Call1.

(1) **Q1**

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\boxed{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Complete the formulae.

$$\frac{e^{x}}{e} = \boxed{\mathbf{a}} + \boxed{\mathbf{b}}(x-1) + \frac{\boxed{\mathbf{c}}}{\boxed{\mathbf{d}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{a}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{b}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{c}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{d}}: \boxed{\mathbf{2}} \checkmark$$

$$\sqrt{x} = \boxed{\mathbf{e}} + \frac{\boxed{\mathbf{f}}}{\boxed{\mathbf{g}}}(x-1) + \frac{\boxed{\mathbf{h}}}{\boxed{\mathbf{i}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{e}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{f}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{g}}: \boxed{\mathbf{2}} \checkmark \boxed{\mathbf{h}}: -\mathbf{1} \checkmark \boxed{\mathbf{i}}: \boxed{\mathbf{8}} \checkmark$$

$$\log x = \boxed{\mathbf{j}} + \boxed{\mathbf{k}}(x-1) + \frac{\boxed{\mathbf{h}}}{\boxed{\mathbf{m}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{j}}: \boxed{\mathbf{0}} \checkmark \boxed{\mathbf{k}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{l}}: -\mathbf{1} \checkmark \boxed{\mathbf{m}}: \boxed{\mathbf{2}} \checkmark$$
For various $\alpha \in \mathbb{R}$, study the limit:
$$\lim_{x \to 1} \frac{\frac{e^{x}}{e} - 2\sqrt{x} - \alpha}{\log x - (x-1)}.$$
This limit converges for $\alpha = \boxed{\mathbf{n}}.$

$$\boxed{\mathbf{n}}: -\mathbf{1} \checkmark$$
In that case, the limit is $\boxed{\mathbf{p}}.$

$$\boxed{\mathbf{0}}: -\mathbf{3} \checkmark \mathbf{p}: \boxed{\mathbf{2}} \checkmark$$
Use the Taylor formula $f(x) = f(1) + f'(1)(x-1) + \frac{1}{\pi}f''(1)(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$
To determine α , one

only has to compare the numereator and the denominator and choose α in such a way that they have the same degree of infinitesimal (in this case, both of them should be of order x^2).

(2) **Q1**

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Complete the formulae.

$$\frac{e^{x}}{e} = \boxed{\mathbf{a}} + \boxed{\mathbf{b}}(x-1) + \frac{\boxed{\mathbf{c}}}{\boxed{\mathbf{d}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{a}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{b}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{c}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{d}}: \boxed{\mathbf{2}} \checkmark$$

$$(x)^{\frac{1}{3}} = \boxed{\mathbf{e}} + \frac{\boxed{\mathbf{f}}}{\boxed{\mathbf{g}}}(x-1) + \frac{\boxed{\mathbf{h}}}{\boxed{\mathbf{i}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{e}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{f}}: \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{g}}: \boxed{\mathbf{3}} \checkmark \boxed{\mathbf{h}}: \boxed{-1} \checkmark \boxed{\mathbf{i}}: \boxed{\mathbf{9}} \checkmark$$

$$\log x = \boxed{\mathbf{j}} + \boxed{\mathbf{k}}(x-1) + \frac{\boxed{\mathbf{l}}}{\boxed{\mathbf{m}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{j}}: \boxed{\mathbf{0}} \checkmark \boxed{\mathbf{k}}: \underbrace{\mathbf{1}} \checkmark \boxed{\mathbf{l}}: \underbrace{-1} \checkmark \boxed{\mathbf{m}}: \underbrace{\mathbf{2}} \checkmark$$
For various $\alpha \in \mathbb{R}$, study the limit:
$$\lim_{x \to 1} \frac{\frac{e^{x}}{\log x} - 3(x)^{\frac{1}{3}} - \alpha}{\log x - (x-1)}.$$
This limit converges for $\alpha = \boxed{\mathbf{n}}.$

$$\boxed{\mathbf{n}}: \underbrace{-2} \checkmark$$
In that case, the limit is $\underbrace{\boxed{\mathbf{p}}}{\mathbf{p}}.$

$$\boxed{\mathbf{0}}: \underbrace{-5} \checkmark \boxed{\mathbf{p}}: \underbrace{\mathbf{3}} \checkmark$$

(3) Q1 If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

 $\mathbf{2}$

Complete the formulae.

$$\frac{e^{x}}{e} = \boxed{\mathbf{a}} + \boxed{\mathbf{b}}(x-1) + \frac{\boxed{\mathbf{c}}}{\boxed{\mathbf{d}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{a}} : \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{b}} : \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{c}} : \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{d}} : \boxed{\mathbf{2}} \checkmark$$

$$(x)^{\frac{1}{4}} = \boxed{\mathbf{e}} + \frac{\boxed{\mathbf{f}}}{\boxed{\mathbf{g}}}(x-1) + \frac{\boxed{\mathbf{h}}}{\boxed{\mathbf{i}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{e}} : \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{f}} : \boxed{\mathbf{1}} \checkmark \boxed{\mathbf{g}} : \boxed{\mathbf{4}} \checkmark \boxed{\mathbf{h}} : \boxed{-3} \checkmark \boxed{\mathbf{i}} : \boxed{32} \checkmark$$

$$\log x = \boxed{\mathbf{j}} + \boxed{\mathbf{k}}(x-1) + \frac{\boxed{\mathbf{l}}}{\boxed{\mathbf{m}}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{\mathbf{j}} : \boxed{\mathbf{0}} \checkmark \boxed{\mathbf{k}} : \underbrace{\mathbf{1}} \checkmark \boxed{\mathbf{l}} : \underbrace{-1} \checkmark \boxed{\mathbf{m}} : \underbrace{2} \checkmark$$
For various $\alpha \in \mathbb{R}$, study the limit:
$$\lim_{x \to 1} \frac{\frac{e^{x}}{\log x} - 4(x)^{\frac{1}{4}} - \alpha}{\log x - (x-1)}.$$
This limit converges for $\alpha = \boxed{\mathbf{n}}.$

$$\boxed{\mathbf{n}} : \boxed{-3} \checkmark$$
In that case, the limit is $\boxed{\mathbf{p}}.$

$$\boxed{\mathbf{0}} : \boxed{-7} \checkmark \boxed{\mathbf{p}} : \boxed{\mathbf{4}} \checkmark$$

(4) **Q1**

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as \boxed{a}) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not). Complete the formulae.

$$\frac{e^{x}}{e} = \boxed{a} + \boxed{b}(x-1) + \frac{\boxed{c}}{\boxed{d}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

$$\boxed{a} : \boxed{1 \checkmark b} : \boxed{1 \checkmark c} : \boxed{1 \checkmark d} : \boxed{2 \checkmark}$$

$$(x)^{\frac{1}{5}} = \boxed{e} + \frac{\boxed{f}}{\boxed{g}}(x-1) + \frac{\boxed{h}}{\boxed{i}}(x-1)^{2} + o((x-1)^{2}) \text{ as } x \to 1.$$

e:
$$1 \checkmark f$$
: $1 \checkmark g$: $5 \checkmark h$: $-2 \checkmark i$: $25 \checkmark$
 $\log x = j + k(x-1) + \frac{1}{m}(x-1)^2 + o((x-1)^2)$ as $x \to 1$.
 $j: 0 \checkmark k$: $1 \checkmark l$: $-1 \checkmark m$: $2 \checkmark$
For various $\alpha \in \mathbb{R}$, study the limit:
 $\lim_{x \to 1} \frac{e^x}{\log x - (x-1)} \cdot$
This limit converges for $\alpha = n$.
 $n: -4 \checkmark$
In that case, the limit is p .
 $o: -9 \checkmark p$: $5 \checkmark$
(5) Q2

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{|\mathbf{a}|}{|\mathbf{b}|}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us study the following series $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n$, with various *x*.

This series makes sense also for $x \in \mathbb{C}$. For x = i, calculate the partial sum $\sum_{n=0}^{2} \frac{(n!)^2}{(2n)!} x^n = \boxed{\frac{a}{b}} + \boxed{\frac{c}{d}} i$.

								c:							
	In	oı	de	r to	use	the 1	ratio	test	for	$x \in$	$\mathbb{R},$	we p	out	$a_n =$	$\frac{(n!)^2}{(2n)!} x ^n.$
4				. 1	c	1									

Complete the formula.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{\boxed{e}}{\boxed{f}} |x|$$

$$e: 1 \checkmark f: 4 \checkmark$$

Therefore, by the ratio test, the series converges absolutely for

- all x.
- $-\frac{1}{4} < x < \frac{1}{4}$. $-\frac{1}{2} < x < \frac{1}{2}$.

- x = 0. • -1 < x < 1. $\bullet \ -2 < x < 2.$ • -4 < x < 4. \checkmark • none of x. For the case x = -4, the series • converges absolutely. • converges but not absolutely.
- diverges. \checkmark
- For the case $x = -\frac{1}{2}$, the series \bullet converges absolutely. \checkmark
- converges but not absolutely.
- diverges.

The partial sum means the following finite sum: $\sum_{n=0}^{2} a_n = a_0 + a_1 + a_2$, so one just has to apply n = 0, 1, 2in the concrete series and sum the numbers up. Notice that $i^2 = -1$. To apply the ratio test, one considers $R = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. Note that (n + 1)! = (n + 1)n! etc. If this limit R < 1, then the series converges absolutely (for such x), while if R > 1 the series diverges. If R = 1, one needs to study the convergence with other criteria. In this case, if x = 4, then $\frac{a_{n+1}}{a_n} =$ $\frac{(n+1)^2}{(2n+2)(2n+1)}(-4) = \frac{-(2n+2)}{2n+1} < -1$, and a_n is not converging to 0. Therefore, the series is divergent.

(6) **Q2**

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{|\mathbf{a}|}{|\mathbf{b}|}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us study the following series $\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} x^n$, with various *x*.

This series makes sense also for $x \in \mathbb{C}$. For x = i, calculate the partial sum $\sum_{n=0}^{2} \frac{(n!)^3}{(3n)!} x^n = \frac{\boxed{a}}{\boxed{b}} + \frac{\boxed{c}}{\boxed{d}} i$.

a: 89
$$\checkmark$$
 b: 90 \checkmark c: 1 \checkmark d: 6 \checkmark
In order to use the ratio test for $x \in \mathbb{R}$ we put $a = \frac{(n!)^3}{2}$

In order to use the ratio test for $x \in \mathbb{R}$, we put $a_n = \frac{(n!)^2}{(3n)!} |x|^n$. Complete the formula.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{\underline{|\mathbf{e}|}}{\underline{|\mathbf{f}|}} |x|$$

$$e: 1 \checkmark f: 27 \checkmark$$

Therefore, by the ratio test, the series converges absolutely for

- all x.
- -27 < x < 27. \checkmark
- -9 < x < 9.
- -1 < x < 1.
- *x* = 0.
- $-\frac{1}{9} < x < \frac{1}{9}$. -1/27 < x < 1/27.

• none of x.

For the case x = -9, the series

- converges absolutely. \checkmark
- converges but not absolutely.
- diverges.

For the case x = 27, the series

- converges absolutely.
- converges but not absolutely.
- diverges. \checkmark
- (7) **Q2**

If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{|\mathbf{a}|}{|\mathbf{b}|}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us study the following series $\sum_{n=0}^{\infty} \frac{(n!)(2n)!}{(3n)!} x^n$, with various *x*.

This series makes sense also for $x \in \mathbb{C}$. For x = i, calculate the partial sum $\sum_{n=0}^{2} \frac{(n!)(2n)!}{(3n)!} x^n = \boxed{a}_{b} + \boxed{c}_{d} i.$ b: $15 \checkmark$ c: $1 \checkmark$ d: $3 \checkmark$ a: 14 ✓

In order to use the ratio test for $x \in \mathbb{R}$, we put $a_n = \frac{(n!)(2n)!}{(3n)!} x^n |x|^n$. Complete the formula.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{|\mathbf{e}|}{[\mathbf{f}]} |x|$$

e: $4 \checkmark f: 27 \checkmark$

Therefore, by the ratio test, the series converges absolutely for

- all x.
- -1/27 < x < 1/27.
- -4/27 < x < 4/27.
- x = 0.
- $\bullet \ -1 < x < 1.$
- 27/4 < x < 27/4. \checkmark
- -27 < x < 27.
- none of x.

For the case x = -7, the series

- converges absolutely.
- converges but not absolutely.
- diverges. \checkmark
- For the case $x = \frac{27}{4}$, the series
- converges absolutely.
- converges but not absolutely.
- diverges. \checkmark
- (8) **Q3**

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us consider the following function

$$f(x) = \log\left(\frac{x^2 - 3}{x - 2}\right).$$

The function f(x) is not defined on the whole real line \mathbb{R} . Choose all the points that are **not** in the natural domain of f(x).

 $\begin{array}{c} \bullet \ -e \ \checkmark \\ \bullet \ -2 \ \checkmark \end{array}$

8

• -1 • 0 • 1 • 2 🗸 • e Choose all asymptotes of f(x). • y = -e• y = -2• y = 0• y = 2• y = e• x = -2• $x = -\sqrt{3}$ \checkmark • $x = -\sqrt{2}$ • x = -1• *x* = 0 • x = 1• $x = \sqrt{2}$ • $x = \sqrt{3}$ \checkmark • x = 2 \checkmark • y = x• y = -xOne has

$$f'(0) = \frac{|\mathbf{a}|}{|\mathbf{b}|}$$

a: $1 \checkmark b$: $2 \checkmark$ The function f(x) has two stationary points: x = c, d. c: $1 \checkmark d$: $3 \checkmark$ Choose the behaviour of f(x) in the interval (2, 4).

- monotonically decreasing
- monotonically increasing
- \bullet neither decreasing nor increasing \checkmark

To determine the natural domain of a function, it is enough to observe the components. For example, $\log y$ is defined only for y > 0, $\frac{1}{y-a}$ is defined only for $y \neq a$, etc. It is enought to exclude all such points where the composed function is not defined. In this case, $\frac{x^2-3}{x-2} > 0$. There can be asymptotes for $x \to \pm \infty$, and for $x \to a$, where a is a boundary of the domain. In this case, one should check $x \to 2, \pm \sqrt{3}$. All of them are asymptotes. For the derivative, the chain rule (f(g(x)))' =g'(x)f'(g(x)) is useful. In this case, $f(x) = \log(\frac{x^2-3}{x-2})$, $f'(x) = \frac{x-2}{x^2-3} \cdot \frac{2x(x-2)-(x^2-3)}{(x-2)^2} = -\frac{x^2-4x+3}{(x^2-3)(x-2)}$. If $f'(x_0) = 0$, x_0 is called a stationary point. If $f'(x) \ge 0$ (≤ 0) in one interval, then f(x) is monotonically increasing (decreasing) there.

(9) **Q3**

If not specified otherwise, fill in the blanks with **integers (pos-sibly** 0 **or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us consider the following function

$$f(x) = \log\left(\frac{x^2 - 5}{x - 3}\right).$$

The function f(x) is not defined on the whole real line \mathbb{R} . Choose all the points that are **not** in the natural domain of f(x).

- $-3 \checkmark$ • -2• -1• 0• 1• 2• $3 \checkmark$ Choose all asymptotes of f(x). • y = -e
- y = -2

• y = 0y = 2• y = e• x = -3• $x = -\sqrt{5}$ \checkmark • $x = -\sqrt{3}$ • x = -1• x = 0• *x* = 1 • $x = \sqrt{3}$ • $x = \sqrt{5}$ \checkmark • x = 3 \checkmark • y = x• y = -xOne has $f'(0) = \frac{\boxed{\mathbf{a}}}{\boxed{\mathbf{b}}}.$ ✓ |b|: 3 a: 1 \checkmark The function f(x) has two stationary points: x = [c], [d] $\boxed{\mathbf{c}: \left| \mathbf{1} \right| \checkmark \left| \mathbf{d} \right|: \left| \mathbf{5} \right| \checkmark}$ Choose the behaviour of f(x) in the interval (4, 5).

- monotonically decreasing \checkmark
- monotonically increasing
- neither decreasing nor increasing

(10) **Q3**

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us consider the following function

$$f(x) = \log\left(\frac{x^2 - 7}{x - 4}\right).$$

The function f(x) is not defined on the whole real line \mathbb{R} . Choose all the points that are **not** in the natural domain of f(x).

- -3 √
- \bullet -2

• -1• 0 • 1 • 2 3 √ Choose all asymptotes of f(x). • y = -e• y = -2• y = 0• y = 2• y = e• x = -3• $x = -\sqrt{7}$ \checkmark • $x = -\sqrt{3}$ • x = -1• x = 0• *x* = 1 • $x = \sqrt{3}$ • $x = \sqrt{7}$ \checkmark • $x = 3 \checkmark$ • y = x• y = -xOne has $f'(0) = \frac{\boxed{\mathbf{a}}}{\boxed{\mathbf{b}}}.$ a: 1 🗸 b: 4 🗸 The function f(x) has two stationary points: x = [c], [d] $\boxed{\mathbf{c}}: \boxed{1} \checkmark \boxed{\mathbf{d}}: \boxed{7} \checkmark$ Choose the behaviour of f(x) in the interval (0, 1). • monotonically decreasing • monotonically increasing \checkmark • neither decreasing nor increasing (11) **Q4** If not specified otherwise, fill in the blanks with integers (possibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted

but $\frac{1}{-2}$ is not).

Let us calculate the following integral.

$$\int_{-1}^{\sqrt{2}} (4 - x^2)^{\frac{1}{2}} dx.$$

With the change of variable $2\sin t = x$ (where $-\pi < t < \pi$), we get

$$\int_{-1}^{\sqrt{2}} (4 - x^2)^{\frac{1}{2}} dx = \int_X^Y \underline{c} dt.$$

Fill in the blanks, $X = \frac{\pi}{a}, Y = \frac{\pi}{b}$.

a: $-6 \checkmark$ b: $4 \checkmark$ Choose the function c after the change of variables.

- t²
- $1/(2-t^2)$
- $2 \arccos t$
- $4\cos t$
- $2\cos 2t$ • $4\cos^2 t$ \checkmark
- $1/(2\cos t)$

By continuing, we get $\int_{-1}^{\sqrt{2}} (4 - x^2)^{\frac{1}{2}} dx = \frac{\sqrt{d}}{e} + \frac{f}{g}\pi + h$. d: $3 \checkmark e$: $2 \checkmark f$: $5 \checkmark g$: $6 \checkmark h$: $1 \checkmark$ By the change of variables $x = 2 \sin t$, one has $\frac{dx}{dt} = 2 \cos t$ and hence with $2 \sin(-\frac{\pi}{2}) = -1$, $2 \sin \frac{\pi}{2} = \sqrt{2}$, $\int_{-1}^{\sqrt{2}} (4 - t)^2 dt$

By the change of variables $x = 2 \sin t$, one has $\frac{dx}{dt} = 2 \cos t$ and hence with $2 \sin(-\frac{\pi}{6}) = -1, 2 \sin \frac{\pi}{4} = \sqrt{2}, \int_{-1}^{\sqrt{2}} (4 - x^2)^{\frac{1}{2}} dx = \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} 4 \cos^2 t dt$, then use $\cos^2 t = \frac{1 + \cos(2t)}{2}, \int \cos(2t) dt = \frac{\sin(2t)}{2} + C.$

(12) **Q4**

If not specified otherwise, fill in the blanks with **integers (pos-sibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\boxed{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us calculate the following integral.

$$\int_{1}^{\sqrt{2}} (4 - x^2)^{\frac{1}{2}} dx.$$

With the change of variable $2\sin t = x$ (where $-\pi < t < \pi$), we get

$$\int_{1}^{\sqrt{2}} (4-x^2)^{\frac{1}{2}} dx = \int_{X}^{Y} c dt.$$

Fill in the blanks, $X = \frac{\pi}{a}, Y = \frac{\pi}{b}.$
a): $6 \checkmark b$: $4 \checkmark$
Choose the function c after the change of variables.
• t^2
• $1/(2-t^2)$
• $2 \arccos t$
• $4 \cos t$
• $2 \cos 2t$
• $4 \cos^2 t \checkmark$
• $1/(2 \cos t)$
By continuing, we get $\int_{1}^{\sqrt{2}} (4-x^2)^{\frac{1}{2}} dx = \frac{d}{e} \pi - \frac{\sqrt{f}}{g} + h$.
d): $1 \checkmark e$: $6 \checkmark f$: $3 \checkmark g$: $2 \checkmark h$: $1 \checkmark$

(13) **Q4**

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Let us calculate the following integral.

$$\int_{-1}^{1} (4 - x^2)^{\frac{1}{2}} dx.$$

With the change of variable $2\sin t = x$ (where $-\pi < t < \pi$), we get

$$\int_{-1}^{1} (4 - x^2)^{\frac{1}{2}} dx = \int_{X}^{Y} \boxed{\mathbb{C}} dt.$$

Fill in the blanks, $X = \frac{\pi}{a}, Y = \frac{\pi}{b}$.

a:
$$-6 \checkmark$$
 b: $6 \checkmark$
Choose the function c after the change of variables.
• t^2
• $1/(2-t^2)$

By continuing, we get $\int_{-1}^{1} (4 - x^2)^{\frac{1}{2}} dx = \frac{d}{e} \pi + \sqrt{f}$. $d: 2 \checkmark e: 3 \checkmark f: 3 \checkmark$

• $2 \arccos t$ • $4 \cos t$ • $2 \cos 2t$ • $4 \cos^2 t \checkmark$ • $1/(2 \cos t)$

(14) **Q5**

•

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Choose the general solution of the following differential equation.

$$y'(x) = xe^{x^2}y$$

•
$$y(x) = \exp(x^2)/2 + C$$

• $y(x) = \exp(x^2 + C)/2$
• $y(x) = \exp(\exp(x^2)/2 + C) \checkmark$
• $y(x) = \exp(\exp(x^2)/2) + C$
• $y(x) = \log(\exp(x^2) + C)$
• $y(x) = \log \exp(x^2 + C)$
• $y(x) = (\exp(x^2 + C))^{\frac{1}{2}}$
• $y(x) = \exp(x^2)^{\frac{1}{2}} + C$
Determine $C = \frac{a}{b}$ with the initial condition $y(0) = e^{-1}$
 $a: -3 \checkmark b: 2 \checkmark$
Choose the general solution of the following differential equ

Choose the general solution of the following differential equation.

$$y''(x) - 4y'(x) + 8y = 0$$

• $y(x) = C_1 \exp(-4x) + C_2 \exp(-2x)$

•
$$y(x) = C_1 \exp(2x) + C_2 \exp(-4x)$$

• $y(x) = C_1 \sin(2x) + C_2 \cos(2x)$
• $y(x) = C_1 \exp(2x) + C_2 \exp(4x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(-2x) \cos(2x)$
• $y(x) = C_1 \exp(2x) \sin(2x) + C_2 \exp(2x) \cos(2x) \checkmark$
• $y(x) = C_1 \exp(-4x) \sin(4x) + C_2 \exp(-2x) \cos(-2x)$
Determine $C_1 = [c], C_2 = [d]$ with the initial condition $y(0) = 2$
[a]: $-1 \checkmark$ [b]: $2 \checkmark$
The equation $y'(x) = xe^{x^2}y$ is separable, hence one obtains the relation $\int \frac{1}{y}dy = \int xe^{x^2}dx + C$, or $\log y = \frac{e^{x^2}}{2} + C$, or $y = \exp(\frac{e^{x^2}}{2} + C)$.
The second-order differential equation $y'' + ay' + by = 0$ can be solved as follows: put $z^2 + az + b = 0$, and solve

 $\frac{e^x}{2} + C, \text{ or } y = \exp(\frac{e^x}{2} + C).$ The second-order differential equation y'' + ay' + by = 0can be solved as follows: put $z^2 + az + b = 0$, and solve this equation. If this has two real solutions z_1, z_2 , then the general solution is $y = C_1 e^{z_1 x} + C_2 e^{z_2 x}$. If it has two complex solutions $z_1 \pm iz_2$, then $y = C_1 e^{z_1 x} \sin(z_2 x) + C_2 e^{z_1 x} \cos(z_2 x)$. The constant can be obtaind by substituting the initial

(15) **Q5**

condition.

If not specified otherwise, fill in the blanks with **integers (possibly 0 or negative)**. A fraction should be **reduced** (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\frac{a}{b}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Choose the general solution of the following differential equation.

$$y'(x) = x \cos x^2 y$$

- $y(x) = \sin(x^2)/2 + C$
- $y(x) = \sin(x^2 + C)/2$
- $y(x) = \cos(\sin(x^2) + C)$
- $y(x) = \cos(\sin(x^2 + C))$
- $y(x) = \exp(\sin(x^2)/2 + C)$ \checkmark

- $y(x) = \exp(\cos(x^2)/2 + C)$
- $y(x) = (\sin(x^2 + C))^{\frac{1}{2}}$ • $y(x) = \sin(x^2)^{\frac{1}{2}} + C$ Determine $C = \begin{bmatrix} a \\ b \end{bmatrix}$ with the initial condition $y(\sqrt{\frac{\pi}{2}}) = e$ a: $1 \checkmark b: 2 \checkmark$

Choose the general solution of the following differential equation.

$$y''(x) + 4y'(x) + 8y = 0$$

•
$$y(x) = C_1 \exp(-4x) + C_2 \exp(-2x)$$

• $y(x) = C_1 \exp(2x) + C_2 \exp(-4x)$
• $y(x) = C_1 \sin(2x) + C_2 \cos(2x)$
• $y(x) = C_1 \exp(-2x) \sin(2x) + C_2 \exp(-2x) \cos(2x) \checkmark$
• $y(x) = C_1 \exp(-4x) \sin(4x) + C_2 \exp(-2x) \cos(-2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(4x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(-2x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(-2x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) \sin(2x) + C_2 \cos(2x)$
Determine $C_1 = C, C_2 = d$ with the initial condition $y(0) = 5, y'(0) = 4$
a: $7 \checkmark b: 5 \checkmark$

(16)

If not specified otherwise, fill in the blanks with **integers (pos**sibly 0 or negative). A fraction should be reduced (for example, $\frac{1}{2}$ is accepted but not $\frac{2}{4}$), and if it is negative and the answer boxes (such as $\begin{bmatrix} a \\ b \end{bmatrix}$) have ambiguity, the negative sign should be put on the numerator (for example $\frac{-1}{2}$ is accepted but $\frac{1}{-2}$ is not).

Choose the general solution of the following differential equation.

$$y'(x) = x \sin x^2 y$$

•
$$y(x) = \cos(x^2)/2 + C$$

•
$$y(x) = \sin(x^2 + C)/2$$

- $y(x) = \sin(x^2 + C)/2$ $y(x) = \cos(\sin(x^2) + C)$ $y(x) = \cos(\sin(x^2 + C))$
- $y(x) = \exp(\sin(x^2)/2 + C)$ $y(x) = \exp(\cos(x^2)/2 + C) \checkmark$ $y(x) = (\sin(x^2 + C))^{\frac{1}{2}}$

•
$$y(x) = \cos(x^2)^{\frac{1}{2}} + C$$

Determine $C = \begin{bmatrix} a \\ b \end{bmatrix}$ with the initial condition $y(0) = 1$
 $a: \begin{bmatrix} -1 & \checkmark \end{bmatrix} b: \begin{bmatrix} 2 & \checkmark \end{bmatrix}$
Choose the general solution of the following differential e

Choose the general solution of the following differential equation.

$$y''(x) + 4y'(x) + 8y = 0$$

•
$$y(x) = C_1 \exp(-4x) + C_2 \exp(-2x)$$

• $y(x) = C_1 \exp(2x) + C_2 \exp(-4x)$
• $y(x) = C_1 \sin(2x) + C_2 \cos(2x)$
• $y(x) = C_1 \exp(-2x) \sin(2x) + C_2 \exp(-2x) \cos(2x) \checkmark$
• $y(x) = C_1 \exp(-4x) \sin(4x) + C_2 \exp(-2x) \cos(-2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(4x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(-2x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) + C_2 \exp(-2x) \cos(2x)$
• $y(x) = C_1 \exp(-2x) \sin(2x) + C_2 \cos(2x)$
• $y(x) = C_1 \exp(-2x) \sin(2x) + C_2 \cos(2x)$
Determine $C_1 = C$, $C_2 = d$ with the initial condition $y(0) = 4$, $y'(0) = -4$
a: $2 \checkmark b$: $4 \checkmark$