Mathematical Analysis I: Lecture 58

Lecturer: Yoh Tanimoto

13/01/2020 Start recording...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Basic Mathematics course: 12–15 January on functions, limits, integral and upon request
- Register for the exam calls on Delphi
- Simulations are available on https://esamionline.uniroma2.it

Detailed answers to the simulation questions

(watch also the video, where I explain how to insert answers on Moodle)

- Domain $(\frac{1}{g(x)} \text{ is defined for } x \text{ such that } g(x) \neq 0, \log y \text{ is defined for } y > 0, \sqrt{y} \text{ is defined for } y \geq 0...)$
- Asymptotes
 - Vertical asymptote: look at the boundary points x₀ of the domain and see whether lim_{x→x₀} |f(x)| → ∞.
 - Horizontal asymptote: see whether $\lim_{x\to\pm\infty} f(x)$ exists.
 - Oblique asymptote: see whether $\lim_{x\to\pm\infty}\frac{f(x)}{x}$ exists.
- (sign of the function)

- Sign of the derivative: compute the derivative f'(x) and determine where f'(x) > 0 (increasing), or f'(x) < 0 (decreasing).
- Stationary points (where f'(x) = 0). It is al local minimum if f'(x) is increasing around that point, and a local maximum if f'(x) is decreasing around that point.

There might be other extremal poins where the definition of the function f(x) changes.

Let us consider $f(x) = \log \left| \frac{1+x}{1-x} \right|$.

- Domain. log $\left|\frac{1+x}{1-x}\right|$ is defined when $\left|\frac{1+x}{1-x}\right| > 0$ and $1-x \neq 0$. So the excluded points are x = 1, and $\frac{1+x}{1-x} = 0$, that is x = -1. The domain is $\mathbb{R} \setminus \{-1, 1\}$.
- Asymptotes.
 - Vertical. $\lim_{x\to -1} \log \left| \frac{1+x}{1-x} \right| = -\infty$, so x = -1 is a vertical asymptote. $\lim_{x\to 1} \log \left| \frac{1+x}{1-x} \right| = \infty$, so x = 1 is a vertical asymptote.
 - Horizontal. $\lim_{x\to\infty} \log \left| \frac{1+x}{1-x} \right| = 0$ because $\frac{1+x}{1-x}$ tends to -1, and |z| is continuous, and $\log z$ is continuous around z = 1. y = 0 is a horizontal asymptote.

$$\begin{split} &\lim_{x\to-\infty}\log\left|\frac{1+x}{1-x}\right| = \text{because }\frac{1+x}{1-x} \text{ tends to } -1 \text{, and } |z| \text{ is continuous,} \\ &\text{ and } \log z \text{ is continous around } z=1. \ y=0 \text{ is a horizontal asymptote.} \\ &\text{Oblique. } \lim_{x\to\pm\infty}\frac{f(x)}{z}=0. \text{ There are no oblique asymptotes.} \end{split}$$

Let us consider $f(x) = \log \left| \frac{1+x}{1-x} \right|$.

- Derivative. $f'(x) = \frac{1}{\frac{1+x}{1-x}} \cdot \frac{(1-x)-(-(1+x))}{(1-x)^2} = \frac{2}{(1+x)(1-x)} = -\frac{2}{x^2-1}$
- Extremal points. There is no x such that f'(x) = 0. There are no other extremal points where the definition of f changes.
- The behaviour in [-¹/₂, ¹/₂]. The derivative is positive, hence f is increasing.

Let us consider $f(x) = \arctan \sqrt{\left|\frac{1+x}{1-x}\right|}$.

• Domain. $\arctan \sqrt{\left|\frac{1+x}{1-x}\right|}$ is defined when $\left|\frac{1+x}{1-x}\right| \ge 0$ and $1-x \ne 0$. So the excluded point is x = 1. The domain is $\mathbb{R} \setminus \{1\}$.

- Asymptotes.
 - Vertical. $\lim_{x\to 1} \arctan \sqrt{\left|\frac{1+x}{1-x}\right|} = \frac{\pi}{2}$, because $\lim_{z\to\infty} \arctan z = \frac{\pi}{2}$, so x = 1 is not vertical asymptote.
 - Horizontal. $\lim_{x\to\pm\infty} \arctan \sqrt{\left|\frac{1+x}{1-x}\right|} = \frac{\pi}{4}$ because $\sqrt{\left|\frac{1+x}{1-x}\right|}$ tends to 1, and $\arctan 1 = \frac{\pi}{4}$. $y = \frac{\pi}{4}$ is a horizontal asymptote.
 - Oblique. $\lim_{x\to\pm\infty}\frac{f(x)}{x}=0$. There are no oblique asymptotes.

Let us consider
$$f(x) = \arctan \sqrt{\left|\frac{1+x}{1-x}\right|}$$
.
• Derivative. For $-1 < x < 1$,
 $f'(x) = \frac{1}{(\frac{1+x}{1-x})^2+1} \cdot \frac{1}{2} \cdot \sqrt{\frac{1-x}{1+x}} \cdot \frac{(1-x)-(-(1+x))}{(1-x)^2} = \frac{1}{(1+x)^2+(1-x)^2} \sqrt{\frac{1-x}{1+x}}$
Similarly, for $x < -1$ and $x > 1$,
 $f'(x) = \frac{1}{(\frac{1+x}{x-1})^2+1} \cdot \frac{1}{2} \cdot \sqrt{\frac{x-1}{1+x}} \cdot \frac{(x-1)-((1+x))}{(x-1)^2} = -\frac{1}{(1+x)^2+(1-x)^2} \sqrt{\frac{1-x}{1+x}}$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →