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Annoucements

Tutoring (by Mr. Lorenzo Panebianco): Tuesday 10:00–11:30.
Office hour: Tuesday 11:30–12:30.

Basic Mathematics: first few lessons on
Tuesday (14:00 – 16:00 CET): Inequalities, Limits and Derivatives
Wednesday (14:00 – 16:00 CET): Study of function

and then upon request.
A make up session on 22 December 11:30

Today: Apostol Vol. 1, Chapter 8
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(Ordinary) differential equations

Many scientific questions are expressed in terms of differential equation
(equation about functions and their derivatives).

The equation of motion in a gravitational field m d2x
dt2 = −mMG

x2

The heat equation ∂u
∂t = α∂u2

∂x2 (this is partial differential equation,
because it contains partial derivatives, studied in Mathematical
Analysis II) .
The SIR model in epidemiology
dS
dt = −βS(t)I(t)

N , dI
dt = βS(t)I(t)

N − γI(t), dR
dt = γI(t)

This is because the rate of change (the derivative) is often determined by
the current status (the function). For example, in the equation of motion,
the gravitational force −mMG

x2 depends on the place of a particle x(t),
while the force determines the the rate of change of the speed (the
acceleration), and the speed is x ′(t), hence the second derivative appears
on the left-hand side.
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Ordinary differential equations

Once the scientific problem is written in the form of differential equation,
it is a mathematical problem to solve it, that is, to find functions that
satisfies the given equation.
In the following, y(x) will be a function of x and the derivatives are
denoted by y ′(x), y ′′(x) and so on. Some more examples of differential
equation are

y ′(x) = y(x)
y ′(x) = x3y(x) + sin(xy ′′(x))
Sometimes we just write this as y ′ = x3y + sin(xy ′′), keeping in mind
that y is a function of x .
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Ordinary differential equations

In a differential equation, certain higher derivative of y may appear. The
highest order of the derivative of y is called the order of the differential
equation. For example,

y ′(x) = 2y(x) is a first-order differential equation.
y ′(x) = x3y(x) + sin(xy ′′(x)) is a second-order differential equation.

We need to find functions y(x) that satisfy the given equation. This is why
it is called a differential equation. Compare it with an algebraic equation
x2 + 3x − 4 = 0, where we need to find numbers that satisfy this equation.
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Ordinary differential equations

Let us consider first-order differential equations. In an abstract form, we
can write it as

y ′ = f (x , y),

where f is explicitly written in examples, while y is the unknown functions
which we need to find. In the example y ′(x) = 2y(x), we take
f (x , y) = 2y . A solution of a differential equation is a (differentiable)
function that satisfies this equation. For example, by taking y(x) = Ce2x ,
we can check that this is a solution:

y ′(x) = 2Ce2x = 2y(x).
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Some first-order differential equations

The simplest case is where f does not depend on y : that is,

y ′(x) = f (x).

This means that f is the derivative of y , or y is a primitive of f . Therefore,
y can be obtained by integrating f : y(x) =

∫
f (x)dx + C . Indeed, this y

satisfies the given equation for any C ∈ R, and there is no other solution.
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Some first-order differential equations

Example
When a ball falls freely without drag, the speed −gx is proportional to the
time x . As the speed is the derivative of the position y , we have the
equation

y ′(x) = −gx .

This can be solved by integration, that is y(x) =
∫

(−gx)dx = −gx2

2 + C .
The constant C depends on the position where the ball starts to fall.

As we see in this example, a differential equation may have many
solutions. In practice, we are interested in one of them which satisfies
additional conditions, the initial conditions or boundary conditions, that
give the value of y , y ′ at a given time x .
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Some first-order differential equations

Next, let us consider again the simplest differential equation y ′ = f (x , y)
where f depends on y .

Theorem
Let a,C ∈ R. Then there is only one (differentiable) function y such that
y ′(x) = ay(x) and y(0) = C.

Proof.
We know that there is one such function: y(x) = Ceax . Indeed, we can
check that y ′(x) = aCeax = ay(x) and y(0) = Ce0 = C .
Suppose that there is g(x) with the same condition. Let h(x) = e−ax g(x),
then h′(x) = −ae−ax g(x) + e−ax g ′(x) = −ae−ax g(x) + ae−ax g(x) = 0
for all x ∈ R, hence h(x) must be a constant. As h(0) = e0g(0) = C ,
h(x) = C hence g(x) = Ceax .
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Some first-order differential equations

Let us consider when we see the equation y ′ = ay .
A very typical example is radioactive atoms. Let y(x) be the number
of a single species of radioactive atoms at time x . It is known that
each atom decays, independently from other atoms, in a certain time
period by a certain probability. This means that, at each moment, the
rate of decrease in numbers y(x) is proportional to y(x). With a
constant a, we can write this as

y ′(x) = −ay(x).

If there are C atoms at time x = 0, we know that the solution is
y(x) = Ce−ax , hence the number of radioactive atoms decays
exponentially. This can be written more conveniently as
y(x) = Ce−ax = C2−ax/ log 2. Then with T = log 2

a , we have
y(x) = C2−x/T , and it is clear that the number of atoms halves in
time T . T is called the half life of this particular species of atom.
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Figure: The exponential decay y(x) = Ce−ax = C2−ax/ log 2 The half-life is
T = log 2/a.
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Some first-order differential equations

Let us consider when we see the equation y ′ = ay .
Another instance is the SIR model in epidemiology. We consider the
total population N, the numbers of S(t) (succeptible), I(t) (infected)
and R(t) (removed/recovered). It is assumed that each infected
people has contact with a certain number of people in each day,
hence this number is proportional to S(t)

I(t) , and assume that in each
such contact transmission occurs by the rate β. On the other hand,
each infected people lose infectivity by the rate γ.

dS
dt = −βS(t)I(t)

N
dI
dt = βS(t)I(t)

N − γI(t)

dR
dt = γI(t)
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Some first-order differential equations

It is difficult to solve this set of equations. Yet, we can understand the
behaviour when there are few infected people I(t) compared to the total
number N. When I(t) is small, then R(t) is also small and
S(t) = N − I(t)− R(t) is close to N. By putting S(t) = N, we have

dI
dt = (β − γ)I(t).

As a function of t, we know that I(t) = Ce(β−γ)t , where C is the number
of infected at day t = 0. This epidemic grows when β − γ > 0, and decays
when β − γ < 0. R0 = β

γ is called the basic reproduction number in the
SIR model. When R0 > 1 the epidemic grows and when R0 it decays.
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Exercises

Solve the following differential equation. y ′ = 2y with y(0) = 2.
Solve the following differential equation. y ′ = −3y with y(1) = −1.
Solve the following differential equation. y ′ = x3 with y(0) = 2.
Solve the following differential equation. y ′ = e2x with y(1) = −1.
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