
1 Taylor expansion and limit

Problem. For various α, β ∈ R, study the limit:

lim
x→0

2+x2

1−x2 + x sin(x
3

3 )− α− βx2

cos(x2)− γ
,

• For α = β = 0.

• For γ = 1.

Solution. For the case α = β = 0, the limit x → 0 of the numerator is 2. In this case, the whole
limit is divergent if the denominator tends to 0. As cos(x2) → 1 when x → 0, this happens when
γ = 1.

Next, put γ = 1. Then, as x → 0, the denominator tends to 0. For the whole limit to converge,
the numerator must also tend to 0, and we need to study the behaviours of the numerator and
the denominator as x → 0. We calculate the Taylor formula of both the numerator and the
denominator. The general formula (to the 4th order, see below why the 4th order is enough) is

f(x) = f(a)+f ′(a)(x−a)+
1

2!
f ′′(a)(x−a)2+

1

3!
f (3)(a)(x−a)3+

1

4!
f (4)(a)(x−a)4+o((x−a)4)

as x → a. We take a = 0.

• 1
1−x2 = 1 + x2 + x4 + o(x4) (this is an identity as a polynomial)

• In general, if g(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + o(x4), then we have x2g(x) =

a0x
2 + a1x

3 + a2x
4 + o(x4), That is, the Taylor formula can be multiplied. This can

simplify some calculations.

• 2+x2

1−x2 = (2 + x2)(1 + x2 + x4 + o(x4)) = 2 + 3x2 + 3x4 + o(x4).

• Similarly, as sin(y) = y + o(y2), we have sin(x3) = x3 + o(x6) and hence x sin(x
3

3 ) =
x4

3 + o(x4).

• cos(x2) = 1− x4

2 + o(x4).

Now we have that the denominator is cos(x2)−1 = −x4

2 +o(x4) as x → 0, and the numerator
is

2 + 3x2 + 3x4 + o(x4) +
x4

3
+ o(x4)− α− βx2 = 2− α+ (3− β)x2 +

10

3
x4 + o(x4)

To have a finite limit of limx→0
2−α+(3−β)x2+ 10

3
x4+o(x4)

−x4

2
+o(x4)

, we must have 2 − α = 0, 3 − β = 0,

because otherwise the limit diverges. Therefore, α = 2, β = 3, and the given limit is

lim
x→0

10
3 x

4 + o(x4))

−x4

2 + o(x4)
= lim

x→0

10
3 + o(x4)

x4 )

−1
2 + o(x4)

x4

= −20

3

Note: limx→0
a
x4 converges if and only if a = 0 (otherwise diverges). Similarly, we have

limx→0
a+bx2

x4 converges if and only if a = b = 0 (otherwise diverges).
The symbol g(x) = o(x4) means that limx→0

g(x)
x4 = 0. In particular, we can calculate

limx→0
ax4+o(x4)

x4 = limx→0
a+

o(x4)

x4

1 = a.
Examples of Taylor series: ex = 1 + x + x2

2 + x3

6 + o(x3) as x → 0, log x = 0 + (x − 1) −
(x−1)2

2 + (x−1)3

3 as x → 1.
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2 Series

Problem. Calculate the finite sum for x = i
√
3 in

∑2
n=0

(−1)n(4n−1)
(n+1)(3n+1)2

(x + 1)2n and study the

convergence of the infinite series
∑∞

n=0
(−1)n(4n−1)
(n+1)(3n+1)2

(x+ 1)2n, with various x.
Solution. The finite sum is

∑2
n=0 an = a0+ a1+ a2. In the case at hand, we have (i

√
3+1)2 =

(
√
2(cos π

3 + i sin π
3 )

2 = 4(cos 2π
3 + i sin 2π

3 ) = −2 + 2
√
3i, (i

√
3 + 1)4 = 16(cos 4π

3 + i sin 4π
3 ) =

−8− 8
√
3i, and

2∑
n=0

(−1)n(4n − 1)

(n+ 1)(3n + 1)2
(x+ 1)2n

=
(−1)0(40 − 1)

(0 + 1)(30 + 1)2
(i
√
3 + 1)0 +

(−1)1(41 − 1)

(1 + 1)(31 + 1)2
(−2 + 2

√
3i) +

(−1)2(42 − 1)

(2 + 1)(32 + 1)2
(−8− 8

√
3i)

= 0 +
3− 3

√
3

16
+

−2− 2
√
3

5
= −−17

80
+ i

−47
√
3

80
.

As for the convergence, we use the root test. The root test tells, for a series
∑∞

n=0 an with
an > 0, that if limn→∞(an)

1
n = L < 1, then the series

∑∞
n=0 an converges, and if L > 1, then

the series diverges.
To apply the ratio test to our case, for x ∈ R, we set an = (4n−1)

(n+1)(3n+1)2
(x+1)2n (need to take

the absolute value), and see if L > 1 or L < 1, depending on x.
To calculate the limit,

lim
n→∞

(an)
1
n = lim

n→∞
(

(4n − 1)

(n+ 1)(3n + 1)2
(x+ 1)2n)

1
n

= lim
n→∞

(
4n

32n
1− 1

4n

(n+ 1)(1 + 1
3n )

2

) 1
n

(x+ 1)2

=
4

9
lim
n→∞

(
1− 1

4n

(n+ 1)(1 + 1
3n )

2

) 1
n

(x+ 1)2

=
4

9
(x+ 1)2

Therefore, the root test tells that, if 4
9(x + 1)2 < 1, the series

∑∞
n=0

(4n−1)
(n+1)(3n+1)2

(x + 1)2n

converges, or in other words,
∑∞

n=0
(−1)n(4n−1)
(n+1)(3n+1)2

(x+ 1)2n converges absolutely. The condition is
equivalent to −9

4 < (x+ 1)2 < 9
4 , or −3

2 < x+ 1 < 3
2 , or −5

2 < x < 1
2 .

For any specific value of x, one has to consider whether −5
2 < x < 1

2 or not. If x = 5
2 , the

root test does not apply, but the series becomes
∑∞

n=0
(−1)n(4n−1)
(n+1)(3n+1)2

(32)
2n =

∑∞
n=0

(−1)n(1− 1
4n

)

(n+1)(1+ 1
9n

)2

and as (−1)n(1− 1
4n

)

(n+1)(1+ 1
9n

)2
is asymptotically equivalent to (−1)n

(n+1) , and the sum
∑

n
(−1)n

(n+1) converges by
the Leibniz criterion, our series converges as well. But it does not converge absolutely, because∑

n
1

(n+1) diverges.
Note: a series

∑
an is a new sequence obtained from the sequence an by a0, a0 + a1, a0 + a1 +

a2, · · · . For example, if an = 1
2n , then

∑N
n=0 an are 1

1 = 1, 1 + 1
2 , 1 + 1

2 + 1
4 , 1 + 1

2 + 1
4 + 1

8 , · · ·
(N = 0, 1, 2, 3).

2



3 Graph of functions

Problem. Study the graph of the function f(x) = log x2+2
x2−3x+2

.
Solution.

• Domain. log y is defined only for y > 0. In this case, we should have x2+2
x2−3x+2

> 0. As
x2 + 2 > 0 for any x, this is equivalent to x2 − 3x + 2 > 0. As we have x2 − 3x + 2 =
(x− 1)(x− 2) > 0, the domain is (−∞, 1) ∪ (2,∞).

• Asymptotes.

– Vertical asymptotes. As x → 1, 2, the denominator tends to 0, while the numerator
tends to a non-zero number, and log y diverges as y → ∞, so there is a vertical
asymptote there.

– Horizontal asymptote. As x → ±∞, note that x2+2
x2−3x+2

→ 1, and hence log x2+2
x2−3x+2

→
0. Hence y = 0 is a horizontal asymptote.

– Oblique asymptote. As both x → ±∞ have a horizontal asymptote, there is no
oblique asymptote.

• The derivative. We can use the chain rule: if f(x) = g(h(x)), then f ′(x) = h′(x)g′(h(x)).
In our case, g(y) = log y and h(x) = x2+2

x2−3x+2
, g′(y) = 1

y , h′(x) = 2x(x2−3x+2)−(x2+2)(2x−3)
(x2−3x+2)2

=

−3x2+6
(x2−3x+2)2

, therefore, we get

f ′(x) =
−3x2 + 6

(x2 − 3x+ 2)2
x2 − 3x+ 2

x2 + 2
=

−3x2 + 6

(x2 − 3x+ 2)(x2 + 2)
.

• In particular, f ′(−1) = 1
6 .

• Stationary points. They are points x in the domain where f ′(x) = 0 holds. As we have
computed f ′(x), the condition is that −3x2 + 6 = −3(x2 − 2) = −3(x−

√
2)(x+

√
2) = 0,

and only x = −
√
2 is in the domain. Therefore, there is only one stationary point.

• Behaviour of the graph. Recall that the function f is monotonically increasing in an interval
if f ′(x) > 0 there, and is monotonically decreasing in an interval if f ′(x) < 0.

If x ∈ [3, 5], f ′(x) is negative. Therefore, f is monotonically decreasing in [3, 5].

Note: the graph of a function f(x) is the collection of points (x, f(x)) where x is in the domain
of f .
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4 Integral

Problem. Calculate the integral ∫ log 3

log 2

1 + e2x

ex − 1
dx.

Solution. We change the variables by ex = t. This is equivalent to x = log t, or dx
dt = 1

t .
and formally replace dx by 1

t dt, and substitute ex by t, while the limits of the integral becomes
elog 2 = 2 and elog 3 = 3, therefore,∫ log 3

log 2

1 + e2x

ex − 1
dx. =

∫ 3

2

1 + t2

(t− 1)t
dt

To carry out this last integral, we need to find the partial fractions: as 1 + t2 = (t− 1)t+ t+ 1,
we have 1+t2

(t−1)t = 1 + t+1
(t−1)t and we put t+1

(t−1)t =
A
t−1 + B

t = At+B(t−1)
(t−1)t , or t+ 1 = (A+B)t−B.

By solving this, B = −1, A = 2. Namely, 1+t2

(t−1)t = 1 + 2
t−1 − 1

t . Altogether,∫ log 3

log 2

1 + e2x

ex − 1
dx. =

∫ 3

2
(1 +

2

t− 1
− 1

t
)dt

= [t+ 2 log(t− 1)− log t]32 = 1 + 3 log 2− log 3

Note: other useful techniques are substitution (example:
∫
xex

2
dx by putting t = x2) and

integration by parts (example:
∫
xexdx by noticing that (ex)′ = ex).
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5 Improper integrals

Problem. Consider the following improper integral for various α ∈ R.∫ ∞

0

sinx

xα(x+ 1)
dx

.
Solution. Depending on the value of α this integral is improper as x → ∞ and possibly x → 0
(when α > 1).

To study the behaviour as x → 0, we consider

sinx

x+ 1
= (x+ o(x2))(1− x+ x2 + o(x2)) = x− x2 + o(x2).

Therefore,

sinx

xαx+ 1
= (x+ o(x2))(1− x+ x2 + o(x2)) = x1−α + o(x2−α).

and as we know that
∫ 1
0 xγdx converges for γ > −1, we should have 1− α > −1, or 2 > α.

On the other hand, as for the integral on (1,∞), note that | sinx| ≤ 1, hence
∣∣∣∫∞

1
sinx

xα(x+1)dx
∣∣∣ ≤∫∞

1
1

xα(x+1)dx and the latter is convergent if α > 0, because then 1
xα(x+1) < 1

(x+1)1+α and we
know that

∫∞
1 xγdx converges if γ < −1. As for the case −1 < α ≤ 0, this is similar to the case∫

sinx
x which we studied in the lecture, and this is convergent (but not absolutely). For α ≤ −1,

the function sin
xα(x+1) do not decay, thus the integral does not converge.

We can calculate∫ ∞

0

1

x2 + 1
dx = lim

β→∞

∫ β

0

1

x2 + 1
dx

= lim
β→∞

[arctanx]β0 = lim
β→∞

arctanβ − 0 =
π

2
.

Note: An integral is improper if the interval is unbounded or the function is unbounded. In
that case, we define ∫ b

a
f(x)dx = lim

ϵ→0

∫ c

a+ϵ
f(x)dx+ lim

ϵ→0

∫ b−ϵ

c
f(x)dx,

where c ∈ (a, b).
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