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Annoucements

Office hour: Tuesday 11:30–12:30.
Tutorial/more office hours?

Basic Mathematics: first few lessons on
Tuesday (14:00 – 16:00 CET): Inequalities, Limits and Derivatives
Wednesday (14:00 – 16:00 CET): Study of function

and then upon request.
A make up session on 22 December 11:30

Today: Apostol Vol. 1, Chapter 8
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First-order linear differential equations

Let us consider a differential equation

y ′ + P(x)y = 0.

Here, P(x) is a known function and we have to find a function y(x) which
satisfies this equation. Such an equation is called linear homogeneous
differential equation of first-order.
Linear means that there is no term containing y2, y3, (y ′)2 etc.
Homogeneous means that the right-hand side (the term which does not
depend on y) is 0.
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First-order linear differential equations

y ′ + P(x)y = 0.

It is important to note that, if y1(x) and y2(x) are two solutions, then so
is y3(x) = ay1(x) + by2(x), because

y ′3(x) = ay ′1(x) + by ′2(x) = −aP(x)y1(x)− bP(x)y2(x) = −P(x)y3(x).
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First-order linear differential equations

y ′ + P(x)y = 0.

This can be solved as follows:
Note that, as far as y(x) 6= 0, this can be written as

−P(x) = y ′(x)
y(x) = D(log y(x))

therefore, log y(x) = −
∫

P(x)dx − C , or y(x) = e−A(x) with
A(x) =

∫
P(x)dx + C .
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Theorem
Assume that P is continuous in an interval I and a ∈ I, b ∈ R. Then there
is one and only one function y(x) on I satisfying y ′ + P(x)y = 0 and
y(a) = b.

Proof.
We put y(x) = be−A(x), where A(x) =

∫ x
a P(t)dt. It is clear that

y(a) = b and y ′(x) = b(−A′(x))e−A(x) = −P(x)be−A(x) = −P(x)y(x) by
the fundamental theorem of calculus.
If h(x) is another solution, then consider H(x) = h(x)eA(x). We have

H ′(x) = h′(x)eA(x) + h(x)P(x)eA(x)

= −P(x)h(x)eA(x) + h(x)P(x)eA(x) = 0

therefore, H(x) is constant, and H(a) = h(a) = b, hence
h(x) = be−A(x).
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First-order linear differential equations

Next we us consider a differential equation

y ′ + P(x)y = Q(x),

which is called a linear differential equation of first-order. Note that, if
y1(x) and y2(x) are two solutions, then y3(x) = y1(x)− y2(x) satisfies

y ′3(x) = y ′1(x)− y ′2(x) = −P(x)y1(x) + Q(x)− (−P(x)y2 + Q(x))
= −P(x)y3(x).
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First-order linear differential equations

Theorem
Assume that P, Q are continuous in an interval I and a ∈ I, b ∈ R. Then
there is one and only one function y(x) on I satisfying y ′ + P(x)y = Q(x)
and y(a) = b.
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Proof.
We put y(x) = be−A(x) + e−A(x) ∫ x

a Q(t)eA(t)dt, where A(x) =
∫ x

a P(t)dt.
It is clear that y(a) = b and

y ′(x) = b(−P(x))e−A(x) − P(x)e−A(x)
∫ x

a
Q(t)eA(t)dt + e−A(x)Q(x)eA(x)

= −P(x)y(x) + Q(x).

If h(x) is another solution with h(a) = b, then consider
g(x) = h(x)− y(x) satisfies the equation g ′(x) = −P(x)g(x) and
g(a) = h(a)− y(a) = b − b = 0, hence g(x) = 0 by the previous
theorem.
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First-order linear differential equations

Example
Find all solutions y of y ′ + xy = 0.

With P(x) = x , we have A(x) =
∫ x

0 xdx = x2

2 hence y(x) = be− x2
2 .
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First-order linear differential equations

Example
Find all solutions y of xy ′ + (1− x)y = e2x .

This can be written as y ′ + 1−x
x y = e2x

x , hence with
P(x) = 1−x

x , Q(x) = e2x

x , we have A(x) =
∫ x

1
1−x

x dx = log x − x + 1,
hence e−A(x) = ex−1

x and∫ x

1

e2t

t · te
1−tdt = e(ex − e),

hence y(x) = b ex−1

x + ex−1

x e(ex − e) = e2x

x + (b
e − e) ex

x .
One can check that this satisfies the original equation.
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First-order linear differential equations

Consider a falling body in a resisting medium. For example, we drop a
ball from a window. The gravitational force is constant g when the
body moves the distance much shorter than the radius of the Earth.
In addition, the ball is resisted by the air and the resistance is
proportional to the velocity. To express this in a differential equation,
let v(t) be the velocity of the ball at time t, we leave it at time t = 0
from the height 0. Then

mv ′ = mg − kv ,

with v(0) = h.

This is of the form v ′ + P(t)v = Q(t) with
P(t) = k

m , Q(t) = g .
Its solution is v(t) = e− kt

m
∫ t

0 e kt
m gdt = mg

k (1− e− kt
m ). Therefore, at

time t = 0 the speed is 0, and it accelerates until the resistance and
the gravitational force get to an equilibrium.
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First-order linear differential equations

Let us consider a small particle in a large medium. If the temperature
of the particle and that of the medium is different, then the changing
rate of the temperature is proportional to the difference of the
temperature. As the medium is large, we may assume that only the
temperature y(t) changes with y(0) = T , while the medium remain
in the same temperature M. In a differential equation,

y ′(t) = k(M − y(t)).

This is again of the form y ′ + P(t)y = Q(t) with
P(t) = k, Q(t) = kM. The solution is

y(t) = b(e−kt − 1) + ekt
∫ t

0
kMe−ktdt = be−kt + ektM(e−kt − 1).

With y(0) = T we have b = T , and altogether
y(t) = M + (T −M)e−kt . As t →∞, y tends to M.
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Exercises

Solve the following differential equation. y ′+ 2x2y = 0 with y(0) = 2.
Solve the following differential equation. y ′+ xexy = 0 with y(1) = 1.
Solve the following differential equation. xy ′− 3y = x5 with y(0) = 1.
Solve the following differential equation. y ′ + xy = x with y(1) = 2.
A thermometer is stored in a room whose temperature is 35◦C. Five
minutes after being taken outdoor is 25◦C. After another five
minutes, it reads 20◦C. Compute the outdoor temperature.
The half-life for Caesium-137 is about 30 years. Compute the
percentage of a given quantity of Caesium that disintegrates in 10
years.
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