y) = arctan y and h(x) = x
1+log(x) , g

′(y) = 1
y2+1

, h′(x) =
(1+log(x)−x( 1

x
)

(1+log(x))2
=

log(x)
(1+log(x))2

, therefore, we get

f ′(x) =
log(x)

( x2

(1+log x)2
+ 1)(1 + log(x))2

=
log(x)

x2 + (1 + log x)2
.

• In particular, f ′(e) = 1
e2+4

.

• Stationary points. They are points x in the domain where f ′(x) = 0 holds. As we have
computed f ′(x), the condition is that log x = 1, that is x = 1 is the only stationary point.

• Behaviour of the graph. Recall that the function f is monotonically increasing in an interval
if f ′(x) > 0 there, and is monotonically decreasing in an interval if f ′(x) < 0.

If x ∈ [1, 2], f ′(x) is positive. Therefore, f is monotonically increasing there.

Note: the graph of a function f(x) is the collection of points (x, f(x)) where x is in the domain
of f .
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4 Integral

Problem. Calculate the integral ∫ π
6

0

1

cos θ
dθ.

Solution. We change the variables by sin θ = t. From this we get dt
dθ = cos θ. and formally

replace dθ by 1
cos θdt, therefore, with sin 0 = 0, sin π

6 = 1
2 ,∫ π

6

0

1

cos θ
dθ. =

∫ 1
2

0

1

cos2 θ
dt. =

∫ 1
2

0

1

1− sin2 θ
dt. =

∫ 1
2

0

1

1− t2
dt.

To carry out this last integral, we need to find the partial fractions: as 1 − t2 = (1 − t)(1 + t),
we put 1

(1−t)(1+t) = A
1−t +

B
1+t = A(1+t)+B(1−t)

(1−t2
, or 1 = (A − B)t + A + B. By solving this,

B = 1
2 , A = 1

2 . Namely, 1
1−t2

= 1
2(

1
1−t +

1
1+t). Altogether,

∫ π
6

0

1

cos θ
dθ. =

1

2

∫ 1
2

0

(
1

1− t
+

1

1 + t

)
dt. =

1

2
[− log(1− t) + log(1 + t)]

1
2
0 =

log 3

2
.

Note: other useful techniques are substitution (example:
∫
xex

2
dx by putting t = x2) and

integration by parts (example:
∫
xexdx by noticing that (ex)′ = ex).
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5 Differential equations

Problem. Find the general solution of

y′(x) = (y(x) + 1)
1
2x cos(x2).

and a special solution with y(0) = 0.
Solution. This is a separable differential equation, because the right-hand side is a product of a
function of x (x cos(x2)) and a function of y ((y(x) + 1)

1
2 ). The solution is given by integrating

separately (y(x) + 1)−
1
2 and x cos(x2), that is

∫
(y + 1)−

1
2 y′(x)dx =

∫
x cos(x2)dx+ C,

2(y + 1)
1
2 =

1

2
sin(x2) + C,

and this is equivalent to y(x) = ( sin(x
2)

4 + C
2 )

2 − 1.
If y(0) = 0, then 0 = (0 + C

2 )
2 − 1, hence C = ±2.

Problem. Find the general solution of the following differential equation.

y′′(x) + 2y′(x)− 3y(x) = 0

and a special solution such that y(0) = 5 and limx→∞ y(x) = 0.
Solution. This second order linear differential equation with constant coefficients can be solved
by finding the solutions of the equation z2 + 2z − 3 = 0, that are z = 1,−3. With them, the
general solution is y(x) = C1 exp(−3x)+C2 exp(x). The term C1 exp(−3x) diverges as x → −∞,
while the term C2 exp(x) diverges as x → ∞. With the condition y(0) = 5, we have C1+C2 = 5,
while if C2 ̸= 0, we would have y(x) → (signC2)∞, and this does not satisfy the given condition,
therefore, it must be that C2 = 0 and C1 = 5.
Note: the meaning that y is the solution of the differential equation is that, if we take y(x) =
C1e

−3x + C2e
x, then it holds that y′′(x) + 2y′(x) − 3y(x) = 0. Indeed, y′(x) = −3C1e

−3x +
C2e

x, y′′(x) = 9C1e
−3x + C2e

x and hence

y′′(x) + 2y′(x)− 3y(x)

= 9C1e
−3x + C2e

x + 2(−3C1e
−3x + C2e

2x)− 3(C1e
−3x + C2e

x)

= 0.

Similarly, if we take y(x) = ( sin(x
2)

4 + C
2 )

2−1, it satisfies y′(x) = (y(x)+1)
1
2x cos(x2). Indeed,

y′(x) = 2
2x cos(x2)

x

(
sin(x2)

4
+

C

2

)
= x cos(x2)(y(x) + 1)

1
2 .
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