
1 Taylor expansion and limit

Problem. For various α, β ∈ R, study the limit:

lim
x→1

x3 + α(x− 1) log(x2)− 1− β(x− 1)

log(x) · (exp(x− 1)− 1) · (x− 1)
.

Solution. First note that this is a limit of type 0
0 . So we need to study the behaviours of

the numerator and the denominator as x → 1. We calculate the Taylor formula of both the
numerator and the denominator. The general formula (to the 3rd order, see below why the 3rd
order is enough) is

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f (3)(a)(x− a)3 + o((x− a)3) as x → a.

We take a = 1.

• x3 = 1 + 3(x− 1) + 3(x− 1)2 + (x− 1)3 (this is an identity as a polynomial)

• In general, if g(x) = a + b(x − 1) + c(x − 1)2 + o((x − 1)2), then we have (x − 1)g(x) =
a(x−1)+b(x−1)2+c(x−1)3+o((x−1)3). That is, the Taylor formula can be multiplied.
This can simplify some calculations.

• Similarly, if g(x) = a + b(x − 1) + o((x − 1)), h(x) = c + d(x − 1) + o((x − 1)), then
g(x)h(x) = ac+ (ad+ bc)(x− 1) + o((x− 1)).

• (x− 1) log(x2) can be calculated either using the general formula, or the above technique.
We have log(x2) = 2 log x and and log(0 + 1) = 0, (log(y + 1))′ = 1

y+1 , (log(y + 1))′′ =

− 1
(y+1)2

. Use that log(x) = log((x− 1) + 1) = 0 + (x− 1)− 1
2(x− 1)2 + o((x− 1)2).

By multiplying them, we have (x− 1) log(x2) = 2(x− 1)2 − (x− 1)3 + o((x− 1)3).

• log x = 0 + (x − 1) + o((x − 1)), exp(x − 1) = 1 + (x − 1) + o((x − 1)) since exp(y) =
1 + y + 1

2!y
2 + .... Or exp(x − 1) − 1 = (x − 1) + o((x − 1)). By multiplying them,

log(x) · (exp(x− 1)− 1) · (x− 1) = (x− 1)3 + o((x− 1)3).

Now we have that the denominator is (x− 1)3 + o((x− 1)3) as x → 1, and the numerator is

(x− 1)3 + 3(x− 1)2 + 3(x− 1) + 1− α(2(x− 1)2 − (x− 1)3)− 1− β(x− 1) + o((x− 1)3)

= (3− β)(x− 1) + (3− 2α)(x− 1)2 + (1 + α)(x− 1)3 + o((x− 1)3)

To have a finite limit of limx→1
(3−β)(x−1)+(3−2α)(x−1)2+(1+α)(x−1)3+o((x−1)3)

(x−1)3+o((x−1)3)
, we must have

3 − β = 0, 3 − 2α = 0, because otherwise the limit diverges. Therefore, β = 3, α = 3
2 , and the

given limit is

lim
x→1

(1 + 3
2)(x− 1)3 + o((x− 1)3)

(x− 1)3 + o((x− 1)3)
= lim

x→1

5
2 + o((x−1)3)

(x−1)3

1 + o((x−1)3)
(x−1)3

=
5

2
.

Note: limx→1
a

(x−1)3
converges if and only if a = 0 (otherwise diverges). Similarly, we have

limx→1
a+b(x−1)
(x−1)3

converges if and only if a = b = 0 (otherwise diverges).

The symbol g(x) = o((x − 1)3) means that limx→1
g(x)

(x−1)3
= 0. In particular, we have

limx→1
a(x−1)3+o((x−1)3)

(x−1)3
= limx→1

a+
o((x−1)3)

(x−1)3

1 = a.

Examples of Taylor series: ex = 1 + x + x2

2 + x3

6 + o(x3) as x → 0, log x = 0 + (x − 1) −
(x−1)2

2 + (x−1)3

3 as x → 1.
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2 Series

Problem. Calculate the finite sum for x = i in
∑2

n=0
n3

8n+n2 (x+1)3n and study the convergence
of the infinite series

∑∞
n=0

n3

8n+n2 (x+ 1)3n, with various x.
Solution. The finite sum is

∑2
n=0 an = a0 + a1 + a2. In the case at hand, we have (i + 1)3 =

(
√
2(cos π

4 + i sin π
4 )

3 = 2
√
2(cos 3π

4 + i sin 3π
4 ) = −2 + 2i, (i + 1)6 = 8(cos 6π

4 + i sin 6π
4 ) = −8i,

and

2∑
n=0

n3

8n + n2
(x+ 1)3n =

03

80 + 02
(i+ 1)0 +

13

81 + 12
(i+ 1)3 +

23

82 + 22
(i+ 1)6

= 0 +
−2 + i

9
+

−8i · 8
68

= −2

9
+ i

−177

153
.

As for the convergence, we use the ratio test. The ratio test tells, for a series
∑∞

n=0 an with
an > 0, that if limn→∞

an+1

an
= L < 1, then the series

∑∞
n=0 an converges, and if L > 1, then the

series diverges.
To apply the ratio test to our case, for x ∈ R, we set an = n3

8n+n2 |x+ 1|3n (need to take the
absolute value), and see if L > 1 or L < 1, depending on x.

To calculate the limit,

lim
n→∞

an+1

an
=

(n+1)3

8n+1+(n+1)2
|x+ 1|3(n+1)

n3

8n+n2 |x+ 1|3n
= lim

n→∞

(n+ 1)3

n3

8n + n2

8n+1 + (n+ 1)2
|x+ 1|3

= lim
n→∞

1

8

1 + n2

8n

1 + (n+1)2

8n+1

|x+ 1|3 = 1

8
|x+ 1|3.

Therefore, the ratio test tells that, if 1
8 |x+1|3 < 1, the series

∑∞
n=0

n3

8n+n2 |x+1|3n converges,
or in other words,

∑∞
n=0

n3

8n+n2 (x + 1)3n converges absolutely. The condition is equivalent to
−8 < (x+ 1)3 < 8, or −2 < x+ 1 < 2, or −3 < x < 1.

For any specific value of x, one has to consider whether −3 < x < 1 or not. If x = 1, the
ratio test does not apply, but the series becomes

∑∞
n=0

n3

8n+n2 2
3n =

∑∞
n=0

n3

1+n2

8n

, and as n3

1+n2

8n

diverges, also the sum diverges.
Note: a series

∑
an is a new sequence obtained from the sequence an by a0, a0 + a1, a0 + a1 +

a2, · · · . For example, if an = 1
2n , then

∑N
n=0 an are 1

1 = 1, 1 + 1
2 , 1 + 1

2 + 1
4 , 1 + 1

2 + 1
4 + 1

8 , · · ·
(N = 0, 1, 2, 3).
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3 Graph of functions

Problem. Study the graph of the function f(x) = log x3+1
x2−4

.
Solution.

• Domain. log y is defined only for y > 0. In this case, we should have x3+1
x2−4

> 0. x2 − 4 ̸= 0
should hold. A fraction is positive if and only if both the denominator and the numerator
have the same sign.

– x3 + 1 > 0 and x2 − 4 > 0. This is equivalent to x3 > −1, x2 > 4, or −1 < x and
x < −2, 2 < x. The intersection is 2 < x.

– x3 + 1 < 0 and x2 − 4 < 0. This is equivalent to x3 < −1, x2 < 4, or −1 > x and
−2 < x < 2. The intersection is −2 < x < −1.

The domain is (−2,−1) ∪ (2,∞).

• Asymptotes.

– Vertical asymptotes. As x → −2, the denominator tends to 0, while the numerator
tends to 9, and log y diverges as y → ∞, so there is a vertical asymptote there. As
x → −1, the numerator tends to 0 (negative), while the denominator tends to −3,
and log y diverges as y → 0, so there is a vertical asymptote there. As x → 2, the
denominator tends to 0, while the numerator tends to 9, and log y diverges as y → ∞,
so there is a vertical asymptote there.

– Horizontal asymptote. As x → ∞, note that, if x > 3, then log x3+1
x2−4

> log x3 = 3 log x,
and this diverges, hence f(x) diverses. There is no horizontal asymptote.

– Oblique asymptote. The limit
log x3+1

x2−4

x < log(2x3)
x = log 2+3 log x

x → 0. There is no
oblique asymptote.

• The derivative. We can use the chain rule: if f(x) = g(h(x)), then f ′(x) = h′(x)g′(h(x)).
In our case, g(y) = log y and h(x) = x3+1

x2−4
, and g′(y) = 1

y , h′(x) = 3x2(x2−4)−2x(x3+1)
(x2−4)2

=

x(x3−12x−2)
(x2−4)2

, and

f ′(x) =
x2 − 4

x3 + 1

x(x3 − 12x− 2)

(x2 − 4)2
=

x(x3 − 12x− 2)

(x3 + 1)(x2 − 4)
.

• Stationary points. They are points x in the domain where f ′(x) = 0 holds. As we have
computed f ′(x), the condition is that x(x3−12x−2) = 0, and x is in the domain. First, x =
0 does satisfy the condition, but is not in the domain. The equation g(x) = x3−12x−2 = 0
has three solutions: It has one solution in [3, 4] because g(3) < 0, g(4) > 0. Other solutions
are again outside the domain (they are in x < −2 and in [−1, 0], by the same reasoning as
above). Therefore, there is only one stationary point.

• Behaviour of the graph. Recall that the function f is monotonically increasing in an interval
if f ′(x) > 0 there, and is monotonically decreasing in an interval if f ′(x) < 0.

If x ∈ [4, 5], f ′(x) is positive: g(4) = 64−48−2 > 0, and g′(x) = 3x3−12 > 0 in x ∈ [4, 5],
therefore, g(x) is monotonically increasing in [4, 5]. Therefore, f is monotonically increasing
in [4, 5].

Note: the graph of a function f(x) is the collection of points (x, f(x)) where x is in the domain
of f .
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4 Integral

Problem. Calculate the integral ∫ 3

2

1

2x + 4 + 3(2−x)
dx.

Solution. We change the variables by 2x = t. This is equivalent to x = log t
log 2 , or dx

dt = 1
t log 2 . and

formally replace dx by 1
t log 2dt, and substitute 2x by t, while the limits of the integral becomes

22 = 4 and 23 = 8, therefore,∫ 3

2

1

2x + 4 + 3(2−x)
dx =

∫ 8

4

1

t+ 4 + 3t−1

1

t log 2
dt

=

∫ 8

4

1

log 2(t2 + 4t+ 3)
dt.

To carry out this last integral, we need to find the partial fractions: as t2+4t+3 = (t+1)(t+3),
we put 1

t2+4t+3
= A

t+1 + B
t+3 = A(t+3)+B(t+1)

t2+4t+3
, or 1 = (A + B)t + 3A + B. By solving this,

−A = B, 1 = 2A and A = 1
2 , B = −1

2 . Namely, 1
t2+4t+3

= 1
2(

1
t+1 − 1

t+3). Altogether,∫ 3

2

1

2x + 4 + 3(2−x)
dx =

∫ 8

4

1

log 2(t2 + 4t+ 3)
dt

=

∫ 8

4

1

2 log 2

(
1

t+ 1
− 1

t+ 3

)
dt

=
1

2 log 2
[log(t+ 1)− log(t+ 3)]84

=
1

2 log 2

(
log

9

11
− log

5

7

)
=

log 63
55

2 log 2
.

Note: other useful techniques are substitution (example:
∫
xex

2
dx by putting t = x2) and

integration by parts (example:
∫
xexdx by noticing that (ex)′ = ex).
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5 Differential equations

Problem. Find the general solution of

y′(x) = 6x2 exp(x3)y
1
2 .

and a special solution with y((log 2)
1
3 ) = 9.

Solution. This is a separable differential equation, because the right-hand side is a product
of a function of x (6x2 exp(x3)) and a function of y (y

1
2 ). The solution is given by integrating

separately y−
1
2 and 6x2 exp(x3), that is

∫
y−

1
2dy =

∫
6x2 exp(x3)dx+ C, 2y

1
2 = 2 exp(x3) + C,

and this is equivalent to y(x) = (exp(x3) + C
2 )

2.
If y((log 2)

1
3 ) = 9, then 9 = (exp((log 2)

1
3 )3 + C

2 )
2 = (exp log 2 + C

2 )
2 = (2 + C

2 )
2, and

3 = 2 + C
2 , hence C = 2,−10.

Problem. Find the general solution of the following differential equation.

y′′(x) + y′(x)− 6y(x) = 0

and a special solution such that y(0) = 4 and limx→∞ y(x) = 0.
Solution. This second order linear differential equation with constant coefficients can be solved
by finding the solutions of the equation z2+z−6 = 0, that are z = 2,−3. With them, the general
solution is y(x) = C1 exp(−3x)+C2 exp(2x). The term C1 exp(−3x) diverges as x → −∞, while
the term C2 exp(3x) diverges as x → ∞. The only possible value of a such that e3x

eax tends to a
non-zero limit as x → −∞ is a = 3 (for other values, it is either ∞ or 0).
Note: the meaning that y is the solution of the differential equation is that, if we take y(x) =
C1e

−3x + C2e
2x, then it holds that y′′(x) + y′(x) − 6y(x) = 0. Indeed, y′(x) = −3C1e

−3x +
2C2e

2x, y′′(x) = 9C1e
−3x + 4C2e

2x and hence

y′′(x) + y′(x)− 6y(x)

= 9C1e
−3x + 4C2e

2x − 3C1e
−3x + 2C2e

2x − 6(C1e
−3x + C2e

2x)

= 0.

Similarly, if we take y(x) = (exp(x3) + C
2 )

2, it satisfies y′(x) = 6x2 exp(x3)y
1
2 . Indeed,

y′(x) =
d

dx

(
exp(x3) +

C

2

)2

= 3x2 exp(x3) · 2
(
exp(x3) +

C

2

)
= 6x3 exp(x3) · y

1
2 .
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