Mathematical Analysis I: Lecture 54

Lecturer: Yoh Tanimoto

07/01/2020 Start recording...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- A make-up session: 12 January (Tuesday) 11:30–13:00.
- Tutoring (by Mr. Lorenzo Panebianco): 12 January (Tuesday) 14:00–15:30.
- Register for the exam calls on Delphi
- Simulations are available on https://esamionline.uniroma2.it
- Today: Apostol Vol. 1, Chapter

Consider the equation $x^2 + 1 = 0$. There is no real solution x that satisfies this equation because $x^2 > 0$, hence $x^2 + 1 > 0$. Yet, it is possible to *extend* the set of real numbers in such a way to include solutions to this equation. One of such solutions is denoted by *i*, that means $i^2 = -1$.

We expect that *i* behaves in a way similar to the real numbers. We can consider a + ib, $a, b \in \mathbb{R}$, it should hold that $(a + ib)(c + id) = ac + i^2bd + i(ad + bc) = ac - bd + i(ad + bc)$. This can be formulated as follows: A **complex number** is a pair (a, b) of real numbers, and we define

• (Equality) (a, b) = (c, d) as complex numbers if and only if a = c and b = d.

• (Sum)
$$(a, b) + (c, d) = (a + c, b + d)$$
.

• (Product)
$$(a, b)(c, d) = (ac - bd, ad + bc)$$
.

This is a formal definition, and it is customary to denote (a, b) by a + ib. *a* is called the **real part** and *b* is called the **imaginary part**. The set of complex numbers is denoted by \mathbb{C} .

Theorem

For $x, y, z \in \mathbb{C}$, we have the following.

• (Commutativity)
$$x + y = y + x, xy = yx$$
.

• (Associativity)
$$x + (y + z) = (x + y) + z, x(yz) = (xy)z.$$

• (Distributive law)
$$x(y + z) = xy + xz$$
.

Proof.

All these properties can be shown by calculating both sides and using the properties of real numbers. For example, for x = a + ib = (a, b), y = c + id = (c, d), x + y = (a, b) + (c, d) = (a + c, b + d) = (c + a, d + b) = y + x, xy = (a, b)(c, d) = (ac - bd, ad + bc) = (ca - db, da + cb) = (c, d)(a, b) = yx.Other properties are left as exercises.

< □ > < 同 > < 三 > <

Let us consider the complex number (0,0). For any other complex number (a, b), it holds that (0,0)(a, b) = (0,0) and (0,0) + (a, b) = (a, b). That is, (0,0) plays the same role of $0 \in \mathbb{R}$. Next, we consider (1,0). For any other complex number (a, b), it holds that (1,0)(a, b) = (a, b). That is, (1,0) plays the same role of $1 \in \mathbb{R}$. For any $(a, b) \in \mathbb{C}$, it holds that (a, b) + (-a, -b) = (0,0). We write -(a, b) for (-a, -b).

< ロト < 同ト < ヨト < ヨト

For any $(a, b) \in \mathbb{C}$, $(a, b) \neq (0, 0)$, it holds that $(a, b)(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}) = (\frac{a^2+b^2}{a^2+b^2}, \frac{-ab+ba}{a^2+b^2}) = (1, 0)$. We write $(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$ for 1/(a, b), or $(a, b)^{-1}$. All these properties tell that \mathbb{C} is an object called a field. For any number $a \in \mathbb{R}$, the complex number (a, 0) behaves exactly as $a \in \mathbb{R}$. Indeed, (a, 0) + (b, 0) = (a + b, 0), (a, 0)(b, 0) = (ab, 0). The complex number (0, 1) satisfies $(0, 1)^2 = (-1, 0)$. Indeed, $(0, 1)^2 = (0 - 1, 0 + 0) = (-1, 0)$. With the understanding that $(-1, 0) = -1 \in \mathbb{R}$, we can interpret this as $(0, 1) = i \in \mathbb{C}$. For a real number *a* and a complex number (b, c), we have $a \cdot (b, c) = (a, 0)(b, c) = (ab, ac)$. With this understanding, any complex number (a, b) can be written as

a + ib, where a = (a, 0), b = (b, 0), i = (0, 1). We can perform all the usual computations using $i^2 = -1$, for example,

$$(a+ib)(c+id) = ac + iad + ibc + i2bd = ac - bd + i(ad + bc),$$
$$\frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2+b^2}.$$

As we represented a real number as a point on the line, we can represent a complex number on the plane:

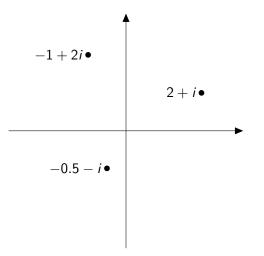


Figure: Various complex numbers on the plane

Lecturer: Yoh Tanimoto

This is helpful especially when we consider various operations on complex numbers. For example, any complex number (a, b) can be considered as a segment from (0, 0). Then the sum can be found by forming a parallelogram.

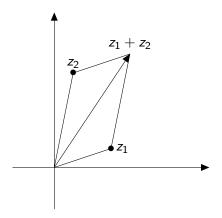


Figure: Sum of two complex numbers

Lecturer: Yoh Tanimoto

As we identify a complex number with a point on the plane, for each complex number (a, b) the length of the segment (0, 0)-(a, b) is $\sqrt{a^2 + b^2}$ and the angle from the horizontal axis (the real numbers), and we can write this as $(a, b) = (r \cos \theta, r \sin \theta)$.

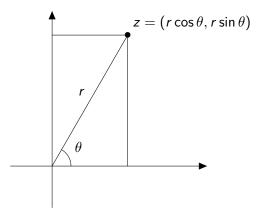


Figure: Various complex numbers on the plane

Lecturer: Yoh Tanimoto

With two complex numbers $(r_1 \cos \theta_1, r_1 \sin \theta_1), (r_2 \cos \theta_2, r_2 \sin \theta_2)$, we have

$$(r_1 \cos \theta_1, r_1 \sin \theta_1)(r_2 \cos \theta_2, r_2 \sin \theta_2)$$

= $(r_1 r_2(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2), r_1 r_2(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2))$
= $(r_1 r_2 \cos(\theta_1 + \theta_2), r_1 r_2 \sin(\theta_1 + \theta_2))$

Therefore, the product has the length r_1r_2 and the angle $\theta_1 + \theta_2$. In particular, if we take $z = (r \cos \theta, r \sin \theta)$, then we have $z^n = (r^n \cos n\theta, r^n \sin n\theta)$. From this, we can conclude that for any $z \in \mathbb{C}$ there is the *n*-th root in \mathbb{C} . Indeed, if $z = (r \cos \theta, r \sin \theta)$, then we can take $w = (r^{\frac{1}{n}} \cos \frac{\theta}{n}, r^{\frac{1}{n}} \sin \frac{\theta}{n})$. In complex numbers, we can solve the second degree equation $ax^2 + bx + c = 0$. Indeed, we can use the usual formula

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a},$$

where the square root is interpreted as a complex number, which always exists.

In general, a polynomial equation $a_n x^n + \cdots + a_1 x + a_0 = 0$ has *n* solution in \mathbb{C} . This is called the fundamental theorem of algebra.

- Calculate the product 3 + 2i and 1 2i.
- Calculate the inverse of 2 + i.
- Calculate the 3rd root of *i*.
- Calculate the 4th root of -1.
- Solve the equation $x^2 + 2x + 5 = 0$.
- Solve the equation $x^3 + 1 = 0$.