Call5.

(1) **Q1**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Complete the formulae.

 $(x+1)\log(x^2) = e + f(x+1) + g(x+1)^2 + h(x+1)^3 + o((x+1)^3)$ as $x \to -1$.

NUMERICAL 2 points	
-1 🗸	

NUMERICAL 2 points	
2 🗸	

Use the Taylor formula $f(x) = f(-1) + f'(-1)(x+1) + \frac{1}{2!}f''(-1)(x+1)^2 + \frac{1}{3!}f^{(3)}(-1)(x+1)^3 + o((x-3)^3)$ as $x \to -1$. As a polynomial, $x^3 = (x+1)^3 - 3(x+1)^2 + 3(x+1) - 1$ umambiguously. $\log(x^2)$ can be written as $\log(x^2) = 2\log(-x) = 2\log(-x-1+1) = 2\log(-(x+1)+1)$ and this can simplify the computation. As for the product $\log(-x) \cdot (\exp(x+1)-1) \cdot (x+1)$, each of them has x + 1 + o(x+1) (or -(x+1) + o(x+1)) and one can multiply term by term and get $\log(-x) \cdot (\exp(x+1)-1) \cdot (x+1) = -(x+1)^3 + o((x+1)^3)$. To determine α, β , one only has to compare the numereator and the denominator and choose α, β in such a way that they have the same degree of infinitesimal (in this case, both of them should be of order $(x+1)^3$).

(2) Q1

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\boxed{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Complete the formulae.

 $\log(x) \cdot (\exp(x-1)-1) \cdot (x-1) = \boxed{i} + \boxed{j}(x-1) + \boxed{k}(x-1)^2 + \boxed{l}(x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$

(3) **Q1**

0.10 penalty CLOZE

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Complete the formulae.

$$x^{3} = a + b(x-1) + c(x-1)^{2} + d(x-1)^{3}.$$

a.	
NUMERICAL 2 points	
1 🗸	
b:	
NUMERICAL 1 point	
3 🗸	
С	
NUMERICAL 2 points	
3 🗸	

$$(x-1)\log(x^4) = e + f(x-1) + g(x-1)^2 + h(x-1)^3 + o((x-1)^3)$$
 as $x \to 1$.

 $\log(x) \cdot (\exp(x-1)-1) \cdot (x-1) = \boxed{\mathbf{i}} + \boxed{\mathbf{j}} (x-1) + \boxed{\mathbf{k}} (x-1)^2 + \boxed{\mathbf{l}} (x-1)^3 + o((x-1)^3) \text{ as } x \to 1.$

(4) $\overline{\mathbf{Q2}}$

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$. Let us study the following series $\sum_{n=0}^{\infty} \frac{n^3}{8^n + n^2} (x+1)^{3n}$, with various x.

This series makes sense also for $x \in \mathbb{C}$. For x = i, calculate the partial sum $\sum_{n=0}^{2} \frac{n^3}{8^n + n^2} (x+1)^{3n} = \frac{\boxed{a}}{\boxed{b}} + \frac{\boxed{c}}{\boxed{d}}i$.

In order to use the ratio test for $x \in \mathbb{R}$, we put $a_n = \frac{n^3}{8^n + n^2}(x + 1)^{3n}$. Complete the formula.

• $1 < x < 3$.
For the case $x = -\frac{3}{2}$, the series
MULTI 4 points Single Shuffle
• converges absolutely. \checkmark
• converges but not absolutely.
• diverges.
For the case $x = 1$, the series
MULTI 4 points Single Shuffle
• converges absolutely.
• converges but not absolutely.

• diverges. \checkmark

The partial sum means the following finite sum: $\sum_{n=0}^{2} a_n = a_0 + a_1 + a_2$, so one just has to apply n = 0, 1, 2in the concrete series and sum the numbers up. Notice that $i^2 = -1$. One can compute $(1+i)^6$ by using the fact that $1 + i = \sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$. To apply the ratio test for a positive series $\sum a_n$, one considers $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. Note that for any $p \in \mathbb{N}$ it holds that $\lim_{n\to\infty} \frac{(n+1)^p}{n^p} = 1$, and $\lim_{n\to\infty} \frac{n^p}{8^n} = 0$ etc. If this limit L < 1, then the series converges absolutely (for such x), while if L > 1 the series diverges. a_n depends on x, and this gives us a condition for which the series converges. That is $\frac{|x+1|^3}{8} < 1$, or -2 < x + 1 < 2If L = 1, one needs to study the convergence with other criteria. In this case, if x = 1, then $a_n = \frac{n^3}{8^n + n^2} 2^{3n}$, and this diverges, hence so does the series.

(5) **Q2**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Let us study the following series $\sum_{n=0}^{\infty} \frac{n^3}{8^n + n^2} (x-1)^{3n}$, with various x.

This series makes sense also for $x \in \mathbb{C}$. For x = -i, calculate the partial sum $\sum_{n=0}^{2} \frac{n^{3}}{8^{n}+n^{2}}(x-1)^{3n} = \frac{\boxed{a}}{\boxed{b}} + \frac{\boxed{c}}{\boxed{d}}i$.

In order to use the ratio test for $x \in \mathbb{R}$, we put $a_n = \frac{n^3}{8^n + n^2} (x - 1)^{3n}$. Complete the formula.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{|x + e|^{f}}{g}$$

Therefore, by the root test, the series converges absoluted for


```
• -1 < x < 1.
  • -1 < x < 3. \checkmark
  • -\frac{1}{2} < x < \frac{3}{2}.
  • x = 0.
  • 0 < x < 2.
  • 0 < x < 4.
  • \frac{1}{2} < x < \frac{3}{2}.
• 1 < x < 1.
  • 1 < x < 3.
  For the case x = -\frac{3}{2}, the series
MULTI 4 points Single Shuffle
  • converges absolutely.
  • converges but not absolutely.
  • diverges. \checkmark
  For the case x = 1, the series
MULTI 4 points
                    Single Shuffle
  • converges absolutely. \checkmark
  • converges but not absolutely.
  • diverges.
```

(6) **Q2**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us study the following series $\sum_{n=0}^{\infty} \frac{n^3}{8^n + n^2} (x-2)^{3n}$, with various x.

This series makes sense also for $x \in \mathbb{C}$. For x = 1-i, calculate the partial sum $\sum_{n=0}^{2} \frac{n^3}{8^n + n^2} (x-2)^{3n} = \frac{\boxed{a}}{\boxed{b}} + \frac{\boxed{c}}{\boxed{d}}i$.

In order to use the ratio test for $x \in \mathbb{R}$, we put $a_n = \frac{n^3}{8^n + n^2}(x - 2)^{3n}$. Complete the formula.

Therefore, by the root test, the series converges absolutely for

MULTI 8 points Single
• all x .
• $-3 < x < -1.$
• $-3 < x < 1.$
• $-2 < x < 2$.
• $-\frac{3}{2} < x < \frac{1}{2}$.
• $-\frac{5}{2} < x < -\frac{1}{2}$.
• $-\tilde{1} < x < 1.$
• $-1 < x < 3.$
• $-\frac{1}{2} < x < \frac{3}{2}$.
• $x = 0$.
• $0 < x < 2.$
• $0 < x < 4$. \checkmark
• $\frac{1}{2} < x < \frac{3}{2}$.
• $\tilde{1} < x < \tilde{1}$.
• $1 < x < 3$.
For the case $x = -\frac{3}{2}$, the series

- converges absolutely.
- converges but not absolutely.
- diverges. \checkmark
- For the case x = -1, the series

MULTI 4 points Single

- converges absolutely.
- converges but not absolutely.
- diverges. \checkmark

(7) **Q3**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly** 0 **or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us consider the following function

$$f(x) = \log \frac{x^3 + 1}{x^2 - 4}.$$

The function f(x) is not defined on the whole real line \mathbb{R} . Choose all the points that are **not** in the natural domain of f(x).

$$\begin{array}{c} \begin{array}{c} & & & \\ \hline \text{MULTI} & 4 \text{ points} & \\ \hline \text{Single} \\ \hline & & -3 \checkmark \\ \hline & & -\frac{5}{2} \checkmark \\ \hline & & -2 \checkmark \\ \hline & & -\frac{1}{2} \checkmark \\ \hline & & -\frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & -\frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & \frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & \frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & \frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & \frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & \frac{1}{2} \checkmark \\ \hline & & 0 \checkmark \\ \hline & & \frac{1}{2} \checkmark \\ \hline & & 0 \leftthreetimes \\ \hline &$$

•
$$y = -e \ (-100\%)$$

• $y = -1 \ (-100\%)$
• $y = 0 \ (-100\%)$
• $y = 1 \ (-100\%)$
• $y = e \ (-100\%)$
• $x = -2 \ \checkmark$
• $x = -\sqrt{2} \ (-100\%)$
• $x = -1 \ \checkmark$
• $x = 0 \ (-100\%)$
• $x = \sqrt{2} \ (-100\%)$
• $x = \sqrt{2} \ (-100\%)$
• $x = \sqrt{3} \ (-100\%)$
• $x = 2 \ \checkmark$
• $y = x/2 \ (-100\%)$
• $y = x/2 \ (-100\%)$
• $y = -x/2 \ (-100\%)$
• $y = -2x \ (-100\%)$
One has

$$f'(3) = \frac{a}{b}$$

To determine the natural domain of a function, it is enough to observe the components. For example, $\log y$ is defined for y > 0, $\frac{1}{y-a}$ is defined only for $y \neq a$, etc. It is enought to exclude all such points where the composed function is not defined. In this case, $\frac{x^3+1}{x^2-4} > 0$, so $x^3 + 1 > 0$ and $x^2 - 4 > 0$ or $x^3 + 1 < 0$ and $x^2 - 4 < 0$. That is, x > 2 or -2 < x < -1. There can be asymptotes for $x \to \pm \infty$, and for $x \to \pm \infty$ a, where a is a boundary of the domain. In this case, one should check $x \to -2, -1, 1, \infty$. $x \to -2, -1, 1$ give infinity, so there are vertical asymptote there. As for $x \to x$ ∞ , f(x) diverges, so there is no horizontal asymptote. To see whethere there are oblique asymptotes, we note that $f(x) = \log \frac{x^3+1}{x^2-4} < \log(2x^3)$, and $\frac{\log 2 + \log x^3}{x} \to 0$ as $x \to \infty$. Hence there is no oblique asymptote. For the derivative, the chain rule (f(g(x)))' =g'(x)f'(g(x)) is useful. In this case, $f(x) = \log \frac{x^3+1}{x^2-4}$, $f'(x) = \frac{x^2-4}{x^3+1} \cdot \frac{3x^2(x^2-4)-(x^3+1)2x}{(x^2-4)^2} = \frac{x(x^3-12x-2)}{(x^3+1)(x^2-4)}$. If $f'(x_0) = 0$, x_0 is called a stationary point. In this case, $x_0 = 0$ is the only possibility. Note that, f'(0) = 0 but x = 0 is not in the domain. As for $g(x) = x^3 - 12x - 2$, it has one solution in [3,4] because q(3) < 0, q(4) > 0. Other solutions are again outside the domain (they are in x < -2 and in [-1, 0], by the same reasoning as above). If $f'(x) \ge 0 \ (\le 0)$ in one interval, then f(x) is monotonically increasing (decreasing) there. If $x \in [4, 5]$, f'(x) is positive, because g(4) = 64 - 48 - 2 > 0, and $g'(x) = 3x^3 - 12 > 0$ in $x \in [4, 5]$.

(8) **Q3**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$. Let us consider the following function

$$f(x) = \log \frac{1 - x^3}{x^2 - 4}.$$

The function f(x) is not defined on the whole real line \mathbb{R} . Choose all the points that are **not** in the natural domain of f(x). MULTI 4 points Single • -3(-100%)• $-\frac{5}{2}$ (-100%) • $-\hat{2}$ \checkmark • $-\frac{3}{2}$ \checkmark • -1 \checkmark • $-\frac{1}{2}$ \checkmark • 0 v • $\frac{1}{2}$ \checkmark • 1 ✓ • $\frac{3}{2}$ (-100%) 2 √ • $\frac{5}{2}$ \checkmark • 3 **√** Choose all asymptotes of f(x). MULTI 4 points Single • $y = -e \ (-100\%)$ • $y = -1 \ (-100\%)$ • $y = 0 \ (-100\%)$ • $y = 1 \ (-100\%)$ • y = e (-100%)• $x = -2 \checkmark$ • $x = -\sqrt{3} \ (-100\%)$ • $x = -\sqrt{2} \ (-100\%)$ • $x = -1 \ (-100\%)$ • $x = 0 \ (-100\%)$ • $x = 1 \checkmark$ • $x = \sqrt{2} (-100\%)$ • $x = \sqrt{3} \ (-100\%)$ • $x = 2 \checkmark$ • $y = x/2 \ (-100\%)$ • y = x (-100%)• $y = 2x \ (-100\%)$ • $y = -x/2 \ (-100\%)$ • $y = -x \ (-100\%)$

(9) **Q4**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_{1}^{2} \frac{1}{2^{x} + 4 + 3(2^{-x})} dx.$$

Let us change the variables $2^x = t$. Complete the formula

$$\int_{1}^{2} \frac{1}{2^{x} + 4 + 3(2^{-x})} dx = \int_{\boxed{a}}^{\boxed{b}} \frac{1}{\log \boxed{c}(t^{2} + \boxed{d}t + \boxed{e})} dt$$

$$\boxed{a}:$$

$$\boxed{\text{NUMERICAL}} \boxed{1 \text{ point}}$$

$$\boxed{2 \sqrt{}}$$

(10) **Q4**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as \boxed{a}) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_{2}^{3} \frac{1}{2^{x} + 4 + 3(2^{-x})} dx.$$

Let us change the variables $2^x = t$. Complete the formula

By continuing, we get

(11) **Q4**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_{2}^{4} \frac{1}{2^{x} - 2 - 3(2^{-x})} dx.$$

Let us change the variables $2^x = t$. Complete the formula

By continuing, we get

$$\int_{2}^{4} \frac{1}{2^{x} - 2 - 3(2^{-x})} dx = \frac{\log \frac{f}{g}}{h \log i}.$$

$$f:$$

$$\boxed{\text{NUMERICAL}} 2 \text{ points}$$

$$65 \checkmark$$

$$\boxed{\text{g}:}$$

$$\boxed{\text{NUMERICAL}} 2 \text{ points}$$

$$17 \checkmark$$

$$\boxed{\text{h}:}$$

$$\boxed{\text{NUMERICAL}} 1 \text{ point}$$

$$4 \checkmark$$

$$\boxed{\text{i}:}$$

$$\boxed{\text{NUMERICAL}} 1 \text{ point}$$

$$\boxed{2 \checkmark}$$

$$(12) \mathbf{Q4}$$

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{\boxed{a}}{\boxed{b}}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Let us calculate the following integral.

$$\int_{3}^{5} \frac{1}{2^{x} - 2 - 3(2^{-x})} dx.$$

Let us change the variables $2^x = t$. Complete the formula

$$\int_{3}^{5} \frac{1}{2^{x} - 2 - 3(2^{-x})} dx = \int_{\boxed{a}}^{\boxed{b}} \frac{1}{\log \boxed{c} (t^{2} + \boxed{d}t + \boxed{e})} dt$$

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the

answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$. Choose the general solution of the following differential equa-

tion.

$$y'(x) = 6x^2 \exp(x^3) y^{\frac{1}{2}}$$

MULTI
 I point
 Single

 •
$$y(x) = C \exp(x^3)$$
 • $y(x) = \exp(x^3) + \frac{C}{2}$

 • $y(x) = \exp(x^3) + \frac{C}{2}$

 • $y(x) = C \exp(x^6)$

 • $y(x) = \exp(x^6) + C$

 • $y(x) = 2\exp(x^6) + C$

 • $y(x) = (\exp(x^3) + \frac{C}{2})^2 \checkmark$

 • $y(x) = 2(\exp(x^3) + \frac{C}{2})^2$

 • $y(x) = 2(\exp(x^3) + \frac{C}{2})^3$

 • $y(x) = 2(\exp(x^3) + \frac{C}{2})^3$

9

a: NUMERICAL 1 point 2 \checkmark

Choose the general solution of the following differential equation.

$$y''(x) + y'(x) - 6y(x) = 0$$

.
MULTI 1 point Single
•
$$y(x) = C_1 \exp(-3x) + C_2 \exp(2x) \checkmark$$

• $y(x) = C_1 \exp(-2x) + C_2 \exp(3x)$
• $y(x) = C_1 \exp(-x) + C_2 \exp(3x)$
• $y(x) = C_1 \exp(-6x) + C_2 \exp(1x)$
• $y(x) = C_1 \sin(-3x) + C_2 \cos(2x)$
• $y(x) = C_1 \sin(-2x) + C_2 \cos(3x)$
• $y(x) = C_1 \sin(-x) + C_2 \cos(6x)$
• $y(x) = C_1 \sin(-6x) + C_2 \cos(1x)$
Find a solution $y(x)$ such that $y(0) = 4$ and $\lim_{x\to\infty} y(x) = 0$.
 $C_1 = [a], C_2 = [b]$.
[b]:

) =

-3 🗸

The differential equation $y'(x) = 6x^2 \exp(x^3)y^{\frac{1}{2}}$ is separable. Write it formally as $y^{-\frac{1}{2}}dy = 6x^2 \exp(x^3)dx$ and we can integrate separately, to obtain $2y^{\frac{1}{2}} = 2\exp(x^3) + C$, or $y = (\exp(x^3) + \frac{C}{2})^2$. To obtain the solution with the initial condition, note that If $x = (\log 2)^{\frac{1}{3}}$, we have to have $9 = (\exp(((\log 2)^{\frac{1}{3}})^3 + \frac{C}{2})^2 = (2 + \frac{C}{2})^2$, or C = 2. The equation y''(x) + y'(x) - 6y(x) = 0 can be solved by finding the solutions of the equation $z^2 + z - 6 = 0$, that are z = 2, -3. With them, the general solution is $y(x) = C_1 \exp(-3x) + C_2 \exp(2x)$. The term $C_1 \exp(-3x)$ diverges as $x \to -\infty$, while the term $C_2 \exp(3x)$ diverges as $x \to \infty$. The only possible value of a such that $\frac{e^{3x}}{e^{ax}}$ tends to a non-zero limit as $x \to -\infty$ is a = 3 (for other values, it is either ∞ or 0).

(14) **Q5**

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (pos-sibly** 0 **or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Choose the general solution of the following differential equation.

$$y'(x) = 6x^2 \exp(x^3) y^{\frac{1}{2}}$$

$$\begin{array}{c|c} \hline \text{MULTI} & \hline 1 \text{ point} & \text{Single} \\ \hline \bullet \ y(x) = C \exp(x^3) + \frac{C}{2} \\ \bullet \ y(x) = \exp(x^3) + \frac{C}{2} \\ \bullet \ y(x) = 2 \exp(x^3) + \frac{C}{2} \\ \bullet \ y(x) = C \exp(x^6) + C \\ \bullet \ y(x) = \exp(x^6) + C \\ \bullet \ y(x) = 2 \exp(x^6) + C \\ \bullet \ y(x) = (\exp(x^3) + \frac{C}{2})^2 \checkmark \\ \bullet \ y(x) = 2(\exp(x^3) + \frac{C}{2})^2 \\ \bullet \ y(x) = 2(\exp(x^3) + \frac{C}{2})^3 \\ \bullet \ y(x) = 2(\exp(x^3) + \frac{C}{2})^3 \\ \text{Determine} \ C = \boxed{a} \text{ with the initial condition } y((\log 2)^{\frac{1}{3}}) = 4 \\ \boxed{a}: \\ \hline \text{NUMERICAL} & \boxed{1 \text{ point}} \end{array}$$

 $\begin{array}{|c|c|c|c|}\hline 0 & \checkmark & & \\\hline & Choose the general solution of the following differential equation. \end{array}$

$$y''(x) + y'(x) - 6y(x) = 0$$

.

$$\boxed{\text{MULTI}} \qquad \boxed{1 \text{ point}} \qquad \boxed{\text{Single}} \\ \bullet y(x) = C_1 \exp(-3x) + C_2 \exp(2x) \checkmark \\ \bullet y(x) = C_1 \exp(-2x) + C_2 \exp(3x) \\ \bullet y(x) = C_1 \exp(-6x) + C_2 \exp(1x) \\ \bullet y(x) = C_1 \exp(-6x) + C_2 \exp(1x) \\ \bullet y(x) = C_1 \sin(-3x) + C_2 \cos(2x) \\ \bullet y(x) = C_1 \sin(-2x) + C_2 \cos(3x) \\ \bullet y(x) = C_1 \sin(-6x) + C_2 \cos(1x) \\ \text{Find a solution } y(x) \text{ such that } y(0) = 4 \text{ and } \lim_{x \to -\infty} y(x) = 0. \quad C_1 = \boxed{a}, C_2 = \boxed{b}. \\ \boxed{b}: \\ \boxed{\text{NUMERICAL}} \qquad \boxed{1 \text{ point}} \\ \hline{0 \checkmark} \\ \boxed{c}: \\ \boxed{\text{NUMERICAL}} \qquad \boxed{1 \text{ point}} \\ \hline{4 \checkmark} \\ \text{With this solution, find a value } a = \boxed{d} \text{ such that } \lim_{x \to \infty} \frac{y(x)}{e^{ax}} \\ \text{converges to a non-zero limit.} \end{aligned}$$

c:

(15) $\mathbf{Q5}$

2 🗸

CLOZE 0.10 penalty

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). $\log x = \log_e x$, not $\log_{10} x$.

Choose the general solution of the following differential equation.

$$y'(x) = 9x^2 \exp(x^3) y^{\frac{2}{3}}$$

1 point MULTI Single • $y(x) = C \exp(x^3)$ • $y(x) = \exp(x^3) + \frac{C}{2}$ • $y(x) = 2\exp(x^3) + \frac{C}{2}$ • $y(x) = C \exp(x^6)$ • $y(x) = \exp(x^6) + C$ • $y(x) = 2\exp(x^6) + C$ • $y(x) = (\exp(x^3) + \frac{C}{2})^2$ • $y(x) = 2(\exp(x^3) + \frac{2}{2})^2$ • $y(x) = (\exp(x^3) + \frac{C}{2})^3 \checkmark$ • $y(x) = 2(\exp(x^3) + \frac{C}{2})^3$ Determine C = [a] with the initial condition $y((\log 2)^{\frac{1}{3}}) = 1$ a: NUMERICAL 1 point -3 🗸

Choose the general solution of the following differential equation.

$$y''(x) - y'(x) - 6y(x) = 0$$

 $\begin{array}{c|c} \hline \text{MULTI} & \hline 1 \text{ point} & \hline \text{Single} \\ \bullet & y(x) = C_1 \exp(-3x) + C_2 \exp(2x) \\ \bullet & y(x) = C_1 \exp(-2x) + C_2 \exp(3x) \checkmark \\ \bullet & y(x) = C_1 \exp(-x) + C_2 \exp(6x) \\ \bullet & y(x) = C_1 \exp(-6x) + C_2 \exp(1x) \end{array}$

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). log $x = \log_e x$, not $\log_{10} x$.

Choose the general solution of the following differential equation.

$$y'(x) = 6x^2 \exp(x^3) y^{\frac{1}{2}}$$

 $\begin{array}{l} \hline \text{MULTT} & \hline 1 \text{ point} & \text{Single} \\ \hline \bullet & y(x) = C \exp(x^3) \\ \bullet & y(x) = \exp(x^3) + \frac{C}{2} \\ \bullet & y(x) = 2 \exp(x^3) + \frac{C}{2} \\ \bullet & y(x) = C \exp(x^6) \\ \bullet & y(x) = \exp(x^6) + C \\ \bullet & y(x) = 2 \exp(x^6) + C \\ \bullet & y(x) = (\exp(x^3) + \frac{C}{2})^2 \checkmark \\ \bullet & y(x) = 2(\exp(x^3) + \frac{C}{2})^2 \end{array}$

Determine C = [a] with the initial condition $y((\log 2)^{\frac{1}{3}}) = 27$ [] NUMERICAL 1 point 3 \checkmark

 $3 \checkmark$ Choose the general solution of the following differential equation. u''(x) = u'(x) = 6u(x) = 0

$$y''(x) - y'(x) - 6y(x) = 0$$
.

$$\boxed{\text{MULTI}} \quad \boxed{1 \text{ point}} \quad \underbrace{\text{Single}}_{\bullet \ y(x) = C_1 \exp(-3x) + C_2 \exp(2x)}_{\bullet \ y(x) = C_1 \exp(-2x) + C_2 \exp(3x) \checkmark}_{\bullet \ y(x) = C_1 \exp(-6x) + C_2 \exp(6x)}_{\bullet \ y(x) = C_1 \sin(-3x) + C_2 \cos(2x)}_{\bullet \ y(x) = C_1 \sin(-3x) + C_2 \cos(3x)}_{\bullet \ y(x) = C_1 \sin(-2x) + C_2 \cos(6x)}_{\bullet \ y(x) = C_1 \sin(-6x) + C_2 \cos(6x)}_{\bullet \ y(x) = C_1 \sin(-6x) + C_2 \cos(1x)}_{\bullet \ \text{Find a solution } y(x) \text{ such that } y(0) = 3 \text{ and } \lim_{x \to \infty} y(x) = 0.$$

$$C_1 = \boxed{a}, C_2 = \boxed{b}.$$

$$\boxed{b!}:$$

$$\boxed{\text{NUMERICAL}} \quad 1 \text{ point}}_{\bullet \ 0 \ \checkmark}_{\bullet \ \text{with this solution, find a value } a = \boxed{d} \text{ such that } \lim_{x \to -\infty} \frac{y(x)}{e^{ax}}$$

$$\operatorname{converges to a non-zero limit.}$$

$$\boxed{c!}:$$

$$\boxed{\text{NUMERICAL}} \quad 1 \text{ point}}_{\bullet \ 2 \ \checkmark}_{\bullet \ ax}$$

Total of marks: 300