
Call2.

(1) Q1
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Complete the formulae.

ex = a + b x+
c

d
x2 +

e

f
x3 + o(x3) as x→ 0.

a : 1 X b : 1 X c : 1 X d : 2 X e : 1 X

f : 6 X

x
√

1 + x = g + h x+
i

j
x2 +

k

l
x3 as x→ 0.

g : 0 X h : 1 X i : 1 X j : 2 X k : −1 X

l : 8 X

x sin(x2) = m + n x+ o x2 + p x3 + o(x3) as x→ 0.

m : 0 X n : 0 X o : 0 X p : 1 X
For various α ∈ R, study the limit:

lim
x→0

ex − x
√

1 + x− 1 + αx2

x sin(x2)
.

This limit converges for α = q .

q : 0 X

In that case, the limit is
r
s

.

r : 7 X s : 24 X
1



2

Use the Taylor formula f(x) = f(0)+f ′(0)x+ 1
2!
f ′′(0)x2+

1
3!
f (3)(0)x3 + o(x3) as x → 0. For a product f(x)g(x),

the Taylor formula can be obtained by multiplying the
corresponding expansions and pick the order smaller than
or equal to x3. Composed functions such as g(x2) can be
expanded by substituting y = x2 in the Taylor formula
for g(y).
To determine α, one only has to compare the numereator
and the denominator and choose α in such a way that
they have the same degree of infinitesimal (in this case,
both of them should be of order x2).

(2) Q1
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Complete the formulae.

e−x = a + b x+
c

d
x2 +

e

f
x3 + o(x3) as x→ 0.

a : 1 X b : −1 X c : 1 X d : 2 X e : −1 X

f : 6 X

x
√

1− x = g + h x+
i

j
x2 +

k

l
x3 as x→ 0.

g : 0 X h : 1 X i : −1 X j : 2 X k : −1 X

l : 8 X

x sin(x2) = m + n x+ o x2 + p x3 + o(x3) as x→ 0.

m : 0 X n : 0 X o : 0 X p : 1 X
For various α ∈ R, study the limit:

lim
x→0

e−x + x
√

1− x− 1 + αx2

x sin(x2)
.
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This limit converges for α = q .

q : 0 X

In that case, the limit is
r
s

.

r : −7 X s : 24 X
(3) Q1

If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Complete the formulae.

ex = a + b x+
c

d
x2 +

e

f
x3 + o(x3) as x→ 0.

a : 1 X b : 1 X c : 1 X d : 2 X e : 1 X

f : 6 X

x
√

1 + x = g + h x+
i

j
x2 +

k

l
x3 as x→ 0.

g : 0 X h : 1 X i : 1 X j : 2 X k : −1 X

l : 8 X

x sin(2x2) = m + n x+ o x2 + p x3 + o(x3) as x→ 0.

m : 0 X n : 0 X o : 0 X p : 2 X
For various α ∈ R, study the limit:

lim
x→0

ex − x
√

1 + x+ α

x sin(2x2)
.

This limit converges for α = q .

q : −1 X

In that case, the limit is
r
s

.

r : 7 X s : 48 X
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(4) Q1
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Complete the formulae.

e−x = a + b x+
c

d
x2 +

e

f
x3 + o(x3) as x→ 0.

a : 1 X b : −1 X c : 1 X d : 2 X e : −1 X

f : 6 X

x
√

1− x = g + h x+
i

j
x2 +

k

l
x3 as x→ 0.

g : 0 X h : 1 X i : −1 X j : 2 X k : 1 X

l : 8 X

x sin(2x2) = m + n x+ o x2 + p x3 + o(x3) as x→ 0.

m : 0 X n : 0 X o : 0 X p : 2 X
For various α ∈ R, study the limit:

lim
x→0

e−x + x
√

1− x+ α

x sin(2x2)
.

This limit converges for α = q .

q : −1 X

In that case, the limit is
r
s

.

r : −7 X s : 48 X
(5) Q2

If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign
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should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us study the following series
∑∞

n=0
2n+1
3n+2

x2x, with various
x.

This series makes sense also for x ∈ C. For x = 1√
2

+ i√
2
,

calculate the partial sum
∑2

n=0
2n+1
3n+2

x2n =
a

b
+

c

d
i.

a : 7 X b : 33 X c : 3 X d : 5 X
In order to use the root test for x ∈ R, we put an = 2n+1

3n+2
x2n.

Complete the formula.

lim
n→∞

(an)
1
n =

e

f
|x| g

e : 2 X f : 3 X g : 2 X
Therefore, by the root test, the series converges absolutely

for
• all x.
• −
√

3 < x <
√

3.
• −2 < x < 2.
• −3

2
< x < 3

2
.

• −(3
2
)
1
2 < x < (3

2
)
1
2 . X

• −(2
3
)
1
2 < x < (2

3
)
1
2 .

• −2
3
< x < 2

3
.

• x = 0.
• none of x.
For the case x = −2, the series
• converges absolutely.
• converges but not absolutely.
• diverges. X
For the case x = −(3

2
)
1
2 , the series

• converges absolutely.
• converges but not absolutely.
• diverges. X
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The partial sum means the following finite sum:∑2
n=0 an = a0+a1+a2, so one just has to apply n = 0, 1, 2

in the concrete series and sum the numbers up. Notice
that i2 = −1.
To apply the root test, one considers R = limn→∞ |an|

1
n .

Note that (n2 + 1)
1
n → 2 etc.

If this limit R < 1, then the series converges absolutely
(for such x), while if R > 1 the series diverges.
If R = 1, one needs to study the convergence with other
criteria. In this case, if x = −(3

2
)
1
2 , then an = 2n+1

3n+2
(3
2
)n →

1, and an is not convergent to 0. Therefore, the series is
divergent.

(6) Q2
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us study the following series
∑∞

n=0
2n+1
3n+2

x2x, with various
x.

This series makes sense also for x ∈ C. For x = 1√
2
− i√

2
,

calculate the partial sum
∑2

n=0
2n+1
3n+2

x2n =
a

b
+

c

d
i.

a : 7 X b : 33 X c : −3 X d : 5 X
In order to use the root test for x ∈ R, we put an = 2n+1

3n+2
x2n.

Complete the formula.

lim
n→∞

(an)
1
n =

e

f
|x| g

e : 2 X f : 3 X g : 2 X
Therefore, by the root test, the series converges absolutely

for
• all x.
• −
√

3 < x <
√

3.
• −2 < x < 2.
• −3

2
< x < 3

2
.
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• −(3
2
)
1
2 < x < (3

2
)
1
2 . X

• −(2
3
)
1
2 < x < (2

3
)
1
2 .

• −2
3
< x < 2

3
.

• x = 0.
• none of x.
For the case x = −1, the series
• converges absolutely. X
• converges but not absolutely.
• diverges.
For the case x = −(3

2
)
1
2 , the series

• converges absolutely.
• converges but not absolutely.
• diverges. X

(7) Q2
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us study the following series
∑∞

n=0
3n+2
2n+1

x2x, with various
x.

This series makes sense also for x ∈ C. For x = 1√
2

+ i√
2
,

calculate the partial sum
∑2

n=0
3n+2
2n+1

x2n =
a

b
+

c

d
i.

a : −7 X b : 10 X c : 5 X d : 3 X
In order to use the root test for x ∈ R, we put an = 3n+2

2n+1
x2n.

Complete the formula.

lim
n→∞

(an)
1
n =

e

f
|x| g

e : 3 X f : 2 X g : 2 X
Therefore, by the root test, the series converges absolutely

for
• all x.
• −
√

3 < x <
√

3.
• −2 < x < 2.
• −3

2
< x < 3

2
.

• −(3
2
)
1
2 < x < (3

2
)
1
2 .
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• −(2
3
)
1
2 < x < (2

3
)
1
2 . X

• −2
3
< x < 2

3
.

• x = 0.
• none of x.
For the case x = −2, the series
• converges absolutely.
• converges but not absolutely.
• diverges. X
For the case x = −(2

3
)
1
2 , the series

• converges absolutely.
• converges but not absolutely.
• diverges. X

(8) Q2
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us study the following series
∑∞

n=0
3n+2
2n+1

x2x, with various
x.

This series makes sense also for x ∈ C. For x = 1√
2
− i√

2
,

calculate the partial sum
∑2

n=0
3n+2
2n+1

x2n =
a

b
+

c

d
i.

a : −7 X b : 10 X c : −5 X d : 3 X
In order to use the root test for x ∈ R, we put an = 3n+2

2n+1
x2n.

Complete the formula.

lim
n→∞

(an)
1
n =

e

f
|x| g

e : 3 X f : 2 X g : 2 X
Therefore, by the root test, the series converges absolutely

for
• all x.
• −
√

3 < x <
√

3.
• −2 < x < 2.
• −3

2
< x < 3

2
.

• −(3
2
)
1
2 < x < (3

2
)
1
2 .

• −(2
3
)
1
2 < x < (2

3
)
1
2 . X
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• −2
3
< x < 2

3
.

• x = 0.
• none of x.
For the case x = −1, the series
• converges absolutely. X
• converges but not absolutely.
• diverges.
For the case x = −(2

3
)
1
2 , the series

• converges absolutely.
• converges but not absolutely.
• diverges. X

(9) Q3
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us consider the following function

f(x) =
ex

2

|x− 1| − 1
.

The function f(x) is not defined on the whole real line R.
Choose all the points that are not in the natural domain of
f(x).
• −e
• −2
• −1
• 0 X
• 1
• 2 X
• e
Choose all asymptotes of f(x).
• y = −e
• y = −2
• y = 0
• y = 2
• y = e
• x = −2
• x = −

√
2
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• x = −1
• x = 0 X
• x = 1
• x =

√
2

• x = 2 X
• y = x
• y = −x

The function f(x) has three stationary points: x = ±
√

c

d
, e +√

f
g
.

c : 1 X d : 2 X e : 1 X f : 3 X g : 2 X
The f(x) is not differentiable at x = 1. The point x = 1 is
• a local minimum
• a local maximum
• neither a local minimum nor a local maximum X
Choose the behaviour of f(x) in the interval (2, 4).
• monotonically decreasing
• monotonically increasing
• neither decreasing nor increasing X
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To determine the natural domain of a function, it is
enough to observe the components. For example, log y is
defined only for y > 0, 1

y−a is defined only for y 6= a, etc.

It is enought to exclude all such points where the com-
posed function is not defined. In this case, |x−1|−1 6= 0,
hence x 6= 0, 2.
There can be asymptotes for x → ±∞, and for x →
a, where a is a boundary of the domain. In this case,
one should check x → 0, 2. All of them are asymptotes.
On the other hand, as x → ±∞, the function diverges
because ex

2
> e|x| and the exponential function grows

much faster than any polynomial.
To find stationary points, we need to compute the deriv-
ative and solve f ′(x) = 0. In this case, we need to split
the cases into x − 1 > 0 or x − 1 < 0. Respectively, we

have f ′(x) = ex
2
(2x(x−2)−1)
(x−1)2 and f ′(x) = ex

2
(2x2−1)
x2

. From

each of the equations f ′(x) = 0 we obtain two solutions,
but they must satisfy x− 1 > 0, x− 1 < 0 respectively.
If f ′(x) ≥ 0 (≤ 0) in one interval, then f(x) is monoton-
ically increasing (decreasing) there.

(10) Q3
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us consider the following function

f(x) =
e(x−1)

2

|x− 2| − 1
.

The function f(x) is not defined on the whole real line R.
Choose all the points that are not in the natural domain of
f(x).
• −e
• −3
• −2
• −1
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• 0
• 1 X
• 2
• 3 X
• e
Choose all asymptotes of f(x).
• y = −e
• y = −2
• y = 0
• y = 2
• y = e
• x = −3
• x = −2
• x = −

√
2

• x = −1
• x = 0
• x = 1 X
• x =

√
2

• x = 2
• x = 3 X
• y = x
• y = −x
The function f(x) has three stationary points: x = c ±√
d
e
, f +

√
g

h
.

c : 1 X d : 1 X e : 2 X f : 2 X g : 3 X

h : 2 X
The f(x) is not differentiable at x = 2. The point x = 2 is
• a local minimum
• a local maximum
• neither a local minimum nor a local maximum X
Choose the behaviour of f(x) in the interval (4, 5).
• monotonically decreasing
• monotonically increasing X
• neither decreasing nor increasing

(11) Q4
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the
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answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us calculate the following integral.∫ 2

1

x5 exp(x2)dx.

Choose a primitive of x exp(x2).
• x2 exp(x2)
• 2x2 exp(x2)
• x2 exp(x2)/2
• exp(x2/2)/2
• exp(x2)/2 X
• exp(2x2)/2
• exp(x3/3)
• exp(x3)/3
• x2 exp(x3)/3
Using the above primitive of x exp(x2), by integration by

parts, we have the following.

∫ 2

1

x5 exp(x2)dx =
a

b
[x c exp(x2)]21 − d

∫ 2

1

x e exp(x2)dx.

a : 1 X b : 2 X c : 4 X d : 2 X e : 3 X

By continuing, we get
∫ 2

1
x5 exp(x2)dx =

f
g
e+ h e i .

f : −1 X g : 2 X h : 5 X i : 4 X

We should use integration by parts
∫
f(x)g′(x)dx =

f(x)g(x)−
∫
f ′(x)g(x)dx. In this case, f(x) = x4

2
, g′(x) =

2xex
2

and g(x) = ex
2
. The remaining integral can be com-

puted in a similar way.

(12) Q4
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign
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should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us calculate the following integral.∫ 3

0

x5 exp(x2)dx.

Choose a primitive of x exp(x2).
• x2 exp(x2)
• 2x2 exp(x2)
• x2 exp(x2)/2
• exp(x2/2)/2
• exp(x2)/2 X
• exp(2x2)/2
• exp(x3/3)
• exp(x3)/3
• x2 exp(x3)/3
Using the above primitive of x exp(x2), by integration by

parts, we have the following.

∫ 3

0

x5 exp(x2)dx =
a

b
[x c exp(x2)]30 − d

∫ 3

0

x e exp(x2)dx.

a : 1 X b : 2 X c : 4 X d : 2 X e : 3 X

By continuing, we get
∫ 3

0
x5 exp(x2)dx = f +

g

h
e i .

f : −1 X g : 65 X h : 2 X i : 9 X
(13) Q5

If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us study the convergence of the following improper inte-
gral ∫ ∞

0

x log(x+ 1)

xα(x+ 1
2
)
dx

.
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Complete the formula.

x log(x+ 1)

x+ 1
2

= a + b x+ c x2 + o(x2) as x→ 0.

a : 0 X b : 0 X c : 2 X

Let us take an intermediate point x = 1. The integral
∫∞
1

x log(x+1)

xα(x+ 1
2
)
dx

converges for
• all α.
• α > 3
• α < 3
• α < 2
• α > 2
• α < 1
• α > 1 X
• α < 0
• α > 0
• none of α.
On the other hand, the integral

∫ 1

0
x log(x+1)

xα(x+ 1
2
)
dx converges for

• all α.
• α > 3
• α < 3 X
• α < 2
• α > 2
• α < 1
• α > 1
• α < 0
• α > 0
• none of α.
For α = 2, l’integrale

∫∞
0

x log(x+1)

xα(x+ 1
2
)
dx

• converges assolumtamente X
• converges but not absolutely
• does not converge

For α = 1, the integral
∫∞
0

x log(x+1)

xα(x+ 1
2
)
dx

• converges assolumtamente
• converges but not absolutely
• does not converge X
On the other hand, for α = 1, the integral

∫∞
0

x sinx
xα(x+ 1

2
)
dx

• converges assolumtamente
• converges but not absolutely X
• does not converge
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An improper integral
∫ b
a
f(x)dx is defined by

limα→a
∫ c
α
f(x)dx + limβ→b

∫ β
c
f(x)dx, if a = −∞, b = ∞

or f(x) is not bounded.

We know that
∫ 1

0
xαdx is convergent if and only if α >

−1 and
∫∞
1
xαdx is convergent if and only if α < −1.

Furthermore, we can compare f(x) as x→ 0 and x→∞
with xα. If f(x)

xα
is bounded and if

∫ b
a
xαdx is convergent,

then so is
∫ b
a
f(x)dx. We should check this condition as

x → 0 and x → ∞. For x → 0 we can use the Taylor
formula.
The integral

∫∞
0

x sinx
x(x+ 1

2
)
dx is oscillating. We can compare

it with
∫
x sinxdx which is convergent but not absolutely

convergent (see the lecture notes).

(14) Q5
If not specified otherwise, fill in the blanks with integers (pos-
sibly 0 or negative). A fraction should be reduced (for ex-
ample, 1

2
is accepted but not 2

4
), and if it is negative and the

answer boxes (such as
a

b
) have ambiguity, the negative sign

should be put on the numerator (for example −1
2

is accepted

but 1
−2 is not).

Let us study the convergence of the following improper inte-
gral ∫ ∞

0

x2 log(x+ 1)

xα(x+ 1
3
)2

dx

.
Complete the formula.

x2 log(x+ 1)

(x+ 1
3
)2

= a + b x+ c x2 + d x3 + o(x3) as x→ 0.

a : 0 X b : 0 X c : 0 X c : 9 X

Let us take an intermediate point x = 1. The integral
∫∞
1

x2 log(x+1)

xα(x+ 1
3
)2
dx

converges for
• all α.
• α > 4
• α < 4
• α > 3
• α < 3
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• α < 2
• α > 2
• α < 1
• α > 1 X
• α < 0
• α > 0
• none of α.
On the other hand, the integral

∫ 1

0
x2 log(x+1)

xα(x+ 1
3
)2
dx converges for

• all α.
• α > 4
• α < 4 X
• α > 3
• α < 3
• α < 2
• α > 2
• α < 1
• α > 1
• α < 0
• α > 0
• none of α.
For α = 0, l’integrale

∫∞
0

x2 log(x+1)

xα(x+ 1
3
)2
dx

• converges assolumtamente
• converges but not absolutely
• does not converge X
For α = 1, the integral

∫∞
0

x2 log(x+1)

xα(x+ 1
3
)2
dx

• converges assolumtamente
• converges but not absolutely
• does not converge X
On the other hand, for α = 1, the integral

∫∞
0

x2 sin(x)

xα(x+ 1
3
)2
dx

• converges assolumtamente
• converges but not absolutely X
• does not converge


